一种制备单分散纳米粉体的液相沉淀法及其结晶动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对液相沉淀法制备纳米粉体中,控制粉体粒径和粒度分布问题,通过对微混、沉淀反应和成核等过程相对速率的分析比较,引入表征目标产物过饱和分布均匀化特征时间,对影响过饱和分布均匀化各因素及其影响程度进行分析,探索以延长成核诱导期的方式实现目标产物过饱和分布均匀化的可行性。在此基础上提出以加入抑制剂延长成核诱导期,加入沉淀释放剂促进成核,并利用成核抑制剂对晶体生长和团聚的控制作用制备单分散纳米粉体的液相化学沉淀法。以SrSO_4和CaSO_4为研究对象,利用单因素实验和正交试验方法,获得制备纳米SrSO_4和CaSO_4适宜工艺条件。所得产品粒径、粒度分布用粒度分析仪测试,粉体晶型、纯度及晶体形貌用XRD和TEM表征。结果表明,用本文提出的方法,可制备粒度分布窄、形貌一致的纳米SrSO_4和CaSO_4粉体。
    以SrSO_4沉淀体系为研究对象,通过对所测量不同条件下的LaMer图及单因素实验现象的分析,推测了EDTA和乙醇在制备纳米SrSO_4过程对成核和晶体生长影响的作用机理。研究结果表明,在适宜pH条件下,EDTA依靠与Sr2+的配位作用形成表面配合物吸附在溶液中SrSO_4分子、SrSO_4临界晶核或固相中SrSO_4晶粒表面,进而对SrSO_4成核和晶体生长有控制作用; 向SrSO_4沉淀体系中加入乙醇后,成核速率增大是由于SrSO_4在乙醇-水混合溶剂中的溶解度低于在水溶液中的溶解度,致使目标产物成核推动力提高。
    在成核动力学研究中,主要考察EDTA和乙醇加入量对SrSO_4成核动力学的影响,通过对经典成核速率表达式中指数项随过饱和比变化关系的分析,对经典成核速率方程进行了修正。建立了能体现均相成核过程存在临界过饱和度,反映反应物浓度、乙醇加入量、EDTA加入量等对成核过程影响的修正成核速率经典表达式。
    采用恒组成法,对SrSO_4晶体生长动力学进行了研究,主要考虑EDTA加入量对SrSO_4晶体生长速率的影响,提出了有杂质存在时的晶体生长速率模型。由所建立生长速率模型计算所得SrSO_4晶体质量生长速率与相应实验值吻合较好。
    采用粒数平衡方程的离散化形式,结合SrSO_4结晶动力学模型,对SrSO_4纳米粉体的粒度分布进行了模拟计算,考察了晶体生长时间、EDTA加入量和乙醇加入量对SrSO_4粉体粒度分布的影响。粒数平衡模型计算的粒度分布与实验结果吻合较好。
Aiming at the problems controlling particle size and particle size distribution in preparation of nanopowder in chemical liquid precipitation method, and on the basis of the analysis and comparison on the relative rate of micromixing, precipitation reaction and nucleation process, the characteristic time of supersaturation distribution homogeneity of aim product was introduced, the analysis was made on the influence of operation variables on the supersaturation distribution homogeneity of aim product, and the feasibility of supersaturation homogeneous distribution of aim product was explored by prolonging nucleation induction time. A new method was put forward for preparing monodispersed nanopowder using chemical precipitation method, in which nucleation induction time was prolonged by adding inhibiting agent, and nucleation rate was increased by adding precipitation releasing agent,and crystal growth and agglomeration were inhibited by means of the action of nucleation inhibiting agent. Preparations of strontium sulfate and calcium sulfate nanopowder were taken as the examples to demonstrate the present preparation method. The proper technical conditions preparing monodisperse nanopowder of the studied systems were determined by means of single factor test method and multi-factor orthogonal test procedure The resultant crystal form, purity and morphology were observed by TEM and XRD, and the particle size and particle size distribution were measured by multi-angle sub-micron particle size analyzer. The experimental results showed that the particle size distribution of strontium sulfate and calcium sulfate nanopowder prepared in this work was very narrow and powder morphology was identical.
    The mechanism of the effect of EDTA and ethanol on nucleation and growth during the preparation of strontium sulfate nanoparticle was approached according to LaMer chart obtained under different operation conditions and observations in single factor tests. Under the proper pH, the function of added EDTA was to inhibit nucleation and control the crystal growth of strontium sulfate due to the formation of the surface complex of EDTA with Sr~(2+) and the adsorption of the complex on the surface of molecules, critical nucleus and growth crystal of strontium sulfate. The addition of ethanol into solution resulted in increasing the nucleation driving force,
    thus increasing the nucleation rate owing to the solubility of strontium sulfate in ethanol-water mixed solvent system was smaller than that in aqueous solution. The influence of added quantity of EDTA and ethanol on the nucleation kinetics was presented. On the basis of analysis on the variation of exponential term in the classical nucleation rate expression with supersaturation ratio, a modified expression for nucleation rate was suggested, which can account for the effect of reactant concentration, and the quantity of added ethanol and EDTA on nucleation process. Moreover, this modified expression can reflect the existence of critical supersaturation for homogeneous nucleation. The crystal growth kinetics was studied using constant composition method, in which the effect of the quantity of added EDTA and ethanol on crystal growth rate of strontium sulfate particles was considered, and the expression of the crystal growth rate in the presence of impurity was established. The calculated results were in good agreement with the experimental results of crystal growth rate of strontium sulfate using the present growth rate model. The discretization form of population balance equation was used for modelling the crystal size distribution of strontium sulfate in combination with the crystallization kinetic models of strontium sulfate in this work, and the influence of the crystal growth time and the quantity of added EDTA and ethanol on crystal size distribution of strontium sulfate powder was examined. The modeling results indicated that the calculated results were in good agreement with the experimental results of crystal growth rate of crystal size distribution of strontium sulfate.
