温和条件下负载型纳米金催化剂上环己烯氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环己烯氧化可以得到许多有用的产物,如:生产农药克螨特的环氧环己烷,生产邻苯二酚的邻环己二醇,以及生产醇酮类医药的环己烯醇和环己烯酮等,这四种产物常用∑C6来表示。随着精细化学工业的发展,∑C6的需求量越来越大。由于环己烯分子含有一个易发生氧化反应的不饱和C=C双键和多个活性α-H原子,导致发生氧化反应的选择性较差,且产物∑C6分布复杂。因此对温和条件下环己烯催化氧化具有高活性、高选择性催化剂的研究,引起了学术界和工业界的广泛关注。
     本论文分为六章。主要研究了活性炭负载纳米金催化剂,锰分子筛负载纳米金催化剂和埃洛石纳米管负载纳米金催化剂的制备、表征及催化性能。论文的具体内容如下:
     第一章为文献综述,概括了近十年环己烯氧化催化剂的研究进展,其中重点介绍了在温和条件下具有较高活性的纳米金催化剂。
     第二章总结了实验原料、实验设备的使用,以及表征手段和实验方法的确定,具体为:环己烯氧化反应在高压反应釜(容积:30 mL,最大承受压力6 MPa)中进行,以正庚烷为内标物用气相色谱对产物进行分析,内标法处理实验数据。采用ICP-AES、XRD、TEM、SEM、EDX、BET等手段对催化剂进行表征。
     第三章对活性炭负载的纳米金催化剂用于环己烯氧化进行了实验研究。采用浸渍还原法制备了催化剂Au/C,通过ICP-AES、XRD、TEM手段对其进行了表征。另外,Au/C经过AgNO3和Co(NO3)2·6H2O的改性可以得到双金属元素催化剂Au-Ag/C和Au-Co/C。在无溶剂环己烯氧化体系中对该系列催化剂进行活性评价,发现Au和Ag存在协同效应。在80℃、氧气压力0.4 MPa下反应12 h,在理论载金量为1.0(wt.)%、载银量为1.0(wt.)%的Au-Ag/C催化剂上,环己烯转化率为27.6%,∑C6产物的选择性为88.9%,特别是邻环己二醇的选择性达到了47.6%。
     第四章考察了无溶剂体系中环己烯在八面体锰分子筛负载的纳米金催化剂Au/OMS-2和Au/La-OMS-2上的氧化。Au/OMS-2和Au/La-OMS-2在负载量较低的情况下对环己烯氧化生成环己烯酮和环己烯醇有较好的催化效果。在80℃、氧气压力0.4 MPa下反应24 h,Au/La-OMS-2(0.24)催化剂上,环己烯转化率达到48.0%,环己烯醇和环己烯酮的选择性之和超过84%。该催化剂循环使用4次时,活性没有明显的降低。催化剂良好的活性和稳定性是由纳米金颗粒和La/OMS-2分子筛的特殊结构和组成共同决定的。
     第五章制备了埃洛石纳米管负载纳米金催化剂Au/HNTs。在无溶剂、氧气氧化环己烯反应体系中,该催化剂对环己烯醇和环己烯酮有较好的选择性和稳定性,发现Au/HNTs在环己烯氧化中存在纳米尺寸效应。
     第六章对本文的主要研究内容进行了归纳总结,对纳米金催化剂上环己烯氧化的研究发展提出了一些建议。
Many useful products can be abtained from cyclohexene oxidation, such as cyclohexene oxide (raw material of agricultural chemical propargite), cyclohexane-1,2-diol (used to produce pyrocatechol),2-cyclohexene-1-ol and 2-cyclohexene-1-one (pharmaceutical intermediates), etc.. These four products mentioned above are collectively calledΣC6.The demands ofΣC6 increase a lot with the development of fine chemistry. However, as there is a C=C bound and fourα-H atoms in the cyclohexene molecule, the oxidation of cyclohexene is often inefficient because various products could be obtained at a time with unsatisfactory conversion or selectivity. Therefore, the research of heterogeneous catalysts for cyclohexene oxidation with good catalytic performance under mild conditions attracts the academic and industrial world.
