肺动脉高压的实验与临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景肺动脉高压是一处理极为棘手,高致死率和致残率的病理生理综合征,被认为是“假恶性”肿瘤。肺动脉高压与细胞内膜运输障碍有关。本研究旨在探讨膜运输相关蛋白在肺动脉高压发病过程中的作用。
     方法选用Sprague-Dawley大鼠经腹腔注射野百合碱建立肺动脉高压动物模型;用吡咯野百合碱处理人肺动脉内皮细胞建立肺动脉高压细胞模型;并在人肺动脉内皮细胞中采用Nem干预Nsf蛋白的活性。采用反转录——实时定量PCR和Western杂交技术检测了膜运输相关蛋白Nsf,α-Snap、Snap23和Syntaxin4以及内皮型一氧化氮合酶、小凹蛋白1和骨形成蛋白受体2在动物模型和细胞模型中的mRNA和蛋白表达变化。Western杂交检测凋亡相关蛋白在肺动脉高压动物模型、细胞模型和NEM干预后细胞内的表达变化,从而检测细胞凋亡的情况。
     结果在体内实验水平,与同步对照相比,实验组大鼠腹腔注射野百合碱后,Nsf,α-Snap、Snap23和Syntaxin4的mRNA表达呈先增高后降低的趋势。Nsf、α-Snap和Snap23在刺激1天后显著增高,α-Snap从刺激后7天开始下降,Nsf和Snap23于14天开始下降,表达量极少。Syntaxin4的mRNA表达在刺激2天后显著增高,14天和21天后基本检测不到。Western杂交显示随着实验动物肺动脉高压的形成,Nsf、α-Snap、SNAP23和Syntaxin4的蛋白表达亦出现先显著增高,后明显降低,甚至检测不到表达的变化趋势,与mRNA的表达变化趋势基本一致。内皮型一氧化氮合酶于大鼠腹腔注射野百合碱7天后mRNA表达显著增高,14天后下降,21天时基本检测不到。小凹蛋白1和骨形成蛋白受体2的表达从14天开始显著减少,21天时检测到极少量表达;Western杂交显示内皮型一氧化氮合酶、小凹蛋白1和骨形成蛋白受体2在野百合碱刺激14天后显著减少。
     在体外实验水平,α-Snap和Snap23的mRNA表达在吡咯野百合碱刺激4-8h内无明显变化,12-72h之间增加;Nsf、Syntaxin4和小凹蛋白1的mRNA表达与对照相比无显著变化;而内皮型一氧化氮合酶的mRNA表达在吡咯野百合碱刺激24-72h内显著增加;骨形成蛋白受体2的mRNA表达早期无显著变化,12-24h后显著增加,48h后降至正常水平。Western杂交检测结果显示Nsf、内皮型一氧化氮合酶和小凹蛋白1在吡咯野百合碱刺激后期减少;α-Snap从12h开始轻度增加。骨形成蛋白受体2先增加,后降低,甚至检测不到表达。
     用NEM处理人肺动脉内皮细胞后,Nsf的mRNA表达随刺激时间延长显著增高达40倍以上;α-Snap、Snap23和Syntaxin4的mRNA表达亦显著增高2-16倍。内皮型一氧化氮合酶和小凹蛋白1的mRNA表达呈先增高后降低的趋势。骨形成蛋白受体2的表达显著增高。Western杂交检测结果显示,与对照相比,Nsf、α-Snap、Syntaxin4和内皮型一氧化氮合酶的蛋白表达呈逐渐降低的趋势;Snap23的蛋白表达随Nem处理时间的延长先增高,后降低;小凹蛋白1的表达无明显变化;骨形成蛋白受体2蛋白表达在NEM处理48h后增加。
     在肺动脉高压的动物模型、细胞模型和用NEM处理后的人肺动脉内皮细胞中,Western杂交检测显示,procaspase-3表达下降,Fas或Bax表达增加,提示细胞凋亡增加。
     结论膜运输相关蛋白和内皮型一氧化氮合酶、小凹蛋白1以及骨形成蛋白受体2参与了肺动脉高压的病理生理过程。膜运输相关蛋白的表达水平在肺动脉高压形成过程中最先发生变化,膜运输障碍机制在肺动脉高压的发生和发展过程中发挥了重要作用。
Background Pulmonary hypertension is a pathophysiologic syndrome, which is difficult to handle and with high mortality and disability. It is considered a pseudo-malignant tumor. Pulmonary hypertension is associated with intracellular membrane trafficking. The aim of this study is to investigate the role of membrane trafficing associated proteins in the pathogenesis of pulmonary hypertension.
