Apelin对心肌缺血大鼠心脏侧枝循环的影响和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     心肌梗死是威胁人类健康的重要心血管疾病之一,是引起猝死和心力衰竭的主要原因,所以有必要进行积极有效的再灌注治疗,以挽救濒死心肌。再灌注的形式,包括心血管介入治疗,冠状动脉搭桥,干细胞移植等,其中心脏的侧枝循环形成对于防止心肌梗死,心功能的保护具有重要意义。
     Apelin是1998年日本学者Tatemoto从牛胃组织提取物中分离出一种小分子多肽,是血管紧张素受体AT1相关受体蛋白(Angiotension II Protein J, APJ)的内源性配体,Apelin/APJ信号通路可以促进细胞内多种信号通路的激活产生多种生理功能。Apelin在心血管系统高度表达,它具有增强心肌收缩力、扩张血管、减轻心脏负荷、促进血管生长、调节水盐平衡等作用,其中Apelin促进血管形成的作用,越来越引起学者的重视。
     Apelin信号对心脏和血管的形成有重要作用。它在视网膜血管的内皮层中也高度表达,Apelin是一个视网膜内皮细胞的血管生成因子。与许多其它的血管生成因子相似,在低氧的情况下,Apelin基因的表达是增加的。用反义技术抑制Apelin的表达会导致血管生成障碍,Apelin具有促有丝分裂、促进分化和抑制凋亡的作用。另外,Apelin及其受体Agtrlb还控制斑马鱼原肠时期心脏形态的发生Apelin和Agtrllb受体表达不足或者表达过度都将导致心脏前体缺陷并最终累及心脏发育。另外,Apelin会加速血管生成开关的打开,潜在的激活了肿瘤的新生血管形成。Apelin基因在三分之一的人类肿瘤中表达上调。Apelin促进新生血管的特性,已经在小鼠的肿瘤新生血管形成过程中得到证实。
     Apelin对内皮细胞的促有丝分裂和血管生成的特性意味着它也许在治疗与血管生成有关的疾病方面有潜在的作用。APJ的受体激动剂或许能够作为药理学工具在血管形成对抗缺血性疾病方面有治疗意义,而它的拮抗剂或许能够阻止血管形成,以阻止肿瘤生长和缺血性视网膜病。Apelin作为一个强有力的内皮生长和血管生成的刺激因子,激活这种信号通路,能否促进缺血心肌的血管生成,减轻心肌缺血所致的损伤或者坏死,目前尚不得而知。
     本课题旨在通过观察:Apelin是否参与和保护心肌缺血损伤及其机制;外源性给予Apelin能否促进内皮细胞的增殖,迁移和血管形成;外源性给予Apelin毙否增加心肌细胞侧支循环的形成,Apelin是通过那个通路促进血管的形成的,从而为挽救缺血、濒死的心肌寻找一条有效的途径。
     目的
     1、建立在体大鼠心肌缺血模型,观察心肌缺血时Apelin是否对心脏有保护作用及其机制。
     2、外源性给予Apelin能否促进心脏侧支循环的形成,减少心肌缺血或者心肌梗死。
     3、通过HUVECs了解Apelin对内皮细胞增殖,迁移和血管形成的影响,以探讨Apelin促进血管形成的可能机制,以及这种机制是否与哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)转导通路相关。
     方法
     1、Apelin对心肌缺血大鼠的心脏保护作用
     (1)雄性Sprague-Dawley (SD)大鼠左冠状动脉前降支结扎,建立心肌缺血模型。腹腔注射Apelin (1μg/kg.d×2),应用心导管检查心率(HR)、左室最大收缩压(LVESP)、左室舒张末期压(LVEDP)、左室内压最大升降速度(±P/dTmax)以评价Apelin对心功能的影响。
     (2)雄性SD大鼠冠状动脉前降支结扎,建立心肌缺血模型,腹腔注射Apelin (1μg/kg.d×2),抽血检测血中乳酸脱氢酶(Lactate dehydrogenase, LDH)含量。
     2、Apelin对心肌缺血大鼠心脏侧枝循环的影响
     (1)大鼠冠状动脉前降支结扎,建立心肌缺血模型,同时给予Apelin腹腔注射(1μg/kg.d×7)以观察Apelin对心脏侧枝循环的影响。
     (2)酶联免疫法(enzyme linked immunosorbent assay, ELISA)测定大鼠心肌缺血损伤时血小板-内皮细胞粘附分子1(PECAM1/CD31)蛋白含量。
     (3)伊文氏蓝和红四氮唑(TTC)双染色,应用计算机图象分析系统计算心肌梗死面积。
     (4)通过CD31免疫组化染色,在显微镜下观察缺血心肌组织的血管生成情况。
     (5)HE染色显微镜下观察缺血心肌组织的损伤情况。
     (6)通过western blot检测VEGF和CD31的表达。
     3、Apelin对内皮细胞增殖,迁移和血管形成的影响
     (1)应用甲基噻唑基四唑(methyl thiazolyl tetrazolium, MTT)的方法观察Apelin对HUVECs增殖的影响。
     (2)通过Transwell观察Apelin对HUVECs迁移的影响。
     (3)应用Tubeformation观察Apelin对HUVECs血管形成的影响。
     结果
     1、Apelin对心肌缺血大鼠心功能的保护作用与其它各组比较,大鼠心肌缺血48h时Apelin治疗组(1μg/kg.d×2,腹腔注射)能明显提高LV±dp/dtmax、LVESP,降低LVEDP(P<0.05、0.01)。
     2、Apelin对心肌缺血大鼠心肌酶的影响自动生化仪结果显示,大鼠心肌缺血48h时Apelin治疗组(1μg/kg.d×2,腹腔注射)的LDH含量明显较其它各组为低(P<0.01)。