     This theme includes six chapters, mainly reports carbon-supported gold catalyst, OMS-2 supported gold catalyst, HNTs supported gold catalyst, and their preparation methods, characterization and catalytic performance in cyclohexene oxidation. The theme is list in detail as follows:
     Chapter 1 gives a review about the progress of catalysts for cyclohexene oxidation in the last decade, mainly focusing on the nano gold catalysts, which has good catalytic performance under mild conditions.
     Chapter 2 introduces the experimental materials, experimental equipments, and the method of catalyst characterization and catalyst test. PTFE-lined autoclave (Capacity=30 mL, pressure maximum 6 MPa) was choosen for cyclohexene oxidation, n-heptane was used as internal standard for product analysis and catalysts were characterized by inductively coupled plasma-atomic emission spectrometry (ICP-AES), X-ray-diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX) and Brunauer-Emmet-Teller (BET).
     Chapter 3 is about cyclohexene oxidation on carbon-supported gold catalysts. Carbon-supported gold catalysts Au/C were prepared by an impregnation-reduction method and characterized by ICP-AES, XRD and TEM. Au/C catalysts were modified by AgNO3 and Co(NO3)2·6H2O to obtain bi-metallic catalysts Au-Ag/C and Au-Co/C. Their catalytic performance was tested in the oxidation of cyclohexene in an autoclave without any solvent. The results showed that Ag doping can significantly enhance the catalytic performance of carbon-supported gold catalyst. Au(1.0 wt.%)-Ag(1.0 wt.%)/C has been found to be an efficient catalyst for the oxidation of cyclohexene with a conversion 27.6% at 80℃and 0.4 MPa for 12 h while selectivity forΣC6 products exceeding 88.9%, especially the selectivity of cyclohexane-1,2-diol up to 47.6%.
     Chapter 4 deals with solvent-free oxidation of cyclohexene over catalysts Au/OMS-2 and Au/La-OMS-2 with molecular oxygen. The OMS-2 supported gold catalyst with low gold loading and La doping has shown high efficiency for cyclohexene oxidation to 2-cyclocyhexene-1-ol and 2-cyclocyhexene-l-one. Au/La-OMS-2(0.24) was found to be an efficient catalyst for the oxidation of cyclohexene with a high conversion (48.0%). More than 84% selectivity for 2-cyclohexene-1-ol and 2-cyclohexene-l-one was obtained. The high activity and good stability of catalyst Au/La-OMS-2 is ascribed to both the effect of gold and the structure and composition of La-OMS-2.
     Chapter 5 deals with halloysite nanotubes (HNTs) supported gold catalyst. The selective oxidation of cyclohexene to 2-cyclohexene-1-ol and 2-cyclohexene-l-one has been investigated over Au/HNTs with molecular oxygen in a solvent-free system. The results show that the catalytic performance of Au/HNTs is well and the catalytic activity over recycled catalyst remains well. Moreover, the nano-size effect of gold is found for cyclohexene oxidation.
     Chapter 6 summarizes the main contents of the dissertation, and several research suggestions about cyclohexene oxidation on nano gold catalysts are proposed.
引文
[1]C. B. Geoffrey, T. T. David, L. Catherine. Catalytic Performance of Gold[M]. Beijing: Scientific Press,2008.
    [2]M. D. Hughes, Y. J. Xu, P. Jenkins, et al.Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions[J]. Nature,2005,437(7062):1132-1135.
    [3]Y. X. Wang, J. S. Zhang. Market analysis and application foreground for epoxycyclohexane[J]. New Chemical Materials,2008,36(6):19-20.
    [4]H. N. Stephens. Studies in Autoxidation. I. Cyclohexene peroxide (preliminary communication)[J]. Journal of American Chemical Society,1928,50(2):568-571.
    [5]P. Charles. Oxidation of cyclohexene hydrocarbons[J]. Bulletin dela Societe Chimiquede France,1941,8:695-699.
    [6]郝成君,邢朝晖.谷氨酸席夫碱钴配合物对环己烯的催化氧化性能研究[J].化工时刊,2006,20(9):7-9.