     Methods Sprague-Dawley rats were used to make the animal model of pulmonary hypertension by intraperitoneal injection of monocrotaline. The cellular model of pulmonary hypertension was made with human pulmonary arterial endothelial cells pretreated with monocrotaline pyrrole. And Nem was used to inhibit Nsf in human pulmonary arterial endothelial cells. The mRNA and protein level of membrane trafficking associated proteins (Nsf, a-Snap, Snap23 and Syntaxin4) and endothelial nitric oxide synthase, caveolin-1 and bone morphogenic protein receptorⅡin animal model and cellular model were tested by reverse transcription-real time PCR and Western Blot. Also the apoptotic proteins were tested by Western Blot.
     Results In rat, the mRNA levels of Nsf, a-Snap, Snap23 and Syntaxin4 in monocrotaline group were first increased, then decreased. The mRNA expression of Nsf, a-Snap and Snap23 were enhanced in 1 day after injection of monocrotaline. Then a-Snap started to decrease in the 7th day, and Nsf and Snap23 in the 14th day, to a very low level. The mRNA expression of syntaxin4 was elevated in 2 days after injection of monocrotaline, and down-regulated from 14 days to a level hardly tested. The changes of protein levels of Nsf, a-Snap, Snap23 and Syntaxin4 were similar to changes of mRNA level. The mRNA level of endothelial nitric oxide synthase was increased in the 7th day, decreased from the 14th day, and can not be detected in the 21th day. While caveolin-1 and bone morphogenic protein receptor II also decreased from the 14th day to a very low level in the 21th day. Western blot showed that endothelial nitric oxide synthase, caveolin-1 and bone morphogenic protein receptor II decreased from the 14th day.
     In monocrotaline pyrrole treated cells, the mRNA of a-Snap and Snap23 started to increase from 12 hours after treatment with monocrotaline pyrrole, and endothelial nitric oxide synthase from the 24th hour. The mRNA level of bone morphogenic protein receptor II strated to elevate from the 12th hour, then decreased to normal level from the 48th hour. And there was no change in the mRNA of Nsf, Syntaxin4 and caveolin-1. Western blot showed that Nsf, endothelial nitric oxide synthase and caveolin-1 decreased the the late phase. The protein changes of a-Snap and bone morphogenic protein receptor II were similar to the corresponding mRNA.
     After pretreatment of human pulmonary arterial endothelial cells with NEM, the mRNA levels of Nsf, a-Snap, Snap23, Syntaxin4 and bone morphogenic protein receptor II were increased greatly. The mRNA levels of endothelial nitric oxide synthase and caveolin-1 were first increased, then decreased. Western blot showed that Nsf, a-Snap, Syntaxin4 and endothelial nitric oxide synthase gradually decreased; Snap23 was first increased, then decreased; bone morphogenic protein receptor II increased from the 48th hour; no change in caveolin-1.
     In animal and cellular models and NEM treated cells, western blot showed the level of procaspase-3 was decreased and the level of Fas or Bax was elevated, which meant cellular apoptosis was enhanced.