     3、Apelin对心肌缺血大鼠CD31表达的影响酶联免疫法(ELISA)测定大鼠心肌缺血大鼠的CD31结果显示,Apelin治疗组(1μg/kg.d×7,腹腔注射)的CD31含量明显较其它各组为高(P<0.05)。
     4、伊文氏蓝和红四氮唑(TTC)双染色,通过计算机图象分析系统统计心肌梗死面积结果发现,Apelin治疗组(1μg/kg.d×7,腹腔注射)的心肌梗塞面积明显较其它各组为低(P<0.05)。
     5、Apelin对心肌缺血大鼠微血管密度的影响CD31免疫组化染色,显微镜下观察心肌组织的微血管密度(MVD, microvessel density)发现,Apelin治疗组的MVD计数明显较其它各组为多(P<0.01)。
     6、Apelin对心肌缺血大鼠心肌结构的影响HE染色显微镜下观察发现Apelin治疗组的瘢痕形成较其它各组少。
     7、Apelin对心肌缺血大鼠VEGF和CD31表达的影响Western blot结果显示Apelin组(1μg/kg.d×7,腹腔注射)的VEGF和CD31蛋白表达明显较其它各组为高。
     8、Apelin对HUVECs增殖的影响应用MTT观察Apelin对HUVECs增殖的影响发现,与其它各组相比Apelin (Apelin lumol/L)可以明显的促进HUVECs的增值(P<0.01)
     9、Apelin对HUVECs迁移的影响应用Transwell观察Apelin对HUVECs迁移的影响发现,与其它各组相比Apelin (Apelin 1μg/ml)可以明显的促进HUVECs的迁移(P<0.01)。
     10、Apelin对HUVECs血管形成的影响Tubeformation观察Apelin对内皮细胞血管形成的影响发现,Apelin (Apelin 60uM)治疗组的小管形成的数目较其他各组为多(P<0.05)。
     11、尽管Apelin对缺血心肌和HUVECs有上述作用,但是在应用了PLC的抑制剂U-73122以后,Apelin的心肌保护和心功能保护作用消失;在应用了mTOR的阻断剂-雷帕霉素后,Apelin对心肌缺血侧枝循环和对HUVECs促进增殖、迁移和血管形成的作用消失,与对照组无明显差异(P>0.05)。
     结论
     1、Apelin可以保护心肌缺血的心脏损伤和心功能。
     2、Apelin保护心肌缺血的心脏损伤和增强心肌收缩力可能与激活细胞内的PLC信号通路有关。
     3、Apelin增加心肌表达CD31,并可刺激心肌缺血区的血管生成,减少心肌梗死面积,促进心脏侧枝循环的形成。
     4、Apelin可以促进内皮细胞的迁移、增殖和血管形成。
     5、Apelin的促进缺血心肌侧枝循环和HUVECs血管的形成可能是通过激动mTOR受体发挥作用的,这些作用可以被mTOR的拮抗剂-雷帕霉素所阻断。
Introduction
     Acute myocardial infarction is one of most important disease threatening human life and health. It is the chief reasons of sudden death and heart failure. It is necessary to reperfute myocardium in order to save dying myocardium. There are many kinds of reperfusions, including nterventional therapy, coronary artery bybass graft, stem cell transplantation and so on. Among of these ways the collateral circulation formation is very important for preventing myocardial infarction and protecting heart functons. Apelin is a micromolecule polypeptide which has several effects on cardiovascular system. It was separated from bovine stomach by Tatemoto in 1998 and it is the endogenic ligand of angiotensionⅡprotein J (APJ). The Apelin/APJ could activate many intracellar signals and produce several physical functions. Apelin is expressed in cardiovascular system extensively. The Apelin/APJ system can reinforce myocardial contractile force, relax blood vessels, relieve cardiac loads, promote blood vessels growth and regulate body fluid equilibrium etc. Among theses effects the character of Apelin to promote blood vessels growth is more and more attracting interests to hakeems.