引文
[1] Keum DK., Kim KM., Naka K., et al., Preparation of Hydrophobic CaCO3 Composite Particles by Mineralization with Sodium Trisilanolate in a methanol solution, J. Materials Chemistry, 2002, 12(8): 2449~2452
    [2] Chow,G.M., Kuihara,L.K., Feng,C.R., et al., Chemical Synthesis of Nanostructured Powders and Coatings Using the Polyol Method, Mat. Res. Soc. Symp. Proc., 1998,501:129~136
    [3] Cheng Pan, Katrin Pelzer, Karine Philippot, et al., Ligand-Stabilized Ruthinium Nanoparticles: Synthesis Organization and Dynamics, J. Amer. Chem. Soc., 2001, 123: 7584~7593
    [4] Liu Yongjian, Jin Yi, Bu Haishan, et al., Fast Crystallization of Liquid Crystalline Copolyesters Based on Poly(ethylene terephthalate), J. Applied Polymer Sci., 2001, 79(3): 497~503
    [5] 李宏涛,宋晓秋,有机相中溴化物系银纳米微粉的制备研究,精细化工,2001,18(6):325~328
    [6] Michael, J. H., Zhong Chuan-Jian, Brian, K. H. Yen, et al., Stable, Monolayer-Protected Metal Alloy Clusters, J. Am. Chem. Soc., 1998, 120: 9396~9397
    [7] Caroline H.Walker,John. V.St.John, Patty Wisian-Neilson, Synthesis and Size Control of Gold Nanoparticles Stabilized by Poly(methylphenylphosphazene), J. Amer. Chem. Soc. 2001, 123: 3846~3847
    [8] Ziegler, K. J., Christopher, D.R., Johnston, K.P., et al., Synthesis of Organic Monolayer-Stabilized Copper Nanocrystals in Supercritical Water, J. Am. Chem. Soc., 2001, 123: 7797~7803
    [9] Wang Wenzhong, Geng Yan, Yan Ping, et al., A Novel Mild Route to Nanocrystalline Selenides at Room Temperature, J. Amer. Chem. Soc., 1999, 121: 4062~4063
    [10] Rees, G. D., Evans-Gowing, R., Hammond, S. J., et al., Formation and Morphology of Calcium Sulfate Nanoparticles and Nanowires in Water-in-Oil Microemulsions, Langmuir, 1999,15: 1993~2002
    [11] Peng, Z. Adam, Peng Xiaogong, Formation of High-Quality CdS, CdTe and CdSe Nanocrystals Using CdO as Precursor, J. Amer. Chem. Soc., 2001a, 123: 183~184
    [12] Jun Young-wook, Lee Sang-Min, Kang Nam-Jung, et al., Controlled Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant System, J. Amer. Chem. Soc., 2001, 123: 5150~5151
    [13] Wang Wei, Chen Xiao, Shlomo Efrima, Silver Nanoparticles Capped by Long-Chain Unsaturated Carboxylates, J. Phys. Chem. B, 1999,103: 7238~7246
    [14] Peng, Z. Adam, Peng Xiaogong, Mechanisms of the Shape Evolution of CdSe Nanocrystals, J. Amer. Chem. Soc., 2001b, 123: 1389~1395
    [15] Lu Ping, Teranishi Toshiharu, Asakura Kiyotaka, et al., Polymer-Protected Ni/Pd Bimetallic Nano-Clusters: Preparation, Characterization and Catalysis for Hydrogenation of Nitrobenzene, J. Phys. Chem. B, 1999, 103: 9673~9682
    [16] Qi Limin, Ma Jiming, Cheng Humin, et al., Reverse Micelle Based Formation of BaCO3 Nanowires, J. Phys. Chem. B, 1997,101: 3460~3463
    [17] Busser,G.W., Van Ommen, J.G., Lercher, J.A., Preparation and Characterization of Polymer-Stabilized Rhodium Sols. Factors Affecting Particle Size, J. Phys. Chem. B, 1999,103:1651~1659
    [18] Zhang, S., Gonsalves, K.E., Preparation and Characterization of Thermally Stable Nanohydroxyapatite, J. Materials Science: Materials in Medicine, 1997,8: 25~28
    [19] Brown, Leif O., Hutchison James E., Controlled Growth of Gold Nanoparticles during Ligand Exchange, J. Am. Chem. Soc., 1999,121:882~883
    [20] Liu, S.H, Qian, X.F, Yin, J., et al., Synthesis and Characterization of Ag2S Nanocrystals in Hyperbranched polyurethane at Room Temperature, J. Solid State Chem., 2002,168(1): 259~262
    [21] Berkovich Yana, Aserin Abraham, Wachtel Ellen, et al., Preparation of Amorphous Aluminum Oxide-Hydroxide Nanoparticles in Amphiphilic Silicone-Based Copolymer Microemulsions, J.Colloid and Interface Science, 2002,245(1):58~67
    [22] Saujanya, C., Ashamol, Padalkar S., Radhakrishnan, S., Control of Nanoparticle Size of Fillers by Polymer Blend Technique, Polymer, 2001,42(5): 2255~2258
    [23] Dirksen, J.A., Ring, T.A., Fundamentals of Crystallization: Kinetic Effects on Particle Size Distributions and Morphology, Chem. Eng. Sci., 1991,46(10): 2389~2427
    [24] Randolph, A.D., Larson, M.A., Transient and Steady State Size Distributions in Continuous Mixed Suspension Crystallizers, AIChE J., 1962,8(5): 639~645
