金属小团簇磁性的第一性原理计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属团簇是团簇家族中的重要成员,在理论和实验方面都得到了广泛的研究。小的金属团簇通常能够表现出净磁矩,对于金属团簇的电子结构和磁性的研究可以更好的理解金属团簇的物理和化学特性。密度泛涵理论的发展就为物质的电子结构性质的理论研究打开了一个广阔的天地,提供了关键的方法步骤。本论文中采用了基于自旋极化的密度泛函理论的第一原理方法,对简单金属小团簇Al_n(n=2-7)的磁性,重金属小团簇W_n(n=2-7)磁性,Al_4团簇在NaCl(001)表面的结构和磁性进行了计算,主要内容包括:
     1)对简单金属铝的小团簇Al_n(n=2-7)的结构特性和磁性进行了理论计算。结果表明:团簇的结合能随着团簇中原子数的增加而增大;虽然Al是简单金属,但是其小团簇Al_n(n=2-7)具有磁性,磁矩在1μ_B和2μ_B间变化;通过能级图分析了Al_n团簇磁矩的变化规律。此外,还分析了Al_n团簇的磁矩,结合能,能量的一阶和二阶差分随原子数n的变化,讨论了最稳定团簇Al_5的电子结构和电荷密度。
     2)对重金属钨的小团簇W_n(n=2-7)的结构特性和磁性进行了理论计算。结果表明:团簇的结合能随着团簇中原子数的增加而增大;虽然W的体材料不具有磁性,但是W的一些小团簇可以表现出磁性,如W_3、W_4和W_7,其磁矩均为2μB;通过能级图我们分析了W_n团簇磁矩的变化情况。此外,还分析了W_n团簇的磁矩,结合能,能量的一阶和二阶差分随原子数n的变化,讨论了最稳定簇W_4的电子结构和电荷密度。
     3)对Al_4团簇在NaCl(001)表面的结构和磁性进行计算。我们计算了Al_4团簇的重心吸附在NaCl表面上两种桥位,两种空位,在Na原子的顶位以及在Cl原子的顶位的结构、平均每个Al原子的吸附能、最低的Al原子和NaCl(001)表面原子之间的距离和磁矩。计算结果表明:Al_4团簇的重心吸附在NaCl表面上Na的项位是最稳定的结构,吸附能最大,总能最大,最低的Al原子和NaCl(001)表面原子之间的距离最小,但是团簇的磁矩为零;而在其他位置Al_4团簇保留了团簇在自由空间的磁矩。
Metal clusters are important members of the cluster family,and many theoretical and experimental studies have been carried out on their properties.Small metal cluster usually shows magnetism.The study of the electronic structures and magnetism of metal clusters could help us understand the physical and chemical properties of metal clusters better.The development of density functional theory(DFT) has an opened a wide realm for the studies of electronic structures,and provided a pivotal scheme.In this dissertation,by employing the first-principles calculations based on the spin-polarized density functional theory,the structural properties and magnetism of Al_n(n = 2-7),W_n(n = 2-7) small clusters and Al_4 clusters on the NaCl(001) surface have been studied.The main results are as following:
     1) The structural properties and magnetism of Al_n(n = 2-7) small clusters have been studied.The calculations show that:the binding energies increase with the number of atoms in the Al_n cluster;the small-sized Al_n(n = 2-7) clusters can exhibit magnetism though Al is a simple metal,with the magnetic moments change between 1μ_B and 2μ_B.From the plot of energy levels,the magnetic moments of spin-polarized Al_n clusters are discussed.Furthermore,the magnetic moment,the binding energy,the first and second differences of binding energies versus the number of atoms in the clusters are analyzed.The electronic structure and charge density of the most stable cluster Al_5 are also discussed.
     2) The structural properties and magnetism of W_n(n = 2-7) small clusters have been studied.The calculations show that:the binding energies increase again with the number of atoms in the cluster;although the bulk tungsten does not show magnetism, some of the small-sized W_n clusters can exhibit magnetism,i.e.,when n equals to 3,4 and 7,all with a magnetic moment of 2μ_B.From the plot of energy levels,the magnetic moments of the spin-polarized W_n clusters are discussed.Furthermore,the magnetic moment,the binding energy,the first and second differences of binding energies versus the number of atoms in the cluster are analyzed.The electronic structures and charge density plots of the most stable cluster W_4 are also discussed.