    [7]郝成君,赵晓军.高分子担载苯丙氨酸希夫碱钴配合物催化氧化环己烯研究[J].平顶山工学院学报,2007,16(2):14-17.
    [8]B. Sun, J. Chen, J. Y. Hu, et al. Dioxygen affinities and catalytic oxidation activities of cobalt complexes with Schiff bases containing crown ether[J]. Journal of Inorganic Biochemistry,2006,100:308-313.
    [9]李晓东,申国瑞,邵东旭,等.水杨醛p-丙氨酸希夫碱复合双金属配合催化分子氧氧化环己烯的性能研究[J].西北师范大学学报,2006,42(2):80-84.
    [10]H. Kameyama, F. Narumi, T. Hattori, et al. Oxidation of cyclohexene with molecular oxygen catalyzed by cobalt porphyrin complexes immobilized on montmorillonite[J]. Journal of Molecular Catalysis A:Chemical,2006,258:172-177.
    [11]J. Jiang, K. Ma, Y. Zheng, et al. Cobalt salophen complex immobilized into montmorillonite as catalyst for the epoxidation of cyclohexene by air[J]. Applied Clay Science,2009,45: 117-122.
    [12]P. Shringarpure, A. Patel. Cobalt (Ⅱ) exchanged supported 12-tungstophosphoric acid: Synthesis, characterization and non-solvent liquid phase aerobic oxidation of aIkenes[J]. Journal of Molecular Catalysis A:Chemical,2010,321:22-26.
    [13]杨国玉,朱海林,周文峰,蒋登高CoPc/Al2O3催化分子氧环氧化环己烯[J].化学研究与应用,2007,19(2):179-182.
    [14]康巧香,杨志旺,雷自强PAMAMSA-M树枝状配合物作用下环己烯的催化氧化[J].西北师范大学学报(自然科学版),2004,40(3):46-50.
    [15]段宗范,王荣民,何玉凤,等.高分子担载水杨醛希夫碱钴配合物催化分子氧氧化环己烯性能研究[J].分子催化,2005,19(5):383-387.
    [16]彭鸿杰,康战锋,张玉霞,等.分子氧氧化环己烯负载型催化剂的制备与选择[J].河南 化工,2007,24(5):13-15.
    [17]K. M. Jinka, J. Sebastian, R. V. Jasra. Epoxidation of cycloalkenes with cobalt(Ⅱ)-exchanged zeolite X catalysts using molecular oxygen[J]. Journal of Molecular Catalysis A:Chemical, 2007,274:33-41.
    [18]C. Yin, Z. Yang, B. Li, et al. Allylic Oxidation of Cyclohexene with Molecular Oxygen Using Cobalt Resinate as Catalyst[J]. Catalysis Letters,2009,131:440-443.
    [19]E. Angelescu, R. lonescu, O.D. Pavel, et al. Epoxidation of cyclohexene with O2 and isobutyraldehyde catalysed by cobalt modified hydrotalcites[J]. Journal of Molecular Catalysis A:Chemical,2010,315:178-186.
    [20]王娟娟.催化空气氧化环己烯制环己烯酮[J].陕西师范大学学报(自然科学版),2008,36:73-74.
    [21]杨国玉,朱海林,蒋登高CoPc/MCM-41催化氧化环己烯合成环己烯酮[J].精细化工,2006,23(7):721-724.
    [22]G. Y. Yang, A. L. Sun, W. F. Zhou, et al. Comparative Study of Ship-in-a-Bottle and Anchored Heterogenized Mn Complexes[J]. Catal Lett,2007,118:275-279.
    [23]朱海林.分子氧氧化环己烯合成环氧环己烷的研究[D]郑州:郑州大学,2005.
    [24]杨国玉,朱海林,周文峰,等Mnsaloph-ZSM-5催化环己烯环氧化性能的研究[J].化学世界,2006,11:647-650.