     Conclusions Membrane trafficking associated proteins and endothelial nitric oxide synthase, caveolin-1 and bone morphogenic protein receptor II were involved in pathogenesis of pulmonary hypertension. The expression of membrane trafficking associated proteins was firstly changed in pummonary hypertension. Membrane trafficking dysfunction plays an important role in the pathogesis and progression of pulmonary hypertension.
引文
1. Cool CD, Groshong SD, Oakey J, et al. Pulmonary hypertension cellular and molecular mechanisms. Chest 2005;128:565S-571S.
    2. Benedict N, Seybert A, Mathier MA. Evidence-based pharmacologic managenment of pulmonary arterial hypertension. Clin Ther 2007;29:2134-2153.
    3. Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. JACC 2004;43:13S-24S.
    4. Merkow L, Kleinerman J. An electron microscopic study of pulmonary vasculitis induced by monocrotaline. Lab Invest 1966; 15:547-564.
    5. Meyrick B, Reid L. Hypoxia-induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression. Am J Pathol 1980; 100:151-178.
    6. King AP, Smith P, Heath D. Ultrastructure of rat pulmonary arterioles after neonatal exposure to hypoxia and subsequent relief and treatment with monocrotaline. J Pathol 1995;177:71-81.
    7. Wilson DW, Segall HJ. Changes in type II cell populations in monocrotaline pneumotoxicity. Am J Pathol 1990; 136:1293-1299.
    8. Reindel JF, Roth RA. The effects of monocrotaline pyrrole on cultured bovine pulmonary artery endothelial and smooth muscle cells. Am J Pathol 1991;138:707-719.
    9. Jaenke RS, Alexander AF. Fine structural alterations of bovine peripheral pulmonary arteries in hypoxia-induced hypertension. Am J Pathol 1973;73:377-398.
    10. Heath D, Smith P, Gosney J, et al. The pathology of early and late stages of primary pulmonary hypertension. Br Heart J 1987;58:204-213.
    11. Smith P, Heath D. Electron microscopy of the plexiform lesion. Thorax 1979;34:177-186.
    12. Smith P, Heath D, Yacoub M, et al. The ultrastructure of plexogenic pulmonary arteriopathy. J Pathol 1990;160:111-121.
    13. Mette SA, Palevsky HI, Pietra GG, et al. Primary pulmonary hypertension in
    association with human immunodeficiency virus infection. A possible viral etiology
    for some forms of hypertensive pulmonary arteriopathy. Am Rev Respir Dis 992; 145: 1196-1200.
    14. Marecki JC, Cool CD, Parr JE, et al. HIV Nef is associated with complex pulmonary vascular lesions in SHIV-nefinfected macaques. Am J Respir Crit Care Med 2006; 174:
    437-445.
    15. Murata T, Sato K, Hori M, et al. Decreased endothelial nitric-oxide synthase (eNOS) activity resulting from abnormal interaction between eNOS and its regulatory proteins in hypoxia-induced pulmonary hypertension. J Biol Chem 2002;227:44085-44092.
    16.Mukhopadyay S, Xu F, Sehagal PB. Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia, and senescence:live-cell caveolar and cytoplasmic NO imaging. Am J Physiol Heart Circ Physiol 2007;292:H1373-1389.
    17. Sztul E, Lupashin V. Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 2006;290:C11-C26.
    18. Stow JL, Manderson AP, Murray RZ. SNAREing immunity:the role of SNAREs in the immune system. Nat Rev Immunol 2006;6:919-929.
    19. Jahn R, Scheller RH. SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 2006;7:631-643.
    20. Bonifacino JS, Glick BS. The mechanism of vesicle budding and fusion. Cell 2004; 116:153-166.
    21. Predescu SA, Predescu DN, Shimizu K, et al. Cholesterol-dependent syntaxin-4 and SNAP-23 clustering regulates caveolar fusion with the endothelial plasma membrane. J Biol Chem 2005; 280:37130-37138.