    [25] Leubner I.H.,Balanced Nucleation and Growth Model for Controlled Crystal Size Distribution,J. Dispersion Science and Technology,2002,23(4): 577~590
    [26] Nore, P.H., Mersmann,A., Batch Precipitation of Barium Carbonate, Chem. Eng. Sci., 1993,48(17): 3083~3088
    [27] Shun Wachi, Alan G. Jones, Mass Transfer With Chemical Reaction and Precipitation, Chem Eng. Sci., 1991, 46(4): 1027~1033
    [28] Wey, J.S., in Precipitation and Properties of Solid State Materials,Edited by Wilcox, W.R., Marcel Dekker, New York, 1981. Vol.6,Chap. 2
    [29] Maruscak, A., Baker, C.G..J., Bergougnou, M.A., Calcium Carbonate Precipitation in a Continuous Stirred Tank Reactor, Can. J. Chem. Eng., 1971, 49: 819~824
    [30] Yagi, H., Kinetics of Solid Production Accompanying Gas-Liquid Reaction, World Congress Ⅲ Chem. Eng, 1986. Ⅳ: 20
    [31] Magnus, L., Rasmuson, A. C., Reaction Crystallization in Strained Fluid Films, Chem. Eng. Sci.,2001, 56(10): 3257~3273
    [32] Mullin, J.W., Crystallization, 3rd ed., Butterworth-Heimemann,1992.172~248
    [33] Sondi, I., Matijevic, E., Homogeneous Precipitation of Calcium Carbonates by Enzyme Catalyzed Reaction, J. Colloid and Interface Science, 2001,238: 208~214
    [34] 周英彦,高首山,李红霞等,关于成核速率公式的研究,中国粉体技术,2000,6: 287~294
    [35] Aoun, M., Plassari, E., David, R., A Simultaneous Determination of Nucleation and Growth Rates from Batch Spontaneous Precipitation, Chem. Eng. Sci., 1999,54:1161~1180
    [36] Ness, J.N., White,E.T., Collision Nucleation in an Agitated Crystallizer, AIChE Symp. Ser., 1976,72(153): 64~72
    [37] Nielsen, A.E., Homogeneous Nucleation in Barium Sulphate Precipitation, Acta Cemica Scandinavica, 1961, 15: 441~442
    [38] Nielsen, A.E., Kinetics of Precipitation, Pergamon Press, Oxford,1964
    [39] S?hnel, O., Garside, J., Precipitation: Basic principles and industrial applications, Butterworth-Heinemann Ltd., Oxford, 1992
    [40] Deng Haishan, Huang Jinfan, Molecular Dynamics Studies of the Kinetics of Phase Changes in Clusters: Crystal Nucleation of (RbCl)108 Clusters at 600, 550, and 500 K, J. Solid State Chemistry, 2001, 159(1): 10~18
    [41] Nathalie Lyczko, Fabienne Espitalier, Olivier Louisnard, et al., Effect of Ultrasound on the Induction Time and the Metastalbe zone Widths of Potassium Sulphate, Chem. Eng. J.,2002,86(3): 233~241
    [42] Packter, A., The Precipitation of Calcium Sulphate Dihydrate from Aqueous Solution-Induction Period, Crystal Numbers and Final Size, J. Crystal Growth, 1974,21: 191~195
    [43] Misra, C., White, E.T., Kinetics of Crystallization of Aluminum Trihydroxide from Seeded Caustic Aluminate Solutions, AIChE Symp. Ser., 1971,67(110): 53~61
    [44] Tanimoto, A., Kobayashi, K., Fujita, S., Overall Crystallization Rate of Copper Sulfate Pentahydrate in an Agitated Vessel, Int. Chem. Eng., 1964,4(1): 153~159
    [45] Van Rosmalen, G..M., Van der Leeden, M.C., Gouman, J., The Growth Kinetics of Barium Sulphate Crystals in Suspension: Scale prevention(I), Kristall und Technik, 1980, 15: 1213~1222
    [46] Michaels, A.S., Colville, A.R., The Effect of Surface Active Agents on Crystal Growth Rate and Crystal Habit, J. Phys. Chem., 1960, 64: 13~19
    [47] 哈姆斯基,E.B.著,古涛,叶铁林译,化学工业中的结晶,北京:化学工业出版社,1984. 7~119
    [48] 张克从,张乐惠,晶体生长科学与技术,北京:科学出版社,1997. 57~143
    [49] Liu Yue, George H. Nancollas, Crystallization and Colloidal Stability of Calcium Phosphate Phases, J. Phys. Chem. B, 1997, 101: 3464~3468
    [50] Bramley, A.S.,Hounslow,M.J., Ryall, R.L.,Aggregation During Precipitation from Solution-Kinetics for Calcium Oxalate Monohydrate, Chem. Eng. Sci., 1997, 52(5): 747~757
    [51] Burton, W.K., Cabrera, N., Frank, F.C., The Growth of Crystals and the Equilibrium Structure of Their Surfaces, Phil. Trans. Roy. Soc.(London), 1951.243,299
    [52] Campbell, J.R., Nancollas, G.H., The Crystallization and Dissolution of Strontium Sulphate in Aqueous Solution, J. Phys. Chem., 1969,73: 1735~1740
    [53] Manth, T., Mignon, D., Offermann, H., Experimental Investigation of Precipitation Reactions under Homogeneous Mixing Conditions, Chem. Eng. Sci., 1996,51: 2571~2576