    [25]J. Q. Zhao, J. P. Han, Y. C. Zhang. Preparation of encapsulated and anchored alanine-salicylaldehyde Schiff base Mn(Ⅲ) (Sal-Ala-Mn) complexes by sol-gel method and their performance in aerobic epoxidation of cyclohexene[J].Journal of Molecular Catalysis A: Chemical,2005,231:129-135.
    [26]Y. R. Zhang, J. Q. Zhao, L. Q. He, et al. Manganese (Ⅲ) salen complex anchored onto MCM-41 as catalyst for the aerobic epoxidation of olefins[J]. Microporous and Mesoporous Materials,2006,94:159-165.
    [27]刘艳华,赵继全,莒晓艳,等.多相化Salen—Mn(Ⅲ)催化剂的制备及其催化空气环氧化环己烯反应的研究[J].石油化工,2005,34(5):416-421.
    [28]韩建萍,赵继全,张月成,等.丙氨酸席夫碱锰配合物对环己烯催化环氧化性能的研究[J].河北工业大学学报,2004,33(4):80-83.
    [29]郭锋,张洪起,冯磊,等.聚苯乙烯负载Salen-Mn(Ⅲ)配合物的制备及其催化空气环氧化烯烃反应[J].高校化工学报,2008,22(6):972-977.
    [30]韩建萍,赵继全,陆敬国,等.丙氨酸席夫碱锰配合物催化环己烯的空气环氧化[J].应用化学,2004,21(11):1136-1140.
    [31]J. Jiang, K. Ma, Y. F. Zhen, et al. Epoxidation of Cyclohexene with Air over the Composite Catalysts of Mn-mont Coordinated with Ligands[J]. Catal Lett,2009,131:105-113
    [32]J. H. Tong, Y. Zhang, Z. Li, et al. Highly effective catalysts of natural polymer supported Salophen Mn(Ⅲ) complexes for aerobic oxidation of cyclohexene[J]. Journal of Molecular Catalysis A:Chemical,2006,249:47-52.
    [33]S. Bhattacharjee, J. A. Anderson. Comparison of the epoxidation of cyclohexene, dicyclopentadiene and 1,5-cyclooctadiene over LDH hosted Fe and Mn sulfonato-salen complexes[J]. Journal of Molecular Catalysis A:Chemical,2006,249:103-110.
    [34]X. T. Zhou, H. B. Ji, J. C. Xu, et al. Enzymatic-like mediated olefins epoxidation by molecular oxygen under mild conditions[J]. Tetrahedron Letters,2007,48:2691-2695
    [35]Z. W. Yang, Q. X. Kang, H. C. Ma, et al. Oxidation of cyclohexene by dendritic PAMAMSA-Mn(II) complexes[J]. Journal of Molecular Catalysis A:Chemical,2004,213: 169-176.
    [36]陈丽珍,安树茂,魏田玉.分子筛固载希夫碱锰配合物催化环己烯环氧化[J].山西化工2009,29(1):9-11.
    [37]韩建萍,何乐芹,赵继全,等.丙氨酸Schiff碱Fe(III)配合物的合成及其催化分子氧环氧化环己烯的反应性能[J].石油化工,2005,34:403-404.
    [38]X. T. Zhou, Q. H. Tang, H. B. Ji. Remarkable enhancement of aerobic epoxidation reactivity for olefins catalyzed by 1-oxo-bisiron(Ⅲ) porphyrins under ambient conditions[J]. Tetrahedron Letters,2009,50:6601-6605.
    [39]Y. Kokubo, X. W. Wu, Y. Oshima, et al. Aerobic oxidation of cyclohexene catalyzed by Fe(III)(5,10,15,20-tetrakis(pentafluorophenyl)porphyrin)Cl in supercritical CO2[J]. Journal of Supercritical Fluids,2004,30:225-235.
    [40]M. Salavati-Niasari, F. Davar. Host (nanodimensional pores of zeolite Y)-guest (3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecane, [Ni(R2Bzo2[14]aneN6)]2+) nanocomposite materials:Synthesis, chara-cterization and catalytic oxidation of cyclohexene[J]. Inorganic Chemistry Communications,2006,9:263-268.
    [41]M. Salavati-Niasari. Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen with host (nanopores of zeolite-Y)/guest (Ni(Ⅱ) complexes of 14-and 16-membered tetraaza dioxo diphenyl macrocyclic ligands) nanocomposite materials[J]. Polyhedron,2008,27:3132-3140.
    [42]M. Salavati-Niasari, M. Bazarganipour, Bis(macrocyclic)dinickel(Ⅱ) complexes containing phenylene bridges between 13-membered triaza dioxa macrocyclic ligands:in-situ one pot template synthesis, characterization and catalytic oxidation of cyclohexene[J]. Transition Metal Chemistry,2007,32:9-15.
    [43]M. Salavati-Niasari. Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen over host (zeolite-Y)/guest (nickel(Ⅱ) complexes of R2[12]1,3-dieneN2O2 and R2[13]1,4-dieneN2O2; R= H, Me, Ph) nanocatalyst (HGN)[J]. Transition Metal Chemistry, 2006,31:964-969.
    [44]M. Salavati-Niasari.16-Membered pentaaza bis(macrocyclic) nickel(Ⅱ) complexes containing aromatic nitrogen-nitrogen linkers,{[Ni([16]aneN5)]2R}(C104)4:Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen[J]. Journal of Molecular Catalysis A:Chemical,2007,272:207-212.
    [45]M. Salavati-Niasari, S. Abdolmohammadi. Host (nanocavity of zeolite-Y)/guest (12-and 14-membered azamacrocyclic Ni(Ⅱ) complexes) nanocatalyst:synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2008,60:145-152.
    [46]赵继全,郑岩,陆敬国,等.溶胶一凝胶包容乙酰丙酮镍的制备及其催化空气环氧化环己烯的性能[J].分子催化,2004,18(4):266-270.
    [47]郑岩,赵继全,葛凤燕,等.胶囊化Ni(acac)2·2H2O对环己烯环氧化催化性能的研究[J].应用化学,2003,20(5):470-473.
    [48]Y. Chang, Y. R. Lv, F. Lu, et al. Efficient allylic oxidation of cyclohexene with oxygen catalyzed by chloromethylated polystyrene supported tridentate Schiff-base complexes[J]. Journal of Molecular Catalysis A:Chemical,2010,320:56-61.
    [49]D. M. Jiang, T. Mallat, D. M. Meier, et al, Alfons Baiker. Copper metal-organic framework: Structure and activity in the allylic oxidation of cyclohexene with molecular oxygen[J]. Journal of Catalysis,2010,270:26-33.
    [50]X. J. Meng, K. F. Lin, X. Y. Yang, et al. Catalytic oxidation of olefins and alcohols by molecular oxygen under air pressure over Cu2(OH)PO4 and Cu4O(PO4)2 catalysts[J].Journal of Catalysis,2003,218:460-464.
    [51]H. Weiner, A. Trovarelli, R. G. Finke. Expanded product, plus kinetic and mechanistic, studies of polyoxoanion-based cyclohexene oxidation catalysis:the detection of~70 products at higher conversion leading to a simple, product-based test for the presence of olefin autoxidation[J]. Journal of Molecular Catalysis A:Chemical,2003,191:217-252.
    [52]S. E. Dapurkar, H. Kawanami, K. Komura. Solvent-free allylic oxidation of cycloolefins over mesoporous CrMCM-41 molecular sieve catalyst at 1 atm dioxygen[J]. Applied Catalysis A: General,2008,346:112-116.
    [53]M. Tada, S. Muratsugu, M. Kinoshita, et. al. Alternative selective oxidation pathways for aldehyde oxidation and alkene epoxidation on a SiO2-supported Ru-monomer complex catalyst[J]. Journal of American Chemistry Society,2010,132,713-724.
    [54]李春波,潘伟雄,邱显清.纳米碳管的制备及其在钌络合物催化氧化环己烯中的应用[J].天然气化工,2002,27(5):8-11
    [55]N. Sehlotho, T. Nyokong. Zinc phthalocyanine photocatalyzed oxidation of cyclohexene[J].Journal of Molecular Catalysis A:Chemical,2004,219:201-207.