    22. Fu J, Naren AP, Gao X, et al. Protease-activated receptor-1 activation of endothelial cells induces protein kinase Calpha-dependent phosphorylation of syntaxin 4 and Munc18c:role in signaling p-selectin expression. J Biol Chem 2005;280:3178-3184.
    23. Hong W. SNAREs and traffic. Biochim Biophys Acta 2005; 1744 (3):493-517.
    24. Tani K, Shibata M, Kawase K, et al. Mapping the functional domains of y-SNAP. J Biol Chem 2003;278:13531-13538.
    25. Matsushita K, Morrell CN, Cambein B, et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethlymaleimide Sensitive Factor. Cell 2003;115:139-150.
    26. Cooper AA, Gitler AD, Cashika A, et al. Alpha-synuclein blocks ER-Golgi traffic and Rabl rescues neuron loss in Parkinson's models. Science 2006;313:324-328.
    27. Gissen P, Johnson CA, Morgan NV, et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat Genet 2004;36:400-404.
    28. Mizumoto H, Hata D, Yamamoto K, et al. Familial hemophagocytic lymphohistiocytosis with the MUNC13-4 mutation:a case report. Eur J Pediatr 2006;165:384-388.
    29. Nozawa K, Fritzler MJ, von Muhlen CA, et al. Giantin is the major Golgi autoantigen in human anti-Golgi complex sera. Arthritis Res Ther 2003;6:R95-R102.
    30. Sahashi K, Ibi T, Ohno K, et al. Progressive myopathy with circulating autoantibody against giantin in the Golgi apparatus. Neurology 2004;62:1891-1893.
    31. Toki C, Fujiwara T, Sohda M, et al. Identification and characterization of rat 364-kDa Golgi-associated protein recognized by autoantibodies from a patient with rheumatoid arthritis. Cell Struct Funct 1997;22:565-577.
    32. Donati RJ, Thukral C, Rasenick MM. Chronic treatment of C6 glioma cells with antidepressant drugs results in a redistribution of Gsa. Mol Pharmaco 2001; 159:1426-1432.
    33. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in lungs of patients with pulmonary hypertension. N Engl J Med 1995;333:214-221.
    34. Tyler RC, Muramatsu M, Abman SH, et al. Variable expression of endothelial NO synthase in three forms of rat pulmonary hypertension. Am J Physiol 1999;276: L297-L303.
    35. Quest AF, Leyton L, Parraga M. Caveolins, caveolae, and lipid rafes in cellular transport, signaling and disease. Biochem Cell Biol.2004,82:129-144.
    36. Jasmin JF, Mercier I, Dupuis J, et al. Short-term administration of a cell permeable caveolin-1 peptide prevents the development of monocrotaline induced pulmonary hypertension and right ventricular hypertrophy Circulation.2006;114:912-920.
    37. Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through JAK/STAT pathway, recent advances and future challenges. Gene.2002;285:1-24.
    38. Mathew R, Huang J, Shah M, et al. Disruption of endothelial-cell caveolin-1 alpha/raft scaffolding during development of monocrotaline-induced pulmonary hypertension. Ciuculation.2004;110(11):1499-1506.
    39. McCaffrey TA. TGFβs and TGFβ receptors in atherosclerosis. Cytokine Growth Factor Rev.2000; 11:103-114.
    40. Di Guglielmo GM, Le Roy C, Goodfellow AF, et al. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol.2003;5(5):410-421.
    41. Hartung A, Bitton-Worms K, Techtman MM, et al. Different routes of bone morphogenetic protein receptor endocytosis influence BMP signaling. Mol Cell Biol. 2006;26:7791-7805.
    42. Nishihara A, Watabe T, Imamura T, et al. Functional heterogeneity of bone morphogenetic protein receptor-II mutants found in patients with primary pulmonary hypertension. Mol Biol Cell.2002;13:3055-3063.
    1. McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 2009;53:1573-1619.
    2. Badesch DB, Abman SH, Ahearn GS, et al. American College of Chest Physicians. Medical therapy for pulmonary arterial hypertension:ACCP evidencebased clinical practice guidelines. Chest 2004;126:35S-62S.