     3) The structural properties and magnetism of Al_4 cluster on the NaCl(001) surface have been studied.We calculated the structures,the binding energy,the distance between the lowest Al atoms and the NaCl(001) surface as well as the magnetic moment of the Al_4 clusters on the NaCl(001) surface.The adsorption sites considered are two kinds of bridge sites and hollow sites,the top site of the Na atom as well as the top site of the Cl atom.The results show that Al_4 clusters on the top site of the Na atom is the most stable structure,with the largest binding energy and the smallest distance between the lowest Al atoms and the NaCl(001) surface,however, its magnetic moment is zero.On the other hand,adsorption sites except for the top site of the Na atom can retain the magnetic moments of Al_4 cluster in the free space.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,1-50.
    [2]张志昆,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000,6-58.
    [3]陈改荣.纳米材料的特性及进展[J].平原大学学报,2000,17(4):4143.
    [4]张立德,牟季美.开拓原子和物质的中间领域--纳水微粒与纳米固体[J].物理,1992,21(3):167-173.
    [5]Z.K.Zhang,Z.L.Cui,K.Z.Chen,et al.,Structure of nano-conductive fibers[J].Chinese Science Bulletin.1997,42,1535-1537.
    [6]王广厚.团簇物理学[M].上海:上海科学技术出版社,2003.
    [7]Yang S Y,Drabold D A,Adams D A,et al.A first principle local orbital density functional study of Al clusters[J].Phys.Rev.B,1993,47:1567.
    [8]Wang J,Wang G,Zhao J.Density-functional study Au_n(n=2-20) clusters:lowest energy structures and electronic properties[J].Phys.Rev.B,2002,66:035418.
    [9]洪家岁.王娴,谭凯等.锰团簇Mn_5和Mn_6儿何结构与磁性的分析[J].化学学报,2006,64:1063.
    [10]张蓓,段海明,张军.Rh_n、Co_n(n=3-56)团簇的结构特性研究[J].原子与分子物理学报,2007,27:63.
    [11]林秋宝,李仁全.文玉华,朱梓忠.w_n(n=3-27)原子团簇结构的笫一性原理计算[J].物理学报,2008,57:181.
    [12]Lee G H,Huh S H,Park Y C,et al.Photoelectron spectra of small nanophase W metal cluster anions[J].Chem.Phys.lett,1999,299:309.
    [13]Oh S J,Huh S H,Kim H K,et al.Structural evolution of W nano-clusters with increasing cluster size[J].J.Chem.Phys.,1999,111:7402.
    [141 黄昆,韩汝琦,固体物理学[M].北京:高等教育出版社,1983.
    [15]Reddy B V,Khana S N,Dunlap B I.Giant Magnetic Moments in 4d Clusters[J].Phys.Rev.Lett.,1993,70:3323.
    [16]P.G.Alvarado-Leyva,E.M.Sosa Hern(?)ndez,et al.Magnetic properties of small vanadium clusters[J].Journal of Alloys and Compounds,2004,369:52-54.
    [17] Yuan H K, Chen H, et al. Density-functional calculations of the structure and electronic and magnetic properties of small yttrium clusters Y_n (n=2-17) [J]. Phys. Rev. B, 2007, 75:174412.
    [18] Jun Nakamura, Tomonobu Nakayama, Satoshi Watanabe, Masakazu Aono, Structural and Cohesive Properties of a C60 Monolayer[J], Phys. Rev. Lett.,2001,87:048301.
    [19] Jinlan Wang, Guanghou Wang, and Jijun Zhao, Density-functional study of Au_n (n=2-20) clusters: Lowest-energy structures and electronic properties [J]. Phys. Rev. B., 2002,66:035418.
    [20] Andrey Lyalin, Ilia A.Solov'yov, Walter Greiner, Evolution of the electronic and ionic structure of Mg clusters with increase in cluster size [J]. Phys. Rev.A., 2003, 67:063203.
    [21] Zhong-Yi Lu, Cai-zhuang Wang and Kai-Ming Ho, Structures and dynamical properties of C_n,Si_n ,Ge_n and S_n clusters with n up tol3 [J]. Phys. Rev. B., 2000, 61:2329.
    [22] Jinlan Wang, Guanghou Wang and Jijun Zhao, Nonmetal-metal transition in Zn_n (n=2-20) clusters[J]. Phys. Rev. A.,2003,68:01320.
    [23] M. Calleja, C. Rey, M.M.G Alemany and L.J. Gallego, Self-consistent density functional calculations of the geometries, electronic structures, and magnetic moments of Ni-Al clusters [J]. Phys. Rev. B.,1999, 60:2020.
    [24] M. Valden, X. Lai,and D.W. Goodman, Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties [J]. Science, 1998, 281:1647-1650.
    [25] M. Haruta, Size- and Support-Dependency in the Catalysis of Gold [J]. Catal. Today, 1997 36:153-166.
    [26] A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, G.L. Snider. Realization of a Functional Cell for Quantum-Dot Cellular Automata [J]. Science, 1997, 277:928-930.
    [27] R.P. Andres T. Bein , M. Dorogi, S. Feng, J . I. Henderson , C. P. Kubiak, W. Mahoney , R. G. Osifchin, R. Reifenberger, Coulomb Staircase" at Room Temperature in a Self-Assembled Molecular Nanostructure [J]. Science , 1996 , 272 : 1323-1325.
    [28] T. W. Kim, D. C. Choo, J . H. Shim and S. O. Kang, Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam [J]. Appl. Phys. Lett., 2002, 80:2168-2170.
    [29] S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J]. Science, 2000, 287:1989-1992.
    [30]K.Koike,H.Matsuyama,Y.Hirayama,K.Tanahashi,T.Kanemura,O.Kitakami and Y.Shimada,Magnetic block array for patterned magnetic media[J].Appl.Phys.Lett.,2001,78:784-786.
    [31]T.Koide,H.Miyauchi,J.Okamoto,Y.Shidara,A.Fujimori,H.Fukutani,K.Amemiya,H.Rakeshita,S.Yuasa,T.Katayama and Y.Suzuki,Direct Determination of Interfacial Magnetic Moments with a Magnetic Phase Transition in Co Nanoclusters on Au(111)[J].Phys.Rev.Lett.,2001,87:257201.
    [32]P.M.Petroff,A.Lorke and A.Imamoglu,Epitaxially Self-Assembled Quantum Dots[J].Phys.Today,2001,54:46-51.
    [33]田东旭,郭湘云,金属团簇在单晶表面的稳定性和扩散行为的Monte Carlo研究[J].化学物理学报,2005,18(3):346-350.
    [34]J.A.Mejias,Theoretical study of adsorption of Cu,Ag,and Au on the NaCl(100) surface[J].Phys.Rev.B,1995,53:10281-10288.
    [35]H.H(a|¨)kkinen and M.Manninen.How "Magic" is a Magic Metal Cluster?[J].Phys.Rev.Lett.,1995,76:1599-1602.
    [36]M.Cakmak,G.P.Srivastava,and S.Ellialtioglu.Adsorption of Te on Ge(001):Density functional calculations[J].Phys.Rev.B.,2003,67:205314.
    [37]Wang Xiao-Chun,ZHU Zi-Zhong,Structural stabilities of ordered Nb_4 clusters on the Cu(111) and Cu(100) surfaces[J].Chin.Phys.Lett.,2007 24:172-175.
    [38]Li J L,Jia J F,Liang X J,Xi Liu,Jun-Zhong Wang,Qi-Kun Xue,Zhi-Qiang Li,John S.Tse,Zhenyu Zhang,and S.B.Zhang,Spontaneous Assembly of Perfectly Ordered Identical-Size Nanocluster Arrays[J].Phys.Rev.Lett.,2002,88:066101,
    [1]黄美纯2002“密度泛函理论导论(电子版)”讲义.
    [2]M.Born and K.Huang.Dynamical Theory of Crystal lattices[M].Oxford:Oxford University Press,1954.
    [3]P.Hohenberg and W.Kohn.Inhomogeneous Electron Gas[J].Phys.Rev.,1964,136(3B):B864-B871.
    [4]W.Kohn and L.J.Sham.Self-consistent Equations Including Exchange and Correlation Effects[J].Phys.Rev.,1965,140(4A):A1133-A1138.
    [5]U.Von Barth and L.Hedin,A local exchange-correlation potential for the spin polarized case [J].J.Phys.C,1972,5:1629-1642.
    [6]R.O.Jones and O.Gunnarsson,The density functional formalism,its applications and prospects[J].Rev.Mod.Phys.,1989,61,689-746.
    [7]O.Gunnarsson,B.I.Lundqvist,and J.W.Wilkins,Contribution to the cohesive energy of simple metals:Spin-depentent effect[J].Phys.Rev.B,1974,10:1319-1327.
    [8]G.D.Mahan,Many Particle Physics[M].New York:Kluwer Academic Plenum Publishers,2000.
    [9]J.P.Perdew and A.Zunger,Self-interaction correction to density-functional approximations for many-electron systems[J].Phys.Rev.B,1981,23:5048-5079.
    [10]D.M.Ceperley and B.L.Alder,Ground state of the electron gas by a stochastic method[J].Phys.Rev.Lett.1980,45:566-569.
    I11]S.K.Ma,and K.A.Brueckner,Correlation Energy of an Electron Gas with a Slowly Varying High Density[J].Phys.Rev.,1968,165(1):18-31.
    [12]J.P.Perdew,Accurate Density Functional for the Energy:Real-Space Cutoff of the Gradient Expansion for the Exchange Hole[J].Phys.Rev.Lett.,1985,55(16):1665-1668.
    [13]J.P.Perdew,and Y.Wang,Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45(23): 13244-13249.
    [14] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64(4): 1045-1097.
    [15] E. Fermi, Nuovo Cimento 11, 157(1934).
    [16] H. Hellmann, Acta Physiochimica URSS, 1,913(1935).
    [17] ] D. R. Hamann, M. Schl(?)ter, and C. Chiang, Norm-Conserving Pseudopotentials [J]. Phys. Rev. Lett., 1979, 43(20): 1494-1497.
    [18] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B, 1990,41(11): 7892-7895.
    [19] P. E. Blochl, Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50(24): 17953-17979.
    [20] S.G. Louie, S. Froyen, and M.L. Cohen, Nonlinear ionic pseudopotentials in spin-density-functional calculations [J]. Phys. Rev. B, 1982, 26(4): 1738-1742.
    [21] W. C. Topp and J. J. Hopfiel, Chemically Motivated Pseudopotential for Sodium [J]. Phys. Rev. B, 1973,7(4): 1295-1303.
    [22] O. Krogh Andersen, Linear methods in band theory [J]. Phys. Rev. B, 1975, 12: 3060-3083.
    [23] ] H. Hellmann, Einfuhrung in die Quantumchemie, Deuticke, Leipzig (1937).
    [24] R. P. Feynman, Forces in Molecules [J]. Phys. Rev., 1939, 56(4): 340-343.
    [25] M. T. Yin and M. L. Cohen, Theory of lattice-dynamical properties of solids: Application to Si and Ge [J]. Phys. Rev. B, 1982, 26(6): 3259-3272.
    [26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing, Cambridge University Press, 2 ed.(1996).
    [27] G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54(16): 11169-11186.
    [28] G. Kresse and J. Furthmuller, VASP the GUIDE [EB/01]. http://cms.mpi.univie.ac.at /vasp/vasp/vasp.html
    [29] E. Polak, Computational Methods in Optimization [M]. New York: Academic, 1971.
    [30] E. R. Davidson, In G. H. F. Diercksen, and S. Wilson, eds., Methods in Computational Molecular Physics, Vol. 113 of NATO Advanced Study Institute, Series C: Mathematical and Physical Sciences, p.95. Plenum, New York.
    [31] P. Pulay, Convergence acceleration of iterative sequences. the case of SCF iteration [J]. Chem. Phys. Lett., 1980, 73(2): 393-398.
    [32] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett., 1996,77(18): 3865-3868.
    [33] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations [J]. Phys. Rev. B, 1976, 13(12): 5188-5192.
    [34] O. Jepsen and O.K. Andersen, The electronic structure of hcp Ytterbium [J]. Solid State Commun., 1971,9(20): 1763-1767.
    [35] P.E. Blochl, O. Jepsen and O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev. B, 1994,49(23): 16223-16233.
    [36] G. Kresse, J. Furthmuller, VASP the GUIDE [EB/01] http://cms.mpi.univie.ac.at/vasp/ vasp/vasp.html.
    [37] C.L. Fu and K.-M. Ho, First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo [J]. Phys. Rev. B, 1983, 28(10): 5480-5486.
    [38] M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals [J]. Phys. Rev. B, 1989,40(6): 3616-3621.
    [1]王广厚.团簇物理学[M].上海:上海科学技术出版社,2003.
    [2]Yang S H,Drabold D A,dams D A,et al.A first principle local orbital density functional study of Al clusters[J].Phys.Rev.B,1993,47(3):1567-1576.
    [3]李喜波,王红艳,唐永建,等.Ag_n(n=2-10)团簇的几何结构和电子特性[J].原子与分子物理学报,2004,21(3):388-394.
    [4]Wang Jinlan,Wang Guanghou,Zhao Jijun.Density-functional study Au_n(n=2-20) clusters:lowest energy structures and electronic properties[J].Phys.Rev.B,2002,66:035418.
    [5]Lacaze Dufaure C,Blanc C,Mankoe G,et al.Density functional theoretical study of Cu_n,Al_n,(n=4-31)and copper doped aluminum clusters:Electronic properties and reactivity with atomic oxygen[J].Surf.Sci.,2007,601(6):1544-1553.
    [6]林秋宝,李仁全,文玉华,朱梓心.w_n(n=3-27)原子团簇结构的第一性原理计算[J].物理学报.2008,57(1):181-185.
    [7]Cox D M,Trevor D J,Whetten R L,et al.Aluminum clusters:magnetic properties[J].J.Chem.Phys.,1986,84(8):4651-4656.
    [8]周继承,何红波,李义兵.银团簇结构与特性的分子动力学研究[J].化学物理学报, 2001,14(3):281-284.
    [9]Reddy B V,Khana S N,Dunlap B I.Giant Magnetic Moments in 4d Clusters[J].Phys.Rev.Lett.1993,70(21):3323-3326.
    [10]Rao B K,Jean P.Evolution of the electronic structure and properties of neutral and charged aluminum cluster:A comprehensive analysis[J].J.Chem.Phys.,1999,111(5):1890-1904.
    [11]李朝阳,王红艳,韦建军,等.Al_n(n=2-7)团簇的结构和能级分布[J].原子与分子物理学报,2003,20(2):177-181.
    [12]Schriver K E,Persson J L,Honea E C,et.al.Electronic shell structure of group-Ⅲ A metal atomic clusters[J].Phys.Rev.Lett.,1990,64(21):2539-2542.
    [13]Li X,Wu H B,Wang X B,et.al.s-p hybridization and electron shell structures in aluminum clusters:a photoelectron spectroscopy study[J].Phys.Rev.Lett.,1998,81(9):1909-1912.
    [14]Kresse G,Hafner J.Ab initio molecular dynamics for liquid metals[J].Phys.Rev.B,1993,47(1):558-561.
    [15]Kresse G,Furthm(u|¨)ller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Plays.Rev.B,1996,54(16):11169-11186.
    [16]Perdew J P.Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J].Phys.Rev.B,1992,45(23):13244-13249.
    [1]王广厚.团簇物理学[M].上海:上海科学技术出版社,2003.
    [2]Yang S Y,Drabold D A,Adams D A,et al.A first principle local orbital density functional study of Al clusters[J].Phys.Rev.B,1993,47:1567.
    [3]Wang J,Wang G,Zhao J.Density-functional study Au_n(n=2-20) clusters:lowest energy structures and electronic properties[J].Phys.Rev.B,2002,66:035418.
    [4]洪家岁,王娴,谭凯等.锰团簇Mn_5和Mn_6几何结构与磁性的分析[J].化学学报,2006,64:1063.
    [5]张蓓,段海明,张军.Rh_n、Co_n,(n=3-56)团簇的结构特性研究[J].原子与分子物理学报,2007,27:63.
    [6]林秋宝,李仁全,文玉华,朱梓忠.w_n(n=3-27)原子团簇结构的第一性原理计算[J].物理学报,2008,57:181.
    [7]Lee G H,Huh S H,Park Y C,et al.Photoelectron spectra of small nanophase W metal cluster anions[J].Chem.Phys.Lett.,1999,299:309.
    [8]Oh S J,Huh S H,Kim H K,et al.Structural evolution of W nano-clusters with increasing cluster size[J].J.Chem.Phys.,1999,111:7402.
    [9]Reddy B V,Khana S N,Dunlap B I.Giant Magnetic Moments in 4d Clusters[J].Phys.Rev.Lett.,1993,70:3323.
    [10]P.G.Alvarado-Leyva,E.M.Sosa Hern(?)ndez,et al.Magnetic properties of small vanadium clusters[J].Journal of Alloys and Compounds,2004,369:52-54.
    [11]Yuan H K,Chen H,et al.Density-functional calculations of the structure and electronic and magnetic properties of small yttrium clusters Y_n(n=2-17)[J].Phys.Rev.B,2007,75:174412.
    [12]David B P,Parnis J M.The influence of palarizability in metal cluster reactions as seen in the reactions of gas-phase W clusters with cyclopropane[J].J.Chem.Phys.,1998,109:551.
    [13]金明星,丁大军.自由钨团簇与氮分子反应性的尺寸相关性[J].原子核物理评沦,2002,19:0238.
    [14]Li J Q,Zhang Y F,Huang Z X,et al.An ab initio study on the chemical bond and the mechanism of cluster formation of the tungsten-surfur clusters[J].J.Mol.Struc-Theochem.,1998,429:237.
    [15]Weidele H,Kreisle D,Recknagel E,et al.Thermionic electron emission of small tungsten cluster anions on the milliseconds time scale[J].J.Chem.Phys.,1999,110:8754.
    [16]Kresse G.,Hafner J.Ab initio molecular dynamics for liquid metals[J].Phys.Rev.B,1993, 47:558.
    [17]Kresse G,Furthm(u|¨)ller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys.Rev.B,1996,54:11169.
    [18]Perdew J P,Wang Y.An accurate and simple analytic representation of the electron-gas correlation energy[J].Phys.Rev.B,1992,45:13244.
    [19]H.Weidele,D.Kreisle,et al.Thermionic emission from small clusters:direct observation of the kinetic energy distribution of the electrons[J].Chem.Phys.Lett.,1995,237:425-431.
    [20]C.基泰尔.固体物理导论[M].化学工业出版社,2005:9.
    [1]Lixin Zhang,S.B.Zhang,Qi-Kun Xue,Jin-Feng Jia,and E.G.Wang,Electronic structure of identical metal cluster arrays on Si(111)-7x7 surfaces[J].Phys.Rev.B,2005,72:033315-04.
    [2]Xiaochun Wang,Qiubao Lin,Renquan Li,and Zizhong Zhu,First-principles calculations for the structural stabilities of ordered Nb4 clusters on the Cu(111) surface[J].Phys.Rev.B,2006,73:245404-07.
    [3]王晓春,林秋宝,李仁全,朱梓忠.二维全同Nb_4在Cu(100)表面的结构稳定性和电子性质[J].物理学报,2007,56(05):2813-2820.
    [4]Wang Xiaochun,Zhu Zizhong.Structure stabilities and electronic properties of ordered Nb_4on the Cu(111 ) and Cu(100) surface[J].Chin.Phys.Lett.,2007,24(1):172:175.
    [5]J.A.Mejias,Theoretical study of adsorption ofCu,Ag,and Au on the NaCl(100) surface[J].Phys.Rev.B,1995,53:10281-10288.
    [6]H.H(a|¨)kkinen and M.Manninen,How "'Magic" is a Magic Metal Cluster?[J].Phys.Rev.Lett.,1995,76:1599-1602.
    [7]Wang Xiaochun,Zhang Jianhua,Wen Yuhua,Zhu Zizhong.Structural stabilities of ordered Arrays of Nb_4 clusters on NaCl(100)surface[J].2009,Chin.Phys.Lett.,2009,26(1):016802.
    [8]Zheng Gai,BiaoWu,J.P.Pierce,G.A.Farnan,Dajun Shu,MuWang,Zhenyu Zhang,and Jian Shen,Self-Assembly of Nanometer-Scale Magnetic Dots with Narrow Size Distributions on an Insulating Substrate[J].Phys.Rev.Lett.,2002,89:235502-04.
    [9]Kresse G,Furthm(u|¨)ller J,Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Comput.Mater.Sci.,1996,6:15-50.
    [10]Kresse G,Furthm(u|¨)ller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys.Rev.B,1996,54:11169-11186.
    [11]Kresse G,Joubert J.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Phys.Rev.B 1999,59:1758-1775.
    [12]Perdew J P.Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J].Phys.Rev.B,1992,45:13244-13249.
    [13]P.E.Bl(o|¨)chl,O.Jepsen,O.K.Andersen.Improved tetrahedron method for Brillouin-zone integrations[J].Phys.Rev.B,1994,49(23):16223-16233.
    [14]Yong Yang and E.G.Wang.Adsorption and Vibrational Properties of H_2O Monomer on NaCl(100) Surface[J].J.Comput.Theor.Nanosci.,2004,1:88-92.
    [15]B.Li,A.Michaelides and M.Scheffler.Density functional theory study of flat and stepped NaCl(001)[J].Plays.Rev.B.,2007,76:075401.
    [16]庄琼云,张建华,文玉华,朱梓忠.简单.金属小团簇Al_n(n=2-7)的磁性[J].厦门大学学报,2008,47(6):0801-0805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700