    [54] Melikgov, I.V., Kelebeev, A.S., Bacic, S., Electron Microscopic Study of Nucleation and Growth of Highly Dispersed Solid Phase, J. Colloid Interface Sci., 1986, 112: 54~65
    [55] S?hnel, O., Handlirov, A., Precipitation of Strontium Sulphate, Cryst. Res. Technol., 1984,19: 477~490
    [56] Chemaly, H.Muhr, Fick, Crystallization Kinetics of Calcium Lactate in a Mixed -Suspension-Mixed-Product Removal Crystallizer, Ind. Eng. Chem. Res., 1999, 38:2803~2808
    [57] Mersmann, A., Angerhofer, M., Gutwald, T., General Prediction of Median Crystal Sizes, Sep.Technol.,1992,2: 85~97
    [58] Mersmann, A., Angerhofer, M., Franke, J., Controlled precipitation, Chem. Eng.Technol., 1994,17: 1~9
    [59] Tai, C., Yu, K.H., Growth Kinetics of Potassium Alum crystal in a Well-agitated Vessel, J. Crystal Growth, 1989,96: 849~855
    [60] Nielsen, A.E., Nucleation and growth of crystals at high supersaturation, Kristall Technik, 1969,4(1): 17~38
    [61] Liu, S.T., Nancolas, G. H., Gasiecki, E.A., Scanning Electron Microscopic and Kinetic Studies of the Crystallization and Dissolution of Barium Sulphate Crystal, J. Crystal Growth, 1976,33: 11~20
    [62] Tai, C., Chen Pao-Chi, Shih Shin-Min, Size-Dependent Growth and Contact Nucleation of Calcite Crystals, AIChE J., 1993, 39(9): 1472~1483
    [63] Muhr, H., Leclerc, J.P., Plasari, E., A Rapid Method for the Determination of Growth Rate Kinetic Constants: Application to the Precipitation of Aluminium Trihydroxide, Ind. Eng. Chem. Res., 1997,36: 675~681
    [64] Mullin, J.W., Crystallization, Great Britain, Butterworth-Heinemann,1997
    [65] Bujac, P.D.B., Mullin, J.W., A Rapid Method for the Measurement of Crystal Growth Rates in a Fluidized Bed Crystallizer, Symp. Ind. Crystal, 1969, 121:79~87
    [66] Norio Wada, Kiyoshi Kanamura, Takao Umegaki, Effects of Carboxylic Acids on the Crystallization of Calcium Carbonate, J. Colloid and Interface Science, 2001,233: 65~72
    [67] Kazmlerczak, T.F., Tomson, M.B.M., Nancollas, G..H., Crystal Growth of Calcium Carbonate—A Controlled Composition Kinetic Study, J. Phys. Chem., 1982,86: 103~107
    [68] Tai, C. Y., Chen, F.-B., Polymorphism of CaCO3 Precipitated in a Constant-Composition Environment, AIChE J., 1998,44(8):1790~1798
    [69] Goodson M., Kraft M., An Efficient Stochastic Algorithm for Simulating Nano-Particle Dynamics, J. Computational Physics,2002,183(1): 210~232
    [70] Franke, J., Mersmann, A.,The Influence of the Operational Conditions on the Precipitation Process,Chem. Eng. Sci.,1995, 50(11): 1737~1753
    [71] Mydlarz, J., Jones, A.G., Crystallization and Agglomeration Kinetics during the Batch Drawing-out Precipitation of Potash Alum with Aqueous Acetone, Powder Technol, 1991,65: 187~194
    [72] Nore, P.H., Mersmann, A., Batch Precipitation of Barium Carbonate, Chem. Eng. Sci., 1993, 48(17): 3083~3088
    [73] Alan, P. Collier, Michael J. Hounslow, Growth and Aggregation Rates for Calcite and Calcium Oxalate Monohydrate, AIChE J., 1999,45(11):2298~2305
    [74] Rajesh, N.P., Raghavan, P.S., Ramasamy, P., et al., Enhancement of Metastable Zone of Some Aqueous Solutions, J. Chinese Institute of Chemical Engineers, 2002, 33(4): 325~331
    [75] Nore, P.H., Mersmann,A., Batch Precipitation of Barium Carbonate, Chem. Eng. Sci., 1993,48(17): 3083~3088
    [76] Kofler, V., Riebel, U., L?ffler, F., On the Agglomeration Kinetics of Potassium Nitrate at Different Supersaturations Determined by Shape Analysis, in Proceedings of 11th Symposium on Industrial Crystallization, Edited by Mersmann,A., 1990. 503~508
    [77] Baldyga, J., Podgorska, W., Pohorecki, R., Mixing-Precipitation Model with Applycation to Double Feed Semibatch Precipitation, Chem. Eng. Sci., 1995,50(8): 1281~1300
    [78] 张昭,彭少方,刘栋昌,无机精细化工工艺学,北京:化学工业出版社,2002. 204~221
    [79] Khang, S.J., Levenspiel, O., New Scale-up and Design Method for Stirrer Agitated Batch Mixing Vessels, Chem. Eng. Sci.,1976,31: 567
    [80] Brodkey,R.S., Turbulence in Mixing Operations, Academic Press Inc,1975
    [81] Biggs,R.D., Mixing Rates in Stirred Tanks, AIChE J.,1963,9:636
    [82] Bruno, M., David, R., Experimental Evidence for Prediction of Micromixing Effects in Precipitation, AIChE J., 1991,37(11):1698~1710
    [83] Fourcade, E., Hoefsloot, H.C.J., Vliet, G., et al., The Influence of Micromixing on Molecular Weight Distribution during Controlled Polypropylene Degradation in a Static Mixer Reactor, Chem. Eng. Sci., 2001,56(23): 6589~6603
    [84] 毋伟,陈建峰,卢寿慈,超细粉体表面修饰,北京:化学工业出版社,2003. 40~41
    [85] Marchisio, D.L., Barresi, A.A., Nucleation, M.G., Growth, and Agglomeration in Barium Sulfate Turbulent Precipitation, AIChE J., 2002,48(9): 2039~2050
    [86] Fang, J.Z., Lee,D.J., Micromixing efficiency in static mixer,Chem. Eng. Sci.,2001,56(12): 3797-3802
    [87] Liu, S.T., Nancollas, G. H., A Kinetic and Morphological Study of the Seeded Growth of Calcium Sulfate Dihydrate in the Presence of Additives, J. Coll. Int. Sci., 1975, 52(3): 593~601
    [88] Fitchett, D.E., Tarbell, T.M., Effect of Mixing on the Precipitation of Barium Sulfate in an MSMPR reactor, AIChE J., 1990,36: 511~522
    [89] Wang, L.G., Fox ,R.O.,Application of in Situ Adaptive Tabulation to CFD Simulation of Nano-Particle Formation by Reactive Precipitation, Chem. Eng. Sci., 2003, 58(19): 4387~4401
    [90] Hardt, S. Sch?nfeld, Laminar Mixing in Different Interdigital Micromixers: Numerical Simulations, AIChE J., 2003,49(3): 578~584
    [91] Wong, D.C.Y., Jaworski, Z., Nienow, A.W., Barium Sulphate Precipitation in a Double-Feed Semi-Batch Stirred Reactor,Transactions of the Institution of Chemical Engineers. Part A, Chem. Eng. Res. Des., 2003, 81(A8): 874~880
    [92] Danckwerts,P.V., The Effect of Incomplete Mixing on Homogeneous Reactions, Chem. Eng. Sci., 1958, 8: 93
    [93] Chen Jianfeng, Zheng Chong, Chen Gantang, Interaction of Macro-and Micromixing on Particle Size Distribution in Reactive Precipitation, Chem. Eng. Sci., 1996,51(10): 1957~1966
    [94] Zweitering, T.N., The Degree of Mixing in Continuous Flow Systems, Chem. Eng. Sci., 1959,11: 1
    [95] Chakraborty, S., Balakotaiah, V.,A Novel Approach for Describing Mixing Effects in Homogeneous Reactors, Chem. Eng. Sci., 2003,58(3):1053~1061
    [96] Chakraborty,S., Balakotaiah,V., Two-Mode Models for Describing Mixing Effects in Homogeneous Reactors, AIChE J., 2002,48(11): 2571~2585
    [97] Harada, M., Micromixing in a Continuous Flow Reactor(Coalescence and Redispersion Models), Mem. Fac. Eng., Kyoto Univ., 1962,24: 431
    [98] Villermaux, J., Devillon, J.C., Representation de la Coalescence et de la Redispersion des Domaines de Segregation dans un Fluide par un Modele Dinteration Phenomenologique, Proceedings of the 2nd International Symposium on Chemical Reaction Eng., Amsterdam: 1972.B: 1~13
    [99] Baldyga, J., Bourne J. R., A Fluid Mechanical Approach to Turbulent Mixing and Chemical Reaction, Chem. Eng. Commun., 1984,28:231~243
    [100] Phillips, R., Rohani, S., Micromixing in a Single-Feed Semi-Batch Precipitation Process, AIChE J., 1999,45(1): 82~92
    [101] Anderson, M.A., Rubin, A.J., Adsorption of Inorganics at Solid-Liquid Interfaces, Ann Arbor Science Publishers, Inc.,1981:143~163
    [102] Kim, Y.H.,Lee, K., Koo, K.K., et al., Comparison Study of Mixing Effect on Batch Cooling Crystallization of 3-Nitro-1,2,4-triazol-5-one (NTO) Using Mechanical Stirrer and Ultrasound Irradiation, Crystal Research and Technology,2002, 37(9): 928~944
    [103] Pohorecki, R., Baldyga, J., The Use of a New Model of Micromixing for Determination of Crystal Size in Precipitation, Chem. Eng. Sci., 1983,38: 79~83
    [104] Herri J.M., Methane Hydrate Crystallization Mechanism fome In-Situ Particle Sizing, AIChE J., 1999,45(3): 590~602
    [105] Rousseaux Jean-Marc, Muhr Herve, Plasari Edouard,Mixing and Micromixing Times in the Forced Vortex Region of Unbaffled Mixing Devices,The Canadian Journal of Chem.Eng.,2001, 79(5): 697~707
    [106] S?hnel, O., Metastable Zone of Solutions, Chem. Eng. Res. Des, 1983,61: 186~190
    [107] S?hnel, O., Mullin, J. W., Interpretation of Crystallization Induction Period, J. Coll. Int. Sci., 1988,123: 43~54
    [108] Zhu, Y., Youssef, D., Porte, C., et al., Study of the Solubility and the Metastable Zone of 1,3-Dihydroxyacetone for the Drowning-out Process, J. Crystal Growth, 2003, 257(3): 370~377
    [109] Mullin, J.W., Osman, M.M., Nucleation and Precipitation of Nickel Ammonium Sulphate Crystals from Aqueous Solution, Kristall und Technik, 1973, 8: 471~481
    [110] Lancia Amedeo, Musmarra Dino, Measuring Induction Period for Calcuim Sulfate Dihydrate Precipitation, AIChE J., 1999,45(2): 390~397
    [111] S?hnel, O., Mullin, J.W., A. Method for the Determination of Precipitation Induction Periods, J. Crystal Growth, 1978, 44: 377-382
    [112] 贾荣宝,王本义,介稳区理论在试剂钼酸铵生产中的应用,化学试剂,1997,19(1): 51~59
    [113] 朱志良,张冰如,不同阻垢剂对硫酸钙结晶生长诱导期影响的动力学探讨,应用化学,2001,18(3): 192~195
    [114] S?hnel, O., Electrolyte Crystal-Aqueous Solution Interfacial Tensions from Crystallization Data, J. Crystal Growth, 1982,57: 101~106
    [115] He, S., Oddo, J.E., Tomson, M.B., The Nucleation Kinetics of Calcium Sulfate Dihydrate in NaCl Solution up to 6M and 90 ℃, J. Coll. Int. Sci., 1994,162:297~303
    [116] Kim Kwang-Joo, Mersmann Alfons, Estimation of Metastable Zone Width in Different Nucleation Processes, Chem. Eng. Sci., 2001,56(7): 2315~2324
    [117] Masaaki Yokota, Akira Sato, Noriaki Kubota, New Effective-Nuclei Concept for Simplified Analysis of Batch Crystallization, AIChE J., 1999,45(9): 1883~1891
    [118] Amjad, Z., Calcium Sulfate Dihydrate Scale Formation on Heat Exchanger Surfaces: The Influence of Scale Inhibitors, J. Coll. Int. Sci., 1988,123(2):523~536
    [119] Randolph, A.D., Larson, M.A., Theory of Particulate Processes, 2nd ed., New York: Academic Press, 1988
    [120] Guerbuez, H., Oezdemir,B., Experimental Determination of the Metastable Zone Width of Borax Decahydrateby Ultrasonic Velocity Measurement, J. Crystal Growth, 2003,252(1): 343~349
    [121] Amathieu,L., Boistelle,R., Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, J. Crystal Growth,1988,88:183~186
    [122] Saring, S., Mullin, J.W., Effect of Impurities on Calcium Sulphate Precipitation, J. Chem. Tech. Biotechnol, 1982,32: 525~531
    [123] 孙长贵,冷剂汽化的直接接触冷却结晶基本特性的研究, 博士学位论文,大连理工大学, 1989
    [124] 苏英草, 关怀民,氯化钙—聚乙二醇配位聚合物的配位数研究,化学物理学报,1999,12(5): 625~631
    [125] Randolph, A.D., Larson, M.A., Theory of Particle Processes, New York:Academic Press, 1971
    [126] Mullin,J.W., Chakraborty, M., Mehta, K., Nucleation and growth of Ammonium Sulphate Crystals, J. of Applied Chemistry, 1970,20: 367~371
    [127] Denk, E.G., Botsaris,G.D., Fundamental Studies in Secondary Nucleation from Solution, J. Crystal Growth, 1972, 13/14: 493~499
    [128] Reddy, M.M., Hoch, A.R., Calcite Crystal Growth Rate Inhibition by Polycarboxylic Acids, J. Colloid and Interface Science, 2001,235: 365~370
    [129] Davey,R.J., Mullin,J.W., A Mechanism for the Habit Modification of ADP Crystals in the Presence of Ionic Species in Aqueous Solution, Kristall und Technik, 1976,11: 229~233
    [130] Karvinen Saila, The Effects of Trace Elements on the Crystal Properties of TiO2, Solid State Sci., 2003, 5(5): 811~819
    [131] Koutsorkos, P.G., Amjad, Z., Nancollas, G..H., The Influence of Phosphonate on the Crystal Growth of Fluorapatite and Hydroxyapatite, J. Coll. Int. Sci., 1981, 83: 599~565
    [132] Smith, B.R., Alexander, A.E., The Effect of Additives on the Process of Crystallization, J. Coll. Int. Sci, 1970,34: 81~87
    [133] Michael, M. Reddy, Anthony R. Hoch, Calcite Crystal Growth Rate Inhibition by Polycarboxylic Acids, J. Colloid and Interface Science, 2001,235:365~370
    [134] Ramkrishna, D., Population Balance Theory and Applications to Particulate Systems in Engineering, New York: Academic Press, 2000
    [135] Podder J., The Study of Impurities Effect on the Growth and Nucleation Kinetics of Potassium Dihydrogen Phosphate, J. Crystal Growth, 2002,237~239
    [136] Lea, A.S., Hurt, T.T., El-Azab, A., et al., Heteroepitaxial Growth of a Manganese Carbonate Secondary Nano-phase on the Surface of Calcite in Solution,Surface Sci., 2003, 524(1): 63~77
    [137] Davey,R.J., Mullin,J.W., Whiting,M.J.L., Habit Modification of Succinic Acid Crystals Grown from Different Solvents, J. Crystal Growth, 1982,58:304~312
    [138] Van der Voort, E., The Morphology of Succinic Acid Crystals: The Role of Solvent Interaction, J. Crystal Growth, 1991, 110: 662~668
    [139] Matsunaka, D., Kasai,H., Nakanishi, H., et al., Effects of Impurities on the Magnetic Property in Copper Oxides, Physica. B, Condensed Matter, 2003, 329(2): 769~770
    [140] Mullin,J.W., Amatavivadhana, A., Chakraborty, M., Crystal Habit Modification Studies with ADP and KDP, J. Applied Chemistry, 1970,20: 153~158
    [141] 王静康,郝红勋,地塞米松磷酸钠的反应结晶动力学,天津大学学报,2003,36(3): 257~260
    [142] LaMer, V.K., Dinegar,R.H., Theory, Production and Mechanism of Formation of Monodisperse Hydrosols, J. Amer . Chem. Soc., 1950,72: 4847~4854
    [143] 陈宗淇, 王光信, 徐桂英, 胶体与界面化学, 北京: 高等教育出版社,2001. 180~217
    [144] Johan Jager, Sjoerd De Wolf, Herman J. M. et al., Estimation of Nucleation Kinetics from Crystal Size Distribution Transients of a Continuous Crystallizer, Chem. Eng. Sci., 1991, 46(3): 807~818
    [145] Denis Mignon, Thomas Manth, Hans Offermann, Kinetic Modelling of Batch Precipitation Reactions, Chem. Eng. Sci., 1996,1(11): 2565~2570
    [146] Immanuel,C.D., Doyle,F.J., Computationally Efficient Solution of Population Balance Models Incorporating Nucleation, Growth and Coagulation, Chem. Eng. Sci., 2003, 58(16): 3681~3698
    [147] Nyvlt, J., Calculation of the Kinetics of Crystallization Based on a Single Batch Experiment, Collect. Czech. Chem. Commun., 1989,54: 3187~3195
    [148] Sathyagal, A.N., McCormick, A.V., Effect of Nucleation Profile on Particle-Size Distribution, AIChE J., 1998,44(10): 2312~2323
    [149] Mahoney, A.W., Doyle Ⅲ , F.J., Ramkrishna, D., Inverse Problems in Population Balance, Particle Growth and Nucleation from Dynamic Data, AIChE J., 2002,48(5): 981~990
    [150] Madras G., McCoy, B.J., Dynamics of Crystal Size Distributions with Size-Dependent Rates, J. Crystal Growth, 2002,243(1): 204~213
    [151] Gerstlauer, A., Motz S., Mitrovic, A., et al., Development, Analysis and Validation of Population Models for Continuous and Batch Crystallizers, Chem. Eng. Sci., 2002,57(20): 4311~4327
    [152] Albert Renken,Chemical Reaction Engineering for Process Optimization: The Importance of Primary Processes on the Molecular Level, Chimia, 2002, 56(4):109~113
    [153] Daniele Semino, Harmon Ray, W., Control of Systems Described by Population Balance Equations—Ⅰ.Controllability Analysis, Chem. Eng. Sci., 1995,50(11): 1805~1824
    [154] Doraiswami Ramkrishna, Alan W.Mahoney, Population Balance Modeling Promise for the Future ,Chem. Eng. Sci., 2002,57: 595~606
    [155] Witkowski, W.R., Miller, S.M., Rawling,J.B., Light-Scattering Measurements to Estimate Kinetic Parameters of Crystallization, Crystallization As a Separation Process, ACS Symp. Ser., No. 438,102, Eds.by Myerson A.S. and Toyokura, K., Washington, DC,1990
    [156] Hulburt, H.M., Katz, S., Some Problem in Particle Technology-A Statistical Mechanical Formulation, Chem. Eng. Sci., 1964,19: 555~574
    [157] David, R., Villermaux, J., Marchal, P. et al., Crystallization and Precipitation Engineering-Ⅳ, Kinetic Model of Adipic Acid Crystallization, Chem. Eng. Sci., 1991, 46(4): 1129~1136
    [158] Qiu, Y., Rasmuson, ?.C., Nucleation and Growth of Succinic Acid in a Batch Cooling Crystallizer, AIChE J.,1991,37(9): 1293~1304
    [159] Qiu, Y., Rasmuson, ?.C., Estimation of Crystallization Kinetics from Batch Cooling Experiments, AIChE J., 1994,40(5): 799~812
    [160] Muhr, H., David, R., Villermarx, J., Crystallization and Precipitation Engineering-V. Simulation of the Precipitation of Silver Bromide Octahedral Crystals in a Double-Jet Semi-Batch Reactor, Chem. Eng. Sci., 1995,50(2): 345~355
    [161] Wynn, E.J.W., Hounslow, M.J., Integral Population Balance Equations for Growth, Chem. Eng. Sci., 1997,52(5): 733~746
    [162] Bandyopadhyaya Rajdip, Gandhi,K.S., Kumar R., et al., Modelling of Precipitation in Reverse Micellar Systems, Langmuir, 1997,13:3610~3620
    [163] Bandyopadhyaya Rajdip, Kumar, R., Gandhi, K.S., Modelling of CaCO3 Nanoparticle Formation During Overbasing of Lubricating Oil Additives, Langmuir, 2001,17:1015~1029
    [164] Kandori, K., Kon-no, K., Kitahara, A., Formation of Ionic Water/Oil Microemulsions and Their Application in the Preparation of CaCO3 Particles, J. Colloid and Interface Science, 1988, 122: 78~82
    [165] Roman, J.-P., Hoornaert, P., Faure,D., et al., Formation and Structure of Carbonate Particles in Reverse Microemulsions, J. Colloid and Interface Science, 1991,144: 324-339
    [166] Webb, R.L., Gupte, N.S., Critical Review of Correlations for Convective Vaporization in Tubes and Tube Banks, Heat Transfer Eng., 1992,13(2): 58~81
    [167] Marchal, P., David, R., Klein J.P., et al., Crystallization and Precipitation Engineering—Ⅰ., An Efficient Method for Solving Population Balance in Crystallization with Agglomeration, Chem. Eng. Sci., 1988, 43(1): 59~67
    [168] McCoy, B. J.,,A New Population Balance Model for Crystal Size Distributions: Reversible Size-Dependent Growth and Dissolution, J. Colloid and Interface Science, 2001, 240(1):139~149
    [169] Qiu, Y., Rasmuson, ?.C., Crystal Growth Rate Parameters from Isothermal Desupersaturation Experiments, Chem. Eng. Sci.,1991,46(7): 1659~1668
    [170] Mersmann, A., Braun, B., Loffelmann, M., Prediction of Crystallization Coefficients of the Population Balance, Chem. Eng. Sci., 2002,57(20): 4267~4275
    [171] McCoy, B. J., A Population Balance Framework for Nucleation, Growth and Aggregation, Chem. Eng. Sci., 2002,57: 2279~2285
    [172] Liu, Y., Cameron, I.T., A New Wavelet-Based Adaptive Method for Solving Population Balance Equations,Powder Technology, 2003,130(1): 181~188
    [173] Mohameed, H.A., Abdel-Jabbar, N., Takrouri, K., et al., A Model-Based Optimal Cooling Strategy for Batch Crystallization Processes,Transactions of the Institution of Chemical Engineers, Part A, 2003, 81(A5): 578~584
    [174] Melikgov,I.V., Kelebeev, A.S., Bacic, S., Electron microscopic study of nucleation and growth of highly dispersed solid phase, J. Colloid Interface Sci., 1986, 112: 54~-65
    [175] Song, M., Steiff, A., Weinspach, P.-M., A Very Effective New Method to Solve the Population Balance Equation with Particle Size Growth, Chem. Eng. Sci., 1997,52(20): 3493~3498
    [176] Pilon, L., Viskanta, R., Modified Method of Characteristics for Solving Population Balance Equations, International Journal for Numerical Methods in Fluids, 2003, 42(11): 1211~1236
    [177] Garside,J., Industrial Crystallization from Solution, Chem. Eng. Sci., 1985,40:3
    [178] Garside,J., Gibilaro,L.G., Tavare, N.S., Evolution of Crystal Growth Kinetic from Desupersaturation Cure Using Initial Derivatives, Chem. Eng. Sci., 1982,37: 1625~1628
    [179] Garside,J., Tavare, N.S., Mixing, Reaction and Precipitation: Limits of Micromixing in an MSMPR Crystallizer, Chem. Eng. Sci, 1985,40:1485~1490
    [180] 黄子卿,电解质溶液理论导论,北京:科学出版社,1983. 73~112
    [181] Jogan Jager, Sjoerd de Wolf, Herman J. M. Kramer, et al., Estimation of nucleation kinetics from crystal size distribution transients of a continuous crystallizer, Chem. Eng. Sci., , 1991,46(3): 807~818
    [182] Qiu, Y., Rasmuson, ?.C., Growth and Dissolution of Succinic Acid Crystals in a Batch Stirred Crystallizer, AIChE J., 1999,36(5): 665~671
    [183] 张纲,王静康,熊晖,沉淀结晶过程中的添加晶种技术,化学世界,2002,6: 326~328
    [184] 胡英,吕瑞东,刘国杰,物理化学,北京:高等教育出版社,1999. 119~331
    [185] Kumar, S., Ramkrishna, D., On the Solution of Population Balance Equations by Discretization-Ⅲ, Nucleation, Growth and Aggregation of Particles, Chem. Eng. Sci. 1997, 52(24): 4659~4679
    [186] 丁绪淮,周理,液体搅拌,北京:化学工业出版社,1983. 1~8
    [187] 丁绪淮,谈遒,工业结晶,北京:化学工业出版社,1985. 74~122
    [188] Kuboi, R. M., Harada, J.M., Winterbottom, A.J.S.Anderson, et al., Mixing Effects in Double-Jet and Single-Jet Precipitation, World Congress Ⅲ of Chem. Eng.Tokyo, Paper 8g-302, Ⅱ,1986. 1040
    [189] 徐延瓞,配位化学在工业中的应用,北京: 高等教育出版社,1988. 1~14
    [190] 华东理工大学化学系,四川大学化工学院,分析化学,北京:高等教育出版社,2003. 139~150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700