    3. Galie N, Torbicki A, Barst R, et al. Task Force. Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Eur Heart J 2004;25:2243-2278.
    4. Schrader BJ, Inbar S, Kaufmann L, et al. Comparison of the effects of adenosine and nifedipine in pulmonary hypertension. J Am Coll Cardiol 1992;19:1060-1064.
    5. Jing ZC, Jiang X, Han ZY, et al. Iloprost for pulmonary vasodilator testing in idiopathic pulmonary arterial hypertension. Eur Respir J 2009;33:1354-1360.
    6. Tuder RM, Cool CD, Geraci MW, et al. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med 1999; 159:1925-1932.
    7. Hoeper MM, Olschewski H, Ghofrani HA, et al. A comparison of the acute hemodynamic effects of inhaled nitric oxide and aerosolized iloprost in primary pulmonary hypertension. German PPH study group. J Am Coll Cardiol 2000;35:176-182.
    8. Hoeper MM, Lee SH, Voswinckel R, et al. Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol 2006;48:2546-2552.
    9. Weir EK, Rubin LJ, Ayres SM, et al. The acute administration of vasodilators in primary pulmonary hypertension. Experience from the National Institutes of Health Registry on Primary Pulmonary Hypertension. Am Rev Respir Dis 1989;140: 1623-1630.
    10. Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension:N Engl J Med 1992;327:76-81.
    11. Sitbon 0, Humbert M,Jais X, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 2005; 111:3105-3111.
    12. Barst RJ, Galie N, Naeije R, et al. Long-term outcome in pulmonary arterial hypertension patients treated with subcutaneous treprostinil. Eur Respir J 2006;28:1195-1203.
    13. Petkov V, Ziesche R, Mosgoeller W, et al. Aerosolised iloprost improves pulmonary haemodynamics in patients with primary pulmonary hypertension receiving continuous epoprostenol treatment. Thorax 2001;56:734-736.
    14. Yurtseven N, Karaca P, Uysal G, et al. A comparison of the acute hemodynamic effects of inhaled nitroglycerin and iloprost in patients with pulmonary hypertension undergoing mitral valve surgery. Ann Thorac Cardiovasc Surg 2006;12:319-323.
    15. Olschewski H, Rohde B, Behr J, et al. Pharmacodynamics and pharmacokinetics of inhaled iloprost, aerosolized by three different devices, in severe pulmonary hypertension. Chest 2003; 124:1294-1304.
    16. Schermuly RT, Schulz A, Ghofrani HA, et al. Comparison of pharmacokinetics and vasodilatory effect of nebulized and infused iloprost in experimental pulmonary hypertension:rapid tolerance development. J Aerosol Med 2006;19:353-363.
    17. Mohan P, Brutsaert DL, Sys SU. Myocardial performance is modulated by interaction of cardiac endothelium derived nitric oxide and prostaglandins. Cardiovasc Res 1995;29:637-40.
    18. Rebsamen MC, Church DJ, Morabito D, et al. Role of cAMP and calcium influx in endothelin-1-induced ANP release in rat cardiomyocytes. Am J Physiol 1997;273:E922-E931.
    19. Rex S, Missant C, Claus P, et al. Effects of inhaled iloprost on right ventricular contractility, right ventriculo-vascular coupling and ventricular interdependence:a randomized placebo-controlled trial in an experimental model of acute pulmonary hypertension. Crit Care 2008;12:R113.
    20. Kerbaul F, Brimioulle S, Rondelet B, et al. How prostacyclin improves cardiac output in right heart failure in conjunction with pulmonary hypertension. Am J Respir Crit Care Med 2007; 175:846-850.
    21.Rimoldi O, Pierini S, Pagani MR, et al. Reduced cardiovascular sympathetic excitatory responses during iloprost infusion in conscious dogs. Cardiovasc Res 1991;25:793-801.
    22. Lanier SM, Malik KU. Inhibition by prostaglandins of adrenergic transmission in the left ventricular myocardium of anesthetized dogs. J Cardiovasc Pharmacol 1985;7:653-659.
    23. Fontana M, Olschewski H, Olschewski A, et al. Treprostinil potentiates the positive inotropic effect of catecholamines in adult rat ventricular cardiomyocytes. Br J Pharmacol 2007; 151:779-786.
    24. Rimeika D, Sanchez-Crespo A, Nyren S, et al. Iloprost inhalation redistributes pulmonary perfusion and decreases arterial oxygenation in healthy volunteers. Acta Anaesthesiol Scand 2009;53:1158-1166.
    25. Krug S, Hammerschmidt S, Pankau H, et al. Acute Improved Hemodynamics following Inhaled Iloprost in Chronic Thromboembolic Pulmonary Hypertension. Respiration 2008;76:154-159.
    26. Olschewski H, Walmrath D, Schermuly R, et al. Aerosolized prostacyclin and iloprost in severe pulmonary hypertension. Ann Intern Med 1996;124:820-824.
    27. Sitbon O, Humbert M,Jais X, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 2005; 111:3105-3111.
    28. Galie N, Ussia G, Passarelli P, et al. Role of pharmacologic tests in the treatment of primary pulmonary hypertension. Am J Cardiol 1995;75:55A-62A.
    29. Elliott CG, Glissmeyer EW, Havlena GT, et al. Relationship of BMPR2 mutations to vasoreactivity in pulmonary arterial hypertension. Circulation 2006;113:2509-2515.
    30. Simonneau G, Fartoukh M, Sitbon O, et al. Primary pulmonary hypertension associated with the use of fenfluramine derivatives. Chest 1998;114:195S-199S.
    31. Klings ES, Hill NS, Ieong MH, et al. Systemic sclerosis-associated pulmonary hypertension:short-and long-term effects of epoprostenol (prostacyclin). Arthritis Rheum 1999;42:2638-2645.
    1. McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 2009;53:1573-1619.
    2. Humbert M, Sitbon O, Chaouat A, et al. Pulmonary arterial hypertension in France: results from a national registry. Am JRespir Crit Care Med 2006; 173:1023-1030.
    3. Thenappan T, Shah SJ, Rich S, et al. A USA-based registry for pulmonary arterial hypertension:1982-2006. Eur Respir J 2007;30:1103-1110.
    4. Sehgal PB, Mukhopadhyay S. Pulmonary arterial hypertension:a disease of tethers, SNAREs and SNAPs? Am JPhysiol Heart Circ Physiol 2007;293:H77-85.
    5. Hong-liang Z, Qin L, Zhi-hong L, et al. Heart rate-corrected QT interval and QT dispersion in patients with pulmonary hypertension. Wien Klin Wochenschr 2009;121:330-333.
    6. D'Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Ann Intern Med 1991; 115:343-349.
    7. Kawut SM, Taichman DB, Archer-Chicko CL, et al. Hemodynamics and survival in patients with pulmonary arterial hypertension related to systemic sclerosis. Chest 2003;123:344-350.
    8. Hopkins WE, Ochoa LL, Richardson GW, et al. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J Heart Lung Transplant 1996;15:100-105.
    9. Kunieda T, Nakanishi N, Satoh T, et al. Prognoses of primary pulmonary hypertension and chronic major vessel thromboembolic pulmonary hypertension determined from cumulative survival curves. Intern Med 1999;38:543-546.
    10. Moser KM, Auger WR, Fedullo PF. Chronic major vessel thromboembolic pulmonary hypertension. Circulation 1990;81:1735-1743.
    11. Pitton MB, Kemmerich G, Herber S, et al. Hemodynamic effects of monomeric nonionic contrast media in pulmonary angiography in chronic thromboembolic pulmonary hypertension. Am J Roentgenol 2006; 187:128-134.