    [56]M. R. Prasad, G. Madhavi, A. R. Rao, et al. Synthesis, characterization of high Ti-containing Ti-MCM-41 catalysts and their activity evaluation in oxidation of cyclohexene and epoxidation of higher olefins[J]. Journal of Porous Materials,2006,13:81-94.
    [57]X. L. Tong, J. Xu, H. Miao, et al. Highly efficient and metal-free oxidation of olefins by molecular oxygen under mild conditions[J]. Tetrahedron,2007,63:7634-7639.
    [58]汤胜山.光催化环己烯氧化反应研究[D].南昌:南昌大学理学院化学系,2005
    [59]X. J. Xue, Y. M. Xu. Selective photooxidation of cyclohexene with molecular oxygen sensitized by palladium phthalocyaninesulfonate[J]. Journal of Molecular Catalysis A: Chemical,2007,276:80-85.
    [60]Y. Kim, H. Kim, J. Lee, et al. A modified Wacker catalysis using hetero polyacid: Interactionof heteropoly anion with Cu(Ⅱ) in cyclohexene oxidation[J]. Applied Catalysis, A: General,1997,155:15-26.
    [61]W. R. Patterson, C. Kemball. The catalytic oxidation of olefins on metal films[J]. Journal of Catalysis,1963,2(6):465-78.
    [62]K. Masada, A. Yasui. Epoxy compounds of cyclic olefins[P]. JP 19680622,1971.
    [63]S. A. Nyarady, R. E. Sievers. Selective catalytic oxidation of organic compounds by nitrogen dioxide[J]. Journal of the American Chemical Society,1985,107(12):3726-3727.
    [64]T. Hayashi, M. Wada, M. Haruta, et al. Catalysts for partial oxidation of hydrocarbons and method of partial oxidation of hydrocarbons[P]. US5932750,1999.
    [65]M. L. Kantama, B. P. C. Raoa, R. S. Reddya, et al. Aerobic epoxidation of olefins catalyzed by Co-SiO2 nanocomposites[J]. Journal of Molecular Catalysis A:Chemical,2007,272:1-5.
    [66]M. Salavati-Niasari, M. Hassani-Kabutarkhani, F. Davar. Alumina-supported Mn(Ⅱ), Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ)N,N-bis(salicylidene)-2,2-dimethylpropane-1,3-diamine complexes:Synthesis, characterization and catalytic oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide[J]. Catalysis Communications,2006,7:955-962.
    [67]P. Buranaprasertsuk, Y. Tangsakol, W. Chavasiri. Epoxidation of alkenes catalyzed by cobalt(Ⅱ) calix[4]pyrrole[J]. Catalysis Communications,2007,8:310-314.
    [68]M. Salavati-Niasari, M. Shaterian. Host (nanocavity of zeolite-Y)/guest (Mn(Ⅱ), Co(Ⅱ),Ni(Ⅱ) and Cu(Ⅱ) complexes of pentadendate Schiff-base ligand) nanocomposite materials (HGNM): application in the heterogeneous oxidation of cyclohexene[J]. J Porous Mater,2008,15: 581-588.
    [69]A. S. Amarasekara, A. R. Oki, I. McNeal, et al. One-pot synthesis of cobalt-salen catalyst immobilized in silica by sol-gel process and applications in selective oxidations of alkanes and alkenes[J]. Catalysis Communications,2007,8:1132-1136.
    [70]M. Salavati-Niasari, A. Amiri. Synthesis and characterization of alumina-supported Mn(Ⅱ), Co(Ⅱ),Ni(Ⅱ) and Cu(Ⅱ) complexes of bis(salicylaldiminato)hydrazone as catalysts for oxidation of cyclohexene with tert-buthylhydroperoxide[J]. Applied Catalysis A:General, 2005,290:46-53.
    [71]V. V. Agrawal, P. Mahalakshmi, G. U. Kulkarni, et al. Nanocrystalline Films of Au-Ag, Au-Cu, and Au-Ag-Cu Alloys Formed at the Organic-Aqueous Interface[J]. Langmuir,2006,22: 1846-1851.
    [72]C. W. Yen, M. L. Lin, A. Q. Wang, et al. CO Oxidation Catalyzed by Au-Ag Bimetallic Nanoparticles Supported in Mesoporous Silica[J]. Journal of Physical Chemistry C,2009, 113(41):17831-17839.
    [73]R. Vinu, G. Madras. Photocatalytic activity of Ag-substituted and impregnated nano-TiO2[J]. Applied Catalysis A:General,2009,366:130-140.
    [74]C O'young, R A Sawicki. Method of preparing manganese oxide octahedral molecular sieve[P]. US5545393,1996.
    [75]刘文明,曹志红,项学明Ce-OMS-2催化剂气相催化氧化甲苯制苯甲醛[J]石油化工,2007,36(7):716-720.
    [76]曹志红,刘文明,项学明La-OMS-2催化剂催化甲苯氧化制苯甲醛[J].石油化工,2006,35(11):1069-1073.
    [77]R. Jothiramalingam, B. Viswanathan, T. K. Varadarajan. Preparation, characterization and catalytic propertiesof cerium incorporated porous manganese oxide OMS-2 catalysts[J]. Catalysis ommunications,2005,6:41-45.
    [78]M. Abecassis-Wolfovich, R. Jothiramalingam, M. V. Landau, et al. Cerium incorporated ordered manganese oxide OMS-2 materials:lmproved catalysts for wet oxidation of phenol compounds[J]. Applied Catalysis B:Environmental,2005,59:91-98.
    [79]傅诺农.色谱分析概论[M].北京:化学工业出版社,2000,103-133.
    [80]清华大学分析化学教研室.现代仪器分析[M].北京海淀清华园:清华大学出版社,1983,400-441.
    [81]苏惠,杨国玉,聂艳平,蒋登高.内标法测定环己烯氧化产物中环己烯和环氧环己烷含量[J].河南化工,2008,2(6):29-31.
    [82]R. Vinu, G. Madras. Photocatalytic activity of Ag-substituted and impregnated nano-TiO2[J]. Applied. Catalysis, A,2009,366(1):130-140.
    [83]N. Malumbazo, S. F. Mapolie. Silica immobilized salicylaldimine Cu(Ⅱ) and Co(Ⅱ) complexes as catalysts in cyclohexene oxidation:A comparative study of support effects[J].Journal of Molecular. Catalysis A:Chemistry,2009,312(1-2):70-77.
    [84]A. S. Amarasekara, A. R. Oki, I. McNeal. One-pot synthesis of cobalt-salen catalyst immobilized in silica by sol-gel process and applications in selective oxidations of alkanes and alkenes[J]. Catalysis Communications,2007,8(7):1132-1136
    [85]M. L. Kantam, B. Rao, R. S. Reddy, et, al. Aerobic epoxidation of olefins catalyzed by Co-SiO2 nanocomposites[J]. Journal of Molecular. Catalysis A:Chemistry,2007,272(1~2): 1-5.
    [86]P. Buranaprasertsuk, Y. Tangsakol, W. Chavasiri. Epoxidation of alkenes catalyzed by cobalt(ll) calix[4]pyrrole[J]. Catalysis Communications,2007,8(3):310-314.
    [87]R. Kumar, S. Sithambaram, S. L. Suib. Cyclohexane oxidation catalyzed by manganese oxide octahedral molecular sieves—Effect of acidity of the catalyst Journal of Catalysis[J].2009, 262(2):304-313.
    [88]L. X. Xu, C. H. He, M. Q. Zhu, et al. A highly active Au/Al2O3 catalyst for cyclohexane oxidation using molecular oxygen[J]. Catalysis Letters,2007,114(3-4):202-205.
    [89]L. X. Xu, C. H. He, M Q Zhu, et al. Silica-Supported Gold Catalyst Modified by Doping with Titania for Cyclohexane Oxidation [J]. Catalysis Letters,2007,118(3-4):248-253.
    [90]刘国旺.含氢硅烷的硅氢加成反应及其催化剂负载化研究[D].杭州:浙江大学化工系,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700