     Apelin signal has important effects on formation of blood vessels and hearts. And Apelin was found to express in retinal vessels endothelium extensively and Apelin can be a angiogenesis factor for retina endotheliocytes. Apelin expression is aμgmented under mionectic circumstances just like other angiogenesis factors. The vascularization would be dyspoiesis if Apelin expression was blocked with antisense technique. Apelin had effects of promoting karyokinesis, differentiation and inhibiting apoptosis. Apelin and its receptor, agtrllb, controlled the genesis of zebra-fish heart. Apelin and its receptor would effect heart development whether their expression was deficient or excessive. Moreover, Apelin would open the angiogenic switch and activate tumor neovascularization. Apelin is increased in one-third of human tumors. The character of Apelin enhancing neovascularization has been confirmed in mice neovascularization.
     Apelin has the character.of promoting endotheliocytes karyokinesis and angiogenesis, which means it could have the potent character of curing diseases of related angiogenesis. The APJ receptor agonist would treat ischemic diseases through angiogenesis while the APJ receptor blocker would prevent tumors growth and retinopathy. However, it is not reported that as a powerful factor of promoting endotheliocytes proliferation and angiogenesis whether or not Apelin could promote the angiogenesis of ischemic myocardium and lessen the injury or necrosis induced by ischemia.
     The aims of the study were to explore:if Apelin could take part in and protect myocardial ischemia injury; if Apelin given exogenously could promote proliferation, migration and angiogenesis of endotheliocytes; if Apelin given exogenously could enchance angiogenesis of ischemic hearts and on which pathway Apelin promote angiogenesis in order to find an effective way to save ischemic and dying myocardium.
     Objective
     1. To observe if Apelin could protect ischimic heart by setting up a rat myocardium ischemic model;
     2. To confirm if Apelin given exogenously could promote heart collateral circulation and reduce the injury of myocardil ischemia and myocardial infarction;
     3. To study the effects of Apelin on the proliferation, migration and tubeformation of HUVECs; To explore the possible mechanisms of Apelin promoting angiopoiesis and if these mechanisms have relations to Apelin and mTOR.
     Methods
     1. To detect the protcetion effects of Apelin on ischimic rat.
     (1) To ligate the male SD rats left anterior descending (LAD) coronary artery and set up a myocardial ischimia model. Apelin was given(intraperitoneal injection, 1μg/kg.d×2) to examine heart rate (HR), left ventricular end-diastolic pressure(LVEDP), left ventricular end-systolic pressure (LVESP) and maximal left ventricle developed pressure (LV±dp/dtmax) with a cardiac catheterization in order to evalue the effects of Apelin on heart function.
     (2) Apelin was given (intraperitoneal injection, lμg/kg.d×2) to detect the content of LDH by ligating the male SD rats'LAD and a ischemic model.
     2. To examine the effects of Apelin on the collateral circulation of ischemic rat hearts.
     (1) To ligate the male SD rats'left anterior descending (LAD) coronary artery and set up a myocardial ischimia model. Apelin was given (intraperitoneal injection, 1μg/kg.d×7) to observe the.effects of Apelin on collateral circulation in ischemic rats.
     (2) To detect the content of CD31 in the myocardium of ischemic rats with enzyme linked immunosorbent assay (ELISA).
     (3) To dye with Azo-Blue and TTC and to calculate the myocardial infarction aera with a image analysis system (IAS).
     (4) To observe the angiogenesis ischemic of myocardium dyed with CD31 immunohistochemistry under a microscope.
     (5) To observe the injury of ischemic myocardium dyed with HE under a microscope.
     (6) To oberve the protein expression of VEGF and CD31with western blot.
     3. To examine the effects of Apelin on the proliferation, migration and angiopoiesis of HUVECs.
     (1) To observe the effect of Apelin on the proliferation of HUVECs by methyl thiazolyl tetrazolium (MTT).
     (2) To explore the effect of Apelin on the migration of HUVECs with Transwell.
     (3) To study the effect of Apelin on the angiopoiesis of HUVECs with tubeformation.
     Results
     1. The effects of Apelin on heart function of myocardial ischemia in rats The group of Apelin (1μg/kg.d×2, intraperitoneal injection) enchanced LV±dp/dtmax、LVESP and reduced LVEDP significantly compared with other groups at ischemia 48h (P<0.05、0.01).
     2. The effects of Apelin on myocardial enzymes of myocardial ischemia in rats The Apelin group (1μg/kg.d×2, intraperitoneal injection) was lower LDH significantly compared with other groups at ischemia 48h showed by automatic biochemistry machine (P<0.01).
     3. Apelin had effects on CD31 content of myocardial ischemia in rats ELISA of rat CD31 showed that Apelin group (1μg/kg.d×7, intraperitoneal injection) was higher compared with other groups (P<0.05).
     4. The effects of Apelin on myocardial anfarction of myocardial ischemia in rats The results of infarction aera dyed with Azo-Blue and TTC and calculated with IAS discovered that Apelin group (1μg/kg.d×7, intraperitoneal injection) was significantly lower compared with other groups (P<0.05).
     5. The effects of Apelin on MVD of myocardial ischemia in rats The CD31immunohistochemistry dye showed that the MVD of Apelin group (1μg/kg.d×7, intraperitoneal injection) was significantly higher compared with other groups under microscope (P<0.01).
     6. The effects of Apelin on myocardial construction of myocardial ischemia in rats The HE dye showed that the scar of Apelin group (1μg/kg.d×7, intraperitoneal injection) were significantly much less compared with other groups under microscope.
     7. The effects of Apelin on VEGF and CD31 expression of myocardial ischemia in rats The expression of VEGF and CD31 were higher significantly compared with other groups (P<0.01).
     8. The effects of Apelin on the proliferation of HUVECs The proliferation of Apelin on HUVECs with MTT showed that Apelin group (Apelin lumol/L) could promote proliferation of HUVECs significantly compared with other groups (P<0.01).
     9. The effects of Apelin on the migration of HUVECs The migration of Apelin on HUVECs with transwell showed that.Apelin group(Apelin 1μg/mL) could promote migration of HUVECs compared with other groups (P<0.01).
     10. The effects of Apelin on the angiopoiesis of HUVECs The angiopoiesis of Apelin on HUVECs with tubeformation showed that.Apelin group(Apelin 60uM) could promote angiopoiesis of HUVECs compared with other groups (P<0.05).
     11. Although Apelin had effects above mentioned the effects, however, the effects of Apelin on myocardial protection and cardiac function in ischemic rats disappered when Apelin was adminstered with U-73122 simultaneously. And the effects of Apelin on collateral circulation in ischemic rats and proliferation, migration and tubeformation in HUVECs were disappeared when Apelin was adminstered with rapamycin simultaneously.
     Conclusions
     1. Apelin could protect cardiac function and injury in ischemic rat hearts.
     2. Apelin protected cardiac function and injury in ischemic rat hearts by acting PLC signal pathway.
     3. Apelin could promote myocardium to expression CD31, stimulate angiogenesis, reduce myocardial infarction area and enchance collateral circulation in ischemic myocardium.
     4. Apelin could facilitate prolifeation, migration and tubeformation in HUVECs.
     5. Apelin could promote collateral circulation in ischemic hearts and tubeformation in HUVECs by exciting mTOR receptors and could be blocked by the antagon of mTOR-rapamycin.
引文
1 Tatemoto K, Hosoya M, Habata Y, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun.1998; 251: 471-476.
    2 Sorli SC, van den Berghe L, Masri B, et al. Therapeutic potential of interfering with Apelin signalling. Drμg Discov Today.2006; 11:1100-1106.
    3 Kleinz MJ, Skepper JN, Davenport AP. Immunocytochemical localisation of the Apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul Pept.2005; 126:233-240.
    4 Kla'ra Farkasfalvi, Mark AS, Steven RC, et al. Direct effects of Apelin on cardiomyocyte contractility and electrophysiology. Biochemical and Biophysical Research Communications. 2007; 35:889-895.
    5 Keiji Kuba, Liyong Zhang, Yumiko Imai, et al. Impaired Heart Contractility in Apelin Gene-Deficient Mice Associated With Aging and Pressure Overload. Circ Res.2007; 101: 32-42
    6 Sheikh AY, Chun HJ, Glassford AJ, et al. In vivo genetic profiling and cellular localization of Apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am J Physiol Heart Circ Physiol.2008;294:H88-H98.
    7 Chen MM, Ashley EA, Deng DX, et al. Novel role for the potent endogenous inotrope Apelin in human cardiac dysfunction. Circulation.2003; 108:1432-1439.
    8 Ashley EA, Powers J, Chen M, et al. The endogenous peptide Apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovas Res.2005; 65:73-82.
    9 Atluri P, Morine KJ, Liao GP, et al. Ischemic heart failure enhances endogenous myocardial Apelin and APJ receptor expression. Cell Mol Biol Lett.2007; 12:127-138.
    10 Lauren AO, Arpita A, Praveena S, et al. Apelin, an endogenous neuronal peptide, protects hippocampal neurons against excitotoxic injury, Journal of Neurochemistry.2007; 102:1905-1917
    11 Simpkin JC, Yellon DM, Davidson SM, et al. Apelin-13 and Apelin-36 exhibit direct cardioprotective activity against ischemiareperfusion injury. Basic Res Cardiol.2007; 102: 518-528.
    12 Smith CC, Mocanu MM, Bowen J, et al. Temporal Changes in Myocardial Salvage Kinases During Reperfusion Following Ischemia:Studies Involving the Cardioprotective Adipocytokine Apelin.Cardiovasc Drμgs Ther.2007; 21:409-414.
    13 Devic E, Rizzoti K, Bodin S, et al. Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech Dev.1999; 84:199-203.
    14 Cox CM, D'Agostino SL, Miller MK, et al. Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev. Biol.2006; 296:177-189.
    15 lnui M, Fukui A, Ito Y, et al. XApelin and Xmsr are required for cardiovascular development in Xenopus laevis. Dev. Biol.2006; 298:188-200.
    16 Saint-Geniez M, Masri B, Malecaze F, et al. Expression of the murine msr/apj receptor and its ligand Apelin is upregulated during formation of the retinal vessels. Mech Dev.2002; 110: 183-186.
    17 Wilm TP, Sepich DS. Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev Cell,2007; 12:403-413.
    18 Ariadne Malamitsi-Puchner, Dimitrios Gourgiotis, Maria Boutsikou, et al. Circulating Apelin concentrations in mother/infant pairs at term. Acta P. diatrica.2007; 96:1751-1754.
    19 Roland EK, Martin PK, Andrea MM, et al. Paracrine and autocrine mechanisms of Apelin signaling govern embryonic and tumor angiogenesis. Developmental Biology.2007 305:599-614.
    20 Zhong JC, Yu XY, Huang Y, et al. Apelin modulates aortic vascular tone via endothelial nitric oxide synthase phosphorylation pathway in diabetic mice. Cardiovascular Research.2007; 74: 388-395.
    21 Verheul HM, Voest EE, Schingemann RO. Are tumours angiogenesis-dependent? J. Pathol. 2004; 202:5-13.
    22 Sorli SC, Le Gonidec S, Knibiehler B, et al. Apelin is a potent activator of tumour neoangiogenesis. Oncogene.2007; 26:7692-7699.
    23 Ahmad YS, Hyung JC, Alexander JG, et al. In vivo genetic profiling and cellular localization of Apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am J Physiol Heart Circ Physiol.2008; 294:88-98.
    24 张晓东,李若凡,杨古军等.VEGF在实验性心肌梗塞中促血管生成的试验研究.中国临床解剖学杂志.2001;19;167—169.
    25 Kleinz MJ, Davenport AP. Immunocytochemical localization of the endogenous vasoactive peptide Apelin to human vascular and endocardial endothelial cells. Regul Pept.2004; 118: 119-125.
    26 Chen MM, Ashley EA, Deng DX, et al. Novel role for the potent endogenous inotrope Apelin in human cardiac dysfunction. Circulation.2003; 108:1432-1439.
    27 Francia P, Salvati A, Balla C, et al. Cardiac resynchronization therapy increases plasma levels of the endogenous inotrope Apelin. Eur J Heart Fail.2007; 9:306-309.
    28 De MN, Reaux-Le GA, Messari ES, et al. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci U S A.2004; 101:10464-10469.
    29 Szokodi I, Tavi P, Foldes G, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ. Res.2002; 91:434-440.
    30 Ashley EA, Powers J, Chen M, et al. The endogenous peptide Apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res.2005; 65:73-82.
    31 Foldes G, Horkay F, Szokodi I, et al. Circulating and cardiac levels of Apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem Biophys Res Commun. 2003; 308:480-485.
    32 Li Z, Bai Y, Hu J. Reduced Apelin levels in stable angina. Intern Med.2008; 47:1951-1955.
    33 Springer ML. A balancing act:therapeutic approaches for the modulation of angiogenesis. Curr. Opin. Investig. Drugs.2006; 7:243-250.
    34 Weidner N. Intratumor microvessel density as a prognostic factor in cancer. American Journal of Pathology.1995; 147:9-19.
    35 Hsieh PC, MacGillivray C, Gannon J, et al. Local Controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation.2006; 114:637-644.
    36 Han S, Wang G, Qi X, et al. A possible role for hypoxia-induced Apelin expression in enteric cell proliferation. Am J Physiol Regul Integr Comp Physiol.2008; 294:R1832-1R839.
    37 Ronkainen VP, Ronkainen JJ, Hanninen SL, et al. Hypoxia inducible factor regulates the cardiac expression and secretion of Apelin. FASEB J.2007; 21:1821-1830.
    38 Eyries M, Siegfried G, Ciumas M, et al. Hypoxia-induced Apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res.2008; 103:432-440.
    39 Simpkin JC, Yellon DM, Davidson SM, et al. Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res Cardiol.2007; 102: 518-528.
    40 Tiani C, Garcia-Pras E, Mejias M, et al. Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol.2009; 50:296-305.
    41 Kunduzova O, Alet N, Delesque-Touchard N, et al. Apelin/APJ signaling system:a potential link between adipose tissue and endothelial angiogenic processes. FASEB J.2008; 22: 4146-4153.
    42 T Kasai A, Shintani N, Oda M, et al. Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun.2004; 325:395-400.
    43 Kidoya H, Ueno M, Yamada Y, et al. Spatial and temporal role of the Apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J.2008; 27:522-534.
    44 Michaylira CZ, Nakagawa H. Hypoxic microenvironment as a cradle for melanoma development and progression. Cancer Biol Ther.2006; 5:476-479.
    45 Bohm A, Aichberger KJ, Mayerhofer M, et al. Targeting of mTOR is associated with decreased growth and decreased VEGF expression in acute myeloid leukaemia cells. Eur J Clin Invest.2009 Mar 23. [Epub ahead of print]
    46 Dreyer C, Raymond E, Faivre S. Targeted therapies and their indications in solid neoplasias. Rev Med Interne.2009 Mar 17. [Epub ahead of print].]。
    47 Treiber G. mTOR inhibitors for hepatocellular cancer:a forward-moving target. Expert Rev Anticancer Ther.2009; 9:247-261.
    48 Fechner G, Classen K, Schmidt D, et al. Rapamycin inhibits in vitro growth and release of angiogenetic factors in human bladder cancer. Urology.2009; 73:665-668.
    49 Li W, Tan D, Zhang Z, et al. Activation of Akt-mTOR-p70S6K pathway in angiogenesis in hepatocellular carcinoma.Oncol Rep.2008; 20:713-719.
    50 Geerts AM, Vanheule E, Van Vlierberghe H, et al. Rapamycin prevents mesenteric neo-angiogenesis and reduces splanchnic blood flow in portal hypertensive mice.Hepatol Res. 2008; 38:1130-1139.
    51 Isner JM. Myocardial gene therapy. Nature.2002; 415:234-239.
    52 Lee RJ, Springer ML, Blanco-Bose WE, et al. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation.2000; 102:898-901.
    53 Schwarz ER, Speakman MT, Patterson M, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat:angiogenesis and angioma formation. J Am Coll Cardiol.2000; 35: 1323-1330.
    54李峰,李兰芳,秦旭平,等Apelin-13促血管平滑肌细胞增殖作用研究.中国药理学通报.2007;23:949~953.
    55丁振强,何守志,赵娜Ran ibizumab抑制huvec细胞增殖和迁移的实验研究.解放军药学学报.2008:24:4-7.
    56 Young SH, Ji EL, Ji WJ, et al. Inhibitory effects of bevacizumab on angiogenesis and corneal neovascularization. Graefes Arch Clin Exp Ophthalmol.2009; 247:541-548.
    57 Xie H, Tang SY, Cui RR, et al. Apelin and its receptor are expressed in human osteoblasts.Regul Pept.2006; 134:118-125.
    58 Tang SY, Xie H, Yuan LQ, et al. Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides. 2007; 28:708-718.
    59 Gerhardt H, Golding M,.FruTTiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol.2003; 161:1163-1177.
    60 Kalin RE, Kretz MP, Meyer AM, et al. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol.2007; 305:599-614.
    61 Kwon YS, Hong HS, Kim JC, et al. Inhibitory effect of rapamycin on corneal neovascularization in vitro and in vivo. Invest Ophthalmol Vis Sci.2005; 46:454-460.
    1 Tamemoto K, Hosoya M, Habata Y, et al. Isolation and characterization of a noveendogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun.1998; 251: 471-476.
    2 O'Dowd BF, Heiber M, Chan A, et al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene.1993; 136:355-360.
    3 Devic E, Paquereau L, Vernier P, et al. Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech. Dev.1996; 59:129-140.
    4 Lee DK, Cheng R, Nguyen T, et al. Characterization of Apelin, the ligand for the APJ receptor.J Neurochem.2000; 74:34-41.
    5 Saint-Geniez M, Masri B, Malecaze F, et al. Expression of the murine msr/APJ receptor and its ligand Apelin is upregulated during formation of the retinal vessels. Mech Dev.2002; 110: 183-186.
    6 Foldes G, Horkay F, Szokodi I, et al. Circulating and cardiac levels of Apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure.Biochem Biophys Res Commun.2003; 308:480-485.
    7 Puffer BA, Sharron M, Coμghlan CM, et al. Expression and coreceptor function of APJ for primate immunodeficiency viruses. Virology.2000; 276:435-444.
    8 Hosoya M, Kawamata Y, Fukusumi S, et al. Molecular and functional characteristics of APJ: Tissue distribution of mRNA and interaction with the endogenous ligand Apelin. J Biol Chem. 2000; 275:21061-21067.
    9 Kawamata Y, Habata Y, Fukusumi S, et al. Molecular properties of Apelin:tissue distribution and receptor binding. Biochim Biophys Acta.2001; 1538:162-171.
    10 De Mota N, Lenkei Z, Llorens-Cortes C. Cloning, pharmacological characterization and brain distribution of the rat Apelin receptor. Neuroendocrinology.2000; 72:400-407.
    11 O'Carroll AM, Selby TL, Palkovits M, et al. Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand Apelin in brain and peripheral tissues. Biochim. Biophys. Acta.2000; 1492:72-80.
    12 Habata Y, Fujii R, Hosoya M, et al. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta.1999; 1452:25-35.
    13 Masri B, Knibiehler B, Audigier Y, et al. Apelin signalling:a promising pathway from cloning to pharmacology. Cell Signal.2005; 17:415-426.
    14 Medhurst AD, Jennings CA, Robbins MJ, et al. Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand Apelin. J. Neurochem.2003; 84: 1162-1172.
    15 Reaux A, Gallatz K, Palkovits M, et al. Distribution of Apelin-synthesizing neurons in the adult rat brain. Neuroscience.2002; 113:653-662.
    16 Falco M, Luca L, Onori N, et al. Apelin expression in normal human tissues. In Vivo.2002; 16: 333-336.
    17 Brailoiu GC, Dun SL, Yang J, et al. Apelin-immunoreactivity in the rat hypothalamus and pituitary. Neurosci. Lett.2002; 327:193-197.
    18 Chen MM, Ashley EA, Deng DX, et al. Novel rote for the potent endogenous inotrope Apelin in human cardiac dysfunction. Circulation.2003; 108:1432-1439.
    19 Kleinz MJ, Davenport AP. Immunocytochemical localization of the endogenous vasoactive peptide Apelin to human vascular and endocardial endothelial cells. Regul. Pept.2004; 118: 119-125.
    20 Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem.2002; 277: 14838-14843.
    21 Masri B, Lahlou H, Mazarguil H, et al. Apelin (65-77) activates extracellular signal-regulated kinases via a PTX-sensitive G protein. Biochem. Biophys. Res. Commun.2002; 290:539-545.
    22 Masri B, Morin N, Cornu M, et al. Apelin (65-77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J.2004; 18:1909-1911.
    23 Szokodi I, Tavi P, Foldes G, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ. Res.2002; 91:434-440.
    24 Lee DK, Saldivia VR, Nquven T, et al. Modification of the terminal residue of Apelin-13 antagonizes its hypotensive action. Endocrinology.2005; 146:231-236.
    25 Lee DK, Lanqua AJ, Cheng R, et al. Agonist-Independent nuclear localization of the Apelin, angiotensin ATI and bradykinin B2 receptors. J. Biol. Chem.2004;279:7901-7908.
    26 Lu D, Yang H, Shaw G, et al Angiotensin Ⅱ-induced nuclear targeting of the angiotensin type 1 (ATl) receptor in brain neurons. Endocrinology.1998; 139:365-375.
    27 Eggena P, Zhu JH, Cleqq K, et al. Nuclear angiotensin receptors induce transcription of renin and angiotensinogen mRNA. Hypertension,1993; 22:496-501.
    28 Evans NA, Groarke DA, Warrack J, et al. Visualizing differences in ligand-induced beta-arrestin-GFP interactions and trafficking between three recently characterized G protein-coupled receptors. J Neurochem.2001; 77:476-485.
    29 Zhou N, Fan X, Mukhtar M, et al. Cell-cell fusion and internalization of the CNS-based, HIV-1 co-receptor, APJ. Virology.2003; 307:22-36.
    30 Zou MX, Liu HY, Haraguchi Y, et al. Apelin peptides block the entry of human immunodeficiency virus (HIV). FEBS Lett.2000; 473:15-18.
    31 Cayabyab M, Hinuma S, Farzan M, et al. Apelin, the natural ligand of the orphan seven-transmembrane receptor APJ, inhibits human immunodeficiency virus type 1 entry. J Virol.2000; 74:11972-11976.
    32 Wang G, Anini Y, Wei W, et al. Apelin, a new enteric peptide:localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology.2004; 145:1342-1348.
    33 Choe W, Albright A, Sulcove J, et al. Functional expression of the seven-transmembrane HIV-1 co-receptor APJ in neural cells. J Neurovirol.2000; Suppl:S61-S69.
    34 Lee DK, Lanca AJ, Cheng R, et al. Agonist-independent nuclear localization of the Apelin, angiotensin ATI, and bradykinin B2 receptors. J Biol Chem.2004; 279:7901-7908.
    35 Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature.2005; 438:967-974.
    36 Campochiaro PA. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther.2006; 13:559-562.
    37 Ng EW, Shima DT, Calias P, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drμg Discov.2006; 5:123-132.
    38 Gerhardt H, Golding M, FruTTiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol.2003; 161:1163-1177.
    39 Tatemoto K, Takayama K, Zou MX, et al. The novel peptide Apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept.2001; 99:87-92.
    40 Szokodi I, Tavi P, Foldes G, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res.2002; 91:434-440.
    41 Cheng X, Cheng XS, Pang CC. Venous dilator effect of Apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol.2003; 470:171-175.
    42 Horiuchi Y, Fujii T, Kamimura Y, et al. The endogenous, immunologically active peptide Apelin inhibits lymphocytic cholinergic activity during immunological responses. J Neuroimmunol.2003; 144:46-52.
    43 Fan X, Zhou N, Zhang X, et al. Structural and functional study of the Apelin-13 peptide, an endogenous ligand of the HIV-1 coreceptor, APJ. Biochemistry.2003; 42:10163-10168.
    44 Cheng X, Cheng XS, Pang CC. Venous dilator effect of Apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol.2003; 470:171-175.
    45 Szokodi I, Tavi P, Foldes G, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res.2002; 91:434-440.
    46 De Mota N, Reaux-Le Goazigo A, El Messari S, et al. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions throμgh inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci U S A.2004; 101:10464-10469.
    47 Ishida J, Hashimoto T, Hashimoto Y, et al. Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem.2004; 279:26274-26279.
    48 Berry MF, Pirolli TJ, Jayasankar V, et al. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation.2004; 110:Ⅱ187-Ⅱ193.
    49 Ashley EA, Powers J, Chen M, et al. The endogenous peptide Apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res.2005; 65:73-82.
    50 Smith CC, Mocanu MM, Bowen J, et al. Temporal changes in myocardiao salvage cardioprotective adipocytokine Apelin. Cardiovasc Drμgs Ther.2007; 21:409-414.
    51 Fakasfalvi K, Szokodi I, Yacoub MH, et al. Direct effects of Apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun.2007; 357:889-895.
    52 Sheikh AY, Chun HJ, Glassford F, et al. In vivo genetic profiling and cellular localization of Apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. AM J Physiol Heaart Circ Physiol.2008; 294:H88-H98.
    53 Devic E, Rizzoti K, Bodin S, et al. Amino acid sequence and embryonic expression of msr/APJ, the mouse homolog of Xenopus X-msr and human APJ. Mech Dev.1999; 84:199-203.
    54 Cox CM, D'Agostino SL, Miller MK, et al. Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev. Biol.2006; 296:177-189.
    55 Inui M, Fukui A, Ito Y, et al. XApelin and Xmsr are required for cardiovascular development in Xenopus laevis. Dev. Biol.2006; 298:188-200.
    56 Kalin RE, Kretz Mp, Meyer AM, et al. Paracrine and autocreine mechanisms of Apelin signaling govern embryonic and tumor angiogenesis. Dev Biol.2007; 305:599-614.
    57 Wilm TP, Sepich DS. Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev Cell.2007; 12:391-402.
    58 Kidoya H, Ueno M, Yamada Y, et al. Spatial and temporal role of the Apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J.2008; 27:522-534.
    59 Springer ML. A balancing act:therapeutic approaches for the modulation of angiogenesis. Curr. Opin. Investig. Drμgs.2006; 7:243-250.
    60 Verheul HM, Voest EE, Schlingemann RO. Are tumours angiogenesis-dependent? J Patho, 2004; 202:5-13.
    61 Sorli SC, Le Gonidec S, Knibiehler B, et al. Apelin is a potent activator of tumour neoangiogenesis. Oncogene.2007; 26:7692-7699.
    62 Boucher J, Masri B, Daviaud D, et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology.2005; 146:1764-1771.
    63 Sunter D, Hewson AK, Dickson SL. Intracerebroventricular injection of Apelin-13 reduces food intake in the rat. Neurosci Lett.2003; 353:1-4.
    64 Trayhurn P. Endocrine and signalling role of adipose tissue:new perspectives on fat. Acta Physiol Scand.2005; 184:285-293.
    65 Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest.2003; 112:1796-1808.
    66 Messari SE, Ituriozz X, Fassot C, et al. Functional dissociation of Apelin receptor signaling and endocytosis:implications for the effects of Apelin on arterial blood pressure. J Neurochem. 2004; 90:1290-1301.
    67 K Tatemoto, K Takayama, MX Zou, et al. The novel peptide Apelin lowers blood pressure via a nitric oxide-dependent mechanism.Regul Pept.2001; 99:87-92.
    68 Kasai A, Shintani N, Oda M, et al. Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem. Biophys Res Commun.2004; 325:395-400.
    69 Kleinz MJ, Skepper JN, Davenport AP, et al. Immunocytochemical localisation of the Apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul. Pept.2005; 126:233-240.
    70 Berry MF, Pirolli TJ, Jayasankar V, et al. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation.2004; 110:Ⅱ187-Ⅱ193.
    71 Lee DK, Gorge SR, O'Dowd BF. Unravelling the roles of the Apelin system:prospective therapeutic applications in heart failure and obesity. Trends Pharmacol Sci.2006; 27:190-194.
    72 Wang G, Anini Y, Wei W, et al. Apelin, a new enteric peptide, localization in the gtogastrointestinal tract, ontogeny, stimulation of gcgastric cell proliferation and of cholecystokinin secretion. Endocrinology.2004; 145:1342-1348.
    73 Susaki E, Wang G, Cao G, et al. Apelin cells in the rat stomach. Regul Pept.2005; 129:37-41.
    74 Lambrecht NW, Yakubov I, Zer C, et al. Transcriptomes of purified gastric ECL and parietal cells:identification of a novel pathway regulating acid secretion. Physiol. Genomics.2006; 25: 153-165.
    75 Sorhede Winzell M, Magnusson C, Ahren B. The APJ receptor is expressed in pancreatic islets and its ligand, Apelin, inhibits insulin secretion in mice. Regul. Pept.2005; 131:12-17.
    76 Daviaud D, Boucher J, Gesta S, et al. TNFalpha up-regulates Apelin expiession in human and mouse adipose tissue. FASEB J.2006; 20:1528-1530.
    77 Zhong JC, Huang Y, Yung LM, et al. The novel peptide Apelin regulates intrarenal artery tone in diabetic mice. Regul Pept.2007; 144:109-114.
    78 Xie H, Tang SY,Cui RR, et al. Apelin and its receptor are expressed in human osteoblasts. Regul Pept.2006; 134:118-125.
    79 Edinger AL, Hoffman TL, Sharron M, et al. An orphan seven-transmembrane domain receptor expressed widely in the brain functions as a coreceptor for human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol.1998; 72:7934-7940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700