    12. Leung MP, Cheung DL, Lo RN, et al. The management of symptomatic neonates with suspected congenital heart disease using combined cross-sectional
    echocardiography and pulsed Doppler flow study as the definitive investigations. Int J Cardiol 1989;24:41-46.
    13. Hofmann LV, Lee DS, Gupta A, et al. Safety and hemodynamic effects of pulmonary angiography in patients with pulmonary hypertension:10-year single-center experience. Am J Roentgenol 2004; 183:779-786.
    14. Saeed M, Braun SD, Cohan RH, et al. Pulmonary angiography with iopamidol: patient comfort, image quality, and hemodynamics. Radiology 1987; 165:345-349.
    15. Snider GL. Primary pulmonary hypertension:a fatality during pulmonary angiography:Clinical conference from Boston University School of Medicine. Chest 1973;64:628-635.
    16. Higgins CB, Gerber KH, Mattrey RF, et al. Evaluation of the hemodynamic effects of intravenous administration of ionic and non-ionic contrast materials. Radiology 1982;142:681-686.
    17. Mancini GB, Ostrander DR, Slutsky RA, et al. Intravenous vs left ventricular injection of ionic contrast material:hemodynamic implications for digital subtraction angiography. Am J Roentgenol 1983; 140:425-430.
    18. Nicod P, Peterson K, Levine M, et al. Pulmonary angiography in severe chronic pulmonary hypertension. Ann Intern Med 1987; 107:565-568.
    19. Pitton MB, Duber C, Mayer E, et al. Hemodynamic effects of nonionic contrast bolus injection and oxygen inhalation during pulmonary angiography in patients with chronic major-vessel thromboembolic pulmonary hypertension. Circulation 1996;94:2485-2491.
    20. Barton R LP, Rosch J. Pulmonary arteriography:indications, technique, normal findings, and complications. In:Abrams HL, Baum S, Pentecost JM, eds. Abrams' angiography:vascular and interventional radiology,4th ed. Boston, MA:Little, Brown, and Co.,1997:768-785.
    21. Hudson ER, Smith TP, McDermott VG, et al. Pulmonary angiography performed with iopamidol:complications in 1,434 patients. Radiology 1996; 198:61-65.
    22. Sun XG, Hansen JE, Oudiz RJ, et al. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation 2001; 104:429-435.
    1. Galie N, Torbicki A, Barst R, et al. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Guidelines on diagnosis and treatment of pulmonary arterial hypertension. European Heart Journal 2004; 25:2243-2278.
    2. Rich S, Seidlitz M, Dodin E, et al. The short-term effects of digoxin in patients with right ventricular dysfunction from pulmonary hypertension. Chest 1998; 114:787-792.
    3. Fuster V, Steele PM, Edwards WD, et al. Primary pulmonary hypertension:natural history and the importance of thrombosis. Circulation 1984;70:580-587.
    4. Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 1992;327:76-81.
    5. Higenbottam T, Wheeldon D, Wells F, et al. Long-term treatment of primary pulmonary hypertension with continuous intravenous epoprostenol (prostacyclin). Lancet 1984;1:1046-1047.
    6. Rubin LJ, Mendoza J, Hood M, et al. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol). Results of a randomized trial. Ann Intern Med 1990;112:485-491.
    7. Barst RJ, Rubin LJ, McGoon MD, et al. Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann Intern Med 1994;121:409-415.
    8. Barst RJ, Rubin LJ, Long WA, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med 1996;334:296-302.
    9. McLaughlin VV, Genthner DE, Panella MM, et al.Reduction in pulmonary vascular resistance with long-term epoprostenol (prostacyclin) therapy in primary pulmonary hypertension. N Engl J Med 1998;338:273-277.
    10. McLaughlin VV, Shillington A, Rich S. Survival in primary pulmonary hypertension: the impