琼脂糖亲水相互作用色谱在多肽分离纯化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多肽具有分子量小、结构简单、易于合成、易于被机体吸收、给药途径多样化等特点,成为新药研发的热点。其生物功能多样,涉及抗菌、抗病毒、抗氧化、抗肿瘤、神经调节、免疫调节等。化学合成多肽在合成过程中形成多种结构类似物,天然来源的多肽包含多种杂质,目前多肽的分离纯化技术有限,以反相色谱为主,不能满足多肽药物快速发展的需要。
     本论文提出以琼脂糖凝胶作为亲水相互作用色谱介质,应用于多肽的分离纯化,实现琼脂糖凝胶应用领域和多肽分离纯化方法的拓展。首先采用12%浓度的高交联度琼脂糖凝胶介质Superose 12分离了人工合成的甘氨酸二肽和甘氨酸三肽,考察了该介质对多肽的基本骨架结构(肽键和末端可电离基团)产生吸附的一般规律。随后将Superose12介质应用于蛋白质水解多肽的分离纯化,初步建立了Superose 12亲水相互作用色谱的多肽保留预测模型。最后将包括Superose 12介质在内的四种粒径和配基不同的琼脂糖凝胶介质应用于固相合成缩宫素粗品的纯化,对不同介质的分离效果进行了对比。主要结论包括:
     1.采用Superose 12琼脂糖凝胶介质分离了人工合成的甘氨酸二肽和甘氨酸三肽。在乙腈-水流动相条件下,介质对甘氨酸寡肽形成了吸附保留,并将甘氨酸二肽与甘氨酸三肽完全分开,甘氨酸寡肽的保留体积随流动相中乙腈含量的增加而增加,流动相中添加尿素或中性盐削弱了吸附作用,流动相的pH值从3-12升高的过程中保留减弱,证明介质与甘氨酸寡肽之间形成的是一种氢键吸附与静电相互作用混和模式的吸附,采用特征点洗脱法获得了甘氨酸寡肽的动态吸附等温线,结合吸附能分布计算的结果,证明介质与甘氨酸寡肽之间相互作用存在轻度不均一性,用Toth模型能够很好地拟合获得的等温吸附数据。
     2.采用Superose 12琼脂糖凝胶介质分离了蛋白水解多肽。在含水量逐渐增加的乙腈-水梯度洗脱条件下,溶菌酶水解多肽、核糖核酸酶A水解多肽和胰蛋白酶自身水解多肽经Superose 12介质分离,各获得了10~20个洗脱峰,通过质谱氨基酸序列分析,从三个蛋白水解多肽中总共识别并收集到了47个多肽片段。以20种氨基酸和肽键的保留相关系数为未知变量,建立了Superose 12介质的多肽保留预测模型,并根据47个多肽片段的色谱保留数据求解了未知变量,推断侧链带有可电离基团、酚羟基或酰胺基团的氨基酸残基能够增强保留。
     3.采用Superose 12、Superose Prototype、Sepharose HP-β-CD和Novarose SE-100/40-Tris四种琼脂糖凝胶介质分离纯化了固相合成缩宫素粗品。平均粒径为10μm的Superose12介质(氢键受体型),在优化的乙腈-水-乙酸梯度洗脱条件下,将缩宫素粗品的峰面积百分比纯度由56.7%提高到92.8%,纯化倍数为1.64倍,回收率78.7%,且样品载量高,超过0.34 mg/ml凝胶;平均粒径为30μm的Superose Prototype介质(氢键受体型)和Sepharose HPβ-CD介质(混合型),洗脱谱图和分离效果与Superose12介质相近,适合工业放大;而Novarose SE-100/40 Tris介质(氢键供体型,40μm平均粒径)在乙腈-水流动相条件下不能对缩宫素形成有效的吸附保留。
Great attention has been paid to peptides in the field of new drugs development in the past few years due to the special properties of peptides, including lower molecular weight than that of proteins, simple structure, easy to be synthesized and uptaken by the organism and the diversity of administration route. Peptides have a lot of biological functions, such as antibiosis, antivirus, antioxidation, antitumor, neuroregulation and immunoregulation. Some structural analogues are formed during the process of chemical synthesis of peptides, and natural derived peptide crudes also contain a variety of impurities. At present, the items of available separation and purification methods of peptide are very limited and mainly based on reversed phase chromatography. Those methods can not meet the demands of quick developing market of peptide drugs.
     In the present thesis, agarose gels were introduced into the field of separation and purification of peptides as hydrophilic interaction chromatographic media. The purpose is to expand the application field of agarose gel and the method of peptide separation. First, the highly cross-linked 12% agarose gel Superose 12 was used to separate synthetic glycine dipeptide and tripeptide. The general rules of the formation of adsorption between Superose 12 and the framework of peptides (peptide bond and terminal charged groups) were investigated. Second, Superose 12 was introduced into separation and purification of peptides from protein hydrolysis. A preliminary prediction model for peptide retention time of Superose 12-hydrophilic interaction chromatography was established. Finally, four types of agarose gels with different partical sizes and ligands were introduced to separate synthetic oxytocin crude, including Superose 12. The separation results with different media were compared. The main conclusions were as follows:
     1. Synthetic glycine dipeptide and tripeptide were separated by Superose 12, a agarose gel medium. Glycine oligopeptides can be retardated efficiently on Superose 12 when mobile phase of acetonitrile-water was used. The dipeptide and tripeptide were completely separated from each other. The retention volumes of glycine oligopeptide increased with the fraction of acetonitrile in the mobile phase and decreased with pH value of the mobile phase. The retention volume was reduced when urea or sodium chloride was added into the mobile phase. These results indicated that the adsorption mechanism between Superose 12 and glycine oligopeptides could be a mixed-mode of hydrogen bond adsorption and electrostatic interaction. Dynamic adsorption isotherms were determined by the method of elution by characteristic points. Together with the calculation results of adsorption energy distribution, it was suggested that the interactions between the Superose 12 medium and glycine oligopeptides were slightly heterogonous and the isotherm adsorption data could be fitted by the Toth model excellently.
     2. Peptides from protein hydrolysis were separated by Superose 12 medium. Lysozyme hydrolysate, ribonuclease A hydrolysate and peptides from trypsin autodigestion were separated with decreased acetonitrile gradients, respectively. Ten to twenty peaks were appeared per run. According to the results of amino acid sequence analysis by mass spectra, forty seven peptides were recognized and collected from three hydrolysates. A prediction model of peptide retention time on Superose 12 column was established based on the retention coefficients corresponding to 20 amino acids and peptide bond. According to the retention datas of 47 peptides, the coefficients as unknown variables were solved. It can be demonstrated that amino acid residues with ionogen, phenolic hydroxyl group or amide group could have a positive contribution to the retention of peptides.
     3. Synthetic oxytocin crude was separated by four types of agarose gel media including Superose 12, Superose Prototype, Sepharose HP-β-CD and Novarose SE-100/40-Tris. Using an optimized gradient elution method with acetonitrile-water-acetic acid sequentially, the purity of oxytocin crude increased from 56.7% to 92.8% after separation on Superose 12 column (10μm particle size, hydrogen bond acceptor type). The purification folds were 1.64 and the recovery rate of oxytocin was 78.7%. The sample capacity of Superose 12 was very high and exceeded 0.34 mg oxytocin per ml gel. The elution profiles and separation results of Superose Prototype (hydrogen bond acceptor type) and Sepharose HPβ-CD (mixed type) media were similar to that of Superose 12. These media with 30μm particle size could be used to scale up. However, oxytocin could not be retardated effectively by Novarose SE-100/40 Tris (hydrogen bond donor type) medium under the acetonitrile-water mobile phase condition.
引文
[1]李良铸,李明晔.现代生化药物生产关键技术[M].北京:化学工业出版社,2006
    [2]Nicolas P, Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates [J]. Annual Review of Microbiology.1995; 49:277-304
    [3]Jenssen H, Hamill P, Hancock R E W. Peptide antimicrobial agents [J]. Clinical microbiology reviews.2006; 19(3):491-511
    [4]祝斌,吴尚辉,顾焕华等.野生蚕抗菌肽对癌细胞的杀伤作用及其超微结构的研究[J].实用预防医学.2007:14(1):16-19
    [5]潘道东.酸乳中抗高血压肽的分离及其特性研究[J].食品科学.2005:1:205-210
    [6]Esther M, Angel G J, Amparo A, et al. Identification of casein phosphopeptides after simulated gastrointestinal digestion by tandem mass spectrometry [J]. European food research and technology.2006; 222(1-2):48-53
    [7]张建辉,庞广昌.阿片肽的研究进展与展望[J].2006:27(12):823-829
    [8]Chang K J, Killian A, Hazum E, et al. Morphiceptin (NH4-tyr-pro-phe-pro-CONH2):a potent and specific agonist for morphine (μ) receptors [J]. Science.1981; 212:75-77
    [9]Kimmerlin T, Seebach D.'100 years of peptide synthesis':ligation methods for peptide and protein synthesis with applications to β-peptide assemblies [J]. Journal of peptide research.2005; 65:229-260
    [10]Schaufuss P, Muller F, Valentin-Weigand P. Isolation and characterization of a haemolysin from Trichophyton mentagrophytes [J]. Veterinary Microbiology.2007; 122: 342-349
    [11]Thoma-Worringer C, Sorensen J, Lopez-Fandino R. Health effects and technological features of caseinomacropeptide [J]. International Dairy Journal.2006; 16:1324-1333
    [12]Porath J, Flodin P. Gel filtration:a method for desalting and group separation [J]. Nature. 1959; 183(4676):1657-1659
    [13]Conlon J M. Purification of naturally occurring peptides by reversed-phase HPLC [J]. Nature Protocols.2007; 2(1):191-197
    [14]Hanora A, Bernaudat F, Plieva F M, et al. Screening of peptide affinity tags using immobilised metal affinity chromatography in 96-well plate format [J]. Journal of Chromatography A.2005; 1087:38-44
    [15]Knight M, Fagarasan M O, Takahashi K, et al. Separation and purification of peptides by high-speed countercurrent chromatography [J]. Journal of chromatography A.1995; 702: 207-214
    [16]Seger C, Eberhart K, Sturm S, et al. Apolar chromatography on Sephadex LH-20 combined with high-speed counter-current chromatography. High yield strategy for structurally closely related analytes-Destruxin derivatives from Metarhizium anisopliae as a case study [J]. Journal of Chromatography A.2006; 1117:67-73
    [17]Kowalska J, Pszczola K, Wilimowska-Pelc A, et al. Trypsin inhibitors from the garden four o'clock (Mirabilis jalapa) and spinach (Spinacia oleracea) seeds:Isolation, characterization and chemical synthesis [J]. Phytochemistry.2007; 68:1487-1496
    [18]Millo E, Pietra G, Armirotti A, et al. Purification and HPLC-MS analysis of a naturally processed HCMV-derived peptide isolated from the HEK-293T/HLA-E+/UI40+cell transfectants and presented at the cell surface in the context of HLA-E [J]. Journal of Immunological Methods.2007; 322:128-136
    [19]Kaplan B, Cojocaru M, Unsworth E, et al. Search for peptidic "middle molecules" in uremic sera:isolation and chemical identification of fibrinogen fragments [J]. Journal of Chromatography B.2003; 796:141-153
    [20]Lee D H, Kim J H, Park J S, et al. Isolation and characterization of a novel angiotensin l-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum [J]. Peptides.2004; 25:621-627
    [21]Hechard Y, Ferraz S, Bruneteau E, et al. Isolation and characterization of a Staphylococcus warneri strain producing an anti-Legionella peptide [J].FEMS Microbiology Letters.2005; 252:19-23
    [22]Yu Y, Hu J, Miyaguchi Y, et al. Isolation and characterization of angiotensin l-converting enzyme inhibitory peptides derived from porcine hemoglobin [J]. Peptides.2006; 27: 2950-2956
    [23]Nakada T, Toyoda F, Iwata T, et al. Isolation, characterization and bioactivity of a region-specific pheromone, [Val8]sodefrin from the newt Cynops pyrrhogaster [J]. Peptides.2007; 28:774-780
    [24]Hagelin G, Oulie I, Raknes A, et al. Preparative high-performance liquid chromatographic separation and analysis of the Maltacine complex-a family of cyclic peptide antibiotics from Bacillus subtilis [J]. Journal of Chromatography B.2004; 811:243-251
    [25]Zhou J, McClean S, Thompson A, et al. Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri [J]. Peptides.2006; 27:3077-3084
    [26]Conlon J M, A1-Ghaferi N, Abraham B, et al. Antimicrobial peptides from the skin of the Tsushima brown frog Rana tsushimensis [J]. Comparative Biochemistry and Physiology, Part C.2006; 143:42-49
    [27]Alpert A J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds [J]. Journal of chromatography.1990; 499:177-196
    [28]McCalley D V. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds [J]? Journal of chromatography A.2007; 1171:46-55
    [29]Oyler A R, Armstrong B L, Cha J Y, et al. Hydrophilic interaction chromatography on amino-silica phases complements reversed-phase high-performance liquid chromatography and capillary electrophoresis for peptide analysis [J]. Journal of chromatography A.1996; 724:378-383
    [30]Olsen B A. Hydrophilic interaction chromatography using amino and silica columns for the determination of polar pharmaceuticals and impurities [J]. Journal of chromatography A.2001; 913:113-122
    [31]Wang X, Li W, Rasmussen H T. Orthogonal method development using hydrophilic interaction chromatography and reversed-phase high-performance liquid chromatography for the determination of pharmaceuticals and impurities [J]. Journal of chromatography A.2005; 1083:58-62
    [32]Risley D S, Strege M A. Chiral separations of polar compounds by hydrophilic interaction chromatography with evaporative light scattering detection [J]. Analytical chemistry.2000; 72:1736-1739
    [33]Yoshida T. Peptide separation in normal phase liquid chromatography [J]. Analytical chemistry.1997; 69:3038-3043
    [34]Karlsson G, Winge S, Sandberg H. Separation of monosaccharides by hydrophilic interaction chromatography with evaporative light scattering detection [J]. Journal of chromatography A.2005; 1902:246-249
    [35]Curren M S, King J W. New sample preparation technique for the determination of avoparcin in pressurized hot water extracts from kidney samples [J]. Journal of chromatography A.2002; 954:41-49
    [36]Alpert A J, Shukla M, Shukla A K, et al. Hydrophilic-interaction chromatography of complex carbohydrates [J]. Journal of chromatography A.1994; 676:191-202
    [37]Chambers T K, Fritz J S. Effect of polystyrene-divinylbenzene resin sulfonation on solute retention in high-performance liquid chromatography [J]. Journal of chromatography A. 1998; 797:139-147
    [38]Alpert A J, Andrews P C. Cation-exchange chromatography of peptides on poly (2-sulfoethyl aspartamide)-silica [J]. Journal of chromatography.1988; 443:85-96
    [39]Strege M A, Stevenson S, Lawrence S M. Mixed-mode anion-cation exchange/ hydrophilic interaction liquid chromatography-electrospray mass spectrometry as an alternative to reversed phase for small molecule drug discovery [J]. Analytical chemistry. 2000; 72:4629-4633
    [40]Jiang W, Irgum K. Covalently bonded polymeric zwitterionic stationary phase for simultaneous separation of inorganic cations and anions [J]. Analytical chemistry.1999; 71:333-344
    [41]Viklund C, Irgum K. Synthesis of porous zwitterionic sulfobetaine monoliths and characterization of their interaction with proteins [J]. Macromolecules.2000; 33: 2539-2544
    [42]Guo Y, Gaiki S. Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography [J]. Journal of chromatography A.2005; 1074: 71-80
    [43]Xu M C, Peterson D S, Rohr T, et al. Polar polymeric stationary phases for normal-phase HPLC based on monodisperse macroporous poly (2,3-dihydroxypropyl methacrylate-co-ethylene dimethacrylate) beads [J]. Analytical chemistry.2003; 75:1011-1021
    [44]Hjerten S. The preparation of agarose spheres for chromatography of molecules and particles [J]. Biochimica et biophysica acta.1964; 79:393-398
    [45]Porath J, Janson J C, Laas T. Agar derivatives for chromatography, electrophoresis and gel-bound enzymes:I. Desulphated and reduced cross-linked agar and agarose in spherical bead form [J]. Journal of chromatography.1971; 60:167-177
    [46]Pernemalm P, Carlsson M, Lindgren G. Polysaccharide crosslinked separation material and its preparation:US,4665164 [P].1984-07-10[1987-03-12]
    [47]Janson J C. Agarose-based media for high-resolution gel filtration of biopolymers [J]. Journal of chromatography.1985; 326:33-44
    [48]He X, Tan T, Janson J C. Purification of the isoflavonoid puerarin by adsorption chromatography on cross-linked 12% agarose [J]. Journal of chromatography A.2004; 1057:95-100
    [49]Xu J, Tan T, Janson J C. Mixed-mode retention mechanism for (-)-epigallocatechin gallate on a 12% cross-linked agarose gel media [J]. Journal of chromatography A.2006; 1137:49-55
    [50]Muller W. New phase supports for liquid-liquid partition chromatography of biopolymers in aqueous poly(ethyleneglycol)-dextran systems [J]. European journal of biochemistry. 1986; 155(1):213-222
    [51]Orth P, Engelhardt H. Separation of sugars on chemically modified silica gel [J]. Chromatographia.1982; 15:91-96
    [52]Guo Y, Huang A. A HILIC method for the analysis of tromethamine as the counter ion in an investigational pharmaceutical salt [J]. Journal of pharmaceutical and biomedical analysis.2003; 31:1191-1201
    [53]Guo Y, Gaiki S. Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography [J]. Journal of chromatography A.2005; 1074(1-2):71-80
    [54]Hemstrom P, Irgum K. Hydrophilic interaction chromatography [J]. Journal of separation science.2006; 29:1784-1821
    [55]Chambers T K, Fritz J S. Effect of polystyrene-divinylbenzene resin sulfonation on solute retention in high-performance liquid chromatography [J]. Journal of chromatography A. 1998; 797(1-2):139-147
    [56]Yoshida T. Prediction of peptide retention time in normal-phase liquid chromatography [J]. Journal of chromatography A.1998; 811:61-67
    [57]Yoshida T. Peptide separation by hydrophilic-interaction chromatography:a review [J]. Journal of biochemical and biophysical methods.2004; 60:265-280
    [58]Berthod A, Chang S S C, Kullman J P S, et al. Practice and mechanism of HPLC oligosaccharide separation with a cyclodextrin bonded phase [J]. Talanta.1998; 47(4): 1001-1012
    [59]Earnshaw A, Greenwood N. Chemistry of the Elements [M].2nd ed. Oxford: Butterworth-Heinemann,1997
    [60]Campbell A N, Kartzmark E M. The energy of hydrogen bonding in the system: acetone-chloroform [J]. Canadian journal of chemistry.1960; 38:652-655
    [61]Wang B G, Yamaguchi T, Nakao S. Evidence of hydrogen bonding in chloroform and polyacrylates from NMR measurements [J]. Tsinghua science and technology.2002; 7(1): 25-27
    [62]Suzuki S, Dreen P G, Bumagarner R E. Benzene forms hydrogen bonds with water [J]. Science.1992; 257(5072):942-945
    [63]Rozas I, Alkorta I, Elguero J. Unusual Hydrogen bonds:H...π interactions [J]. The journal of physical chemistry A.1997; 101(49):9457-9463
    [64]齐学洁.多肽中氢键性质的理论研究[D].(硕士学位论文)大连:辽宁师范大学化学化工学院.2004
    [65]许名成,刘菊湘,范云鸽等.聚对羟基苯乙烯吸附树脂的合成及对咖啡因的吸附机理研究[J].离子交换与吸附.2000;16(1):16-21
    [66]王重,史作清,王瑞芳.酚醛型吸附树脂对咖啡因和茶碱吸附性能的研究[J].高等学校化学学报.2003:24(10):1896-1901
    [67]史作清,许名成,施荣富等.树脂吸附法制备银杏叶提取物[J].中国食品添加剂.1997;3:38-40
    [68]王怡红,张征林,宋苇等.改性聚酰胺层析柱的性能及在银杏黄酮类化合物提取中的应用[J].植物资源与环境.1999;8(1):10-14
    [69]薛扬,吴唯.聚酰胺树脂的层析分离应用[J].化工新型材料.2005;33(4):50-53
    [70]Pan B, Xiong Y, Li A, et al. Adsorption of aromatic acids on an aminated hypercrosslinked macroporous polymer [J]. Reactive and Functional Polymers.2002; 53(2-3):63-72
    [71]张根成,费正浩,刘福强等.新型胺基修饰的超高交联聚合吸附剂吸附水中酚类化合物的研究[J].离子交换与吸附.2004;20(3):412-222
    [72]孙越,陈金龙,李爱民等.胺基修饰的高度交联聚苯乙烯树脂对间苯二酚吸附行为研究[J].高分子学报.2005;6:801-806
    [73]吴朝霞,孟宪军,金嫘.聚酰胺分离纯化葡萄籽原花青素及部分产物组分构成的初步研究[J].食品研究与开发.2007;28(2):71-74
    [74]王传金,魏运洋,朱广军等.聚酰胺色谱法分离制备高纯度表没食子儿茶素没食子酸酯[J].应用化学.2007;24(4):443-447
    [75]刘轶琛,曾建国,陈波等.聚酰胺对紫锥菊提取物中菊苣酸的分离纯化研究[J].中草药.2007;38(4):530-533
    [76]尹秀莲,游庆红,魏晓春.聚酰胺层析法分离纯化银杏叶总黄酮的研究[J].医药世界.2007;2:43-44
    [771张民.枸杞多糖的特性、结构及生物活性评价[D].(博士学位论文)武汉:华中农业大学.2003
    [78]孟利,张兰威.聚酰胺柱层析法去除西藏灵菇胞外多糖发酵液中蛋白质的研究[J].食品工业科技.2007;28(10):186-189
    [79]Porath J, Flodin P. Gel filtration:a method for desalting and group separation [J]. Nature. 1959; 183:1657-1659
    [80]Porath J. Gel filtration of proteins, peptides and amino acids [J]. Biochimica et biophysica acta.1960; 39:193-207
    [81]Gelotte B. Studies on gel filtration:sorption properties of the bed material sephadex [J]. Journal of chromatography.1960; 3:330-342
    [82]Janson J C. Adsporption phenomena on sephadex [J]. Journal of chromatography.1967; 28:12-20
    [83]Qi Y, Sun A, Liu R, et al. Isolation and purification of flavonoid and isoflavonoid compounds from the pericarp of Sophora japonica L. by adsorption chromatography on 12% cross-linked agarose gel media [J]. Journal of chromatography A.2007; 1140: 219-224
    [84]Gu M, Su Z, Janson J C. One-step purification of resveratrol and polydatin from polygonum cuspidatum (Sieb. & Zucc.) by isocratic hydrogen bond adsorption chromatography on cross-linked 12% agarose [J]. Chromatographia.2006; 64(11/12): 701-704
    [85]Gu M, Su Z, Janson J C. The separation of polyphenols by isocratic hydrogen bond adsorption chromatography on a cross-linked 12% agarose gel [J]. Chromatographia. 2006; 64(5/6):247-253
    [86]Fornstedt T, Sajonz P, Guiochon G. Thermodynamic study of an unusual chiral separation, propranolol enantiomers on an immobilized cellulose [J]. Journal of the American chemical society.1997; 119:1254-1264
    [87]Vitha M, Carr P W. The chemical interpretation and practice of linear salvation energy relationships in chromatography [J]. Journal of chromatography A.2006; 1126:143-194
    [88]Seidel-Morgenstern A. Experimental determination of single solute and competitive adsorption isotherms [J]. Journal of chromatography A.2004; 1037:255-272
    [89]Nicoud R M, Seidel-Morgenstern A. Adsorption isotherms:experimental determination and application to preparative chromatography [J]. Isolation and purification.1996; 2: 165-200
    [90]Henner S-T. Preparative chromatography:of fine chemicals and pharmaceutical agents [M]. Wiley-VCH Verlag GmbH & Co. KGaA,2005
    [91]Guiochon G, Felinger A, Shirazi D G, et al. Fundamentals of preparative and nonlinear chromatography [M].2nd ed. Netherlands:Elsevier Academic Press,2006
    [92]Lisec O, Hugo P, Seidel-Morgenstern A. Frontal analysis method to determine competitive adsorption isotherms [J]. Journal of chromatography A.2001; 908:19-34
    [93]Miyabe K, Khattabi S, Cherrak D E, et al. Study on the accuracy of the elution by characteristic point method for the determination of single component isotherms [J]. Journal of chromatography A.2000; 872(1-2):1-21
    [94]Guan H, Stanley B J, Guiochon G. Theoretical study of the accuracy and precision of the measurement of single-component isotherms by the elution by characteristic point method [J]. Journal of chromatography.1994; 659(1):27-41
    [95]Ravald L, Fornstedt T. Theoretical study of the accuracy of the elution by characteristic points method for bi-Langmuir isotherms [J]. Journal of chromatography A.2001; 908(1-2):111-130
    [96]Langmuir I. The constitution and fundamental properties of solids and liquids [J]. Journal of the American chemical society.1916; 38:2221-2295
    [97]Graham D. The characterization of physical adsorption systems. I. The equilibrium function and standard free energy of adsorption [J]. The journal of physical chemistry. 1953;57(7):665-669
    [98]Kim S, Ngo H. Adsorption characteristics and pH-dependence of metsulfuron-methyl onto activated carbons [J]. Separation science and technology.2007; 42(8):1731-1745
    [99]Gritti F, Guiochon G. Accuracy and precision of adsorption isotherm parameters measured vy dynamic HPLC methods [J]. Journal of chromatography A.2004; 1043(2):159-170
    [100]Stanley B J, Bialkowski S E, Marshall D B. Analysis of first-order rate constant spectra with regularized least-squares and expectation maximization.1. Theory and numerical characterization [J]. Analytical chemistry.1993; 64(3):259-267
    [101]Gritti F, Guiochon G. Critical contribution of nonlinear chromatography to the understanding of retention mechanism in reversed-phase liquid chromatography [J]. Journal of chromatography A.2005; 1099(1-2):1-42
    [102]Gotmar G, Samuelsson Jorgen, Karlsson A, et al. Thermodynamic characterization of the adsorption of selected chiral compounds on immobilized amyloglucosidase in liquid chromatography [J]. Journal of chromatography A.2007; 1156(1-2):3-13
    [103]Zhou D, Cherrak D E, Kaczamarski K, et al. Prediction of the band profiles of the mixtures of the 1-indanol enantiomers from data acquired with the single racemic mixture [J]. Chemical engineering science.2003; 58(14):3257-3272
    [104]Gritti F, Gotmar G, Stanley B J, et al. Determination of single component isotherms and affinity energy distribution by chromatography [J]. Journal of chromatography A.2003; 988(2):185-203
    [105]Xu J, Tan T, Janson J C. One-step purification of epigallocatechin gallate from crude green tea extracts by mixed-mode adsorption chromatography on highly cross-linked agarose media [J]. Journal of chromatography A.2007; 1169(1-2):235-238
    [106]http://www.expasy.ch/tools/pi_tool.html
    [107]http://www.bioinformatics.org/JaMBW/5/4/index.html
    [108]Personal communication:Dr. Bo-Lennart Johansson, R&D Department, GE Healthcare Bio-Science, Uppsala, Sweden.
    [109]Yoshida T. Calculation of peptide retention coefficients in normal-phase liquid chromatography [J]. Journal of chromatography A.1998; 808:105-112
    [110]Palmblad M, Ramstrom M, Markides K E, et al. Prediction of chromatographic retention and protein identification in liquid chromatography/mass spectrometry [J]. Analytical chemistry.2002; 74:5826-5830
    [111]Meek J L. Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition [J]. PNAS.1980; 77(3):1632-1636
    [112]www.uniprot.org [DB]
    [113]Guo D, Mant C T, Taneja A K, et al. Prediction of peptide retention times in reversed-phase high-performance liquid chromatography I. Determination of retention coefficients of amino acid residues of model synthetic peptides [J]. Journal of chromatography.1986; 359:499-517
    [114]苏荣欣.蛋白质酶解历程动态特性和多肽释放规律研究[D].(博士学位论文)天津:天津大学化工学院.2007
    [115]Bodanszky M, Vigneaud V D. A Method of synthesis of long peptide chains using a synthesis of oxytocin as an example [J]. Journal of the American chemical society. 1959;81:5688-5691
    [116]周逸明.固相多肽合成缩宫素的制备方法:中国,200510112356.5[P].2007,07,04.
    [117]中华人民共和国药典(2005年版)[S].二部:833
    [118]European Pharmacopoeia 5.0 [S].2175-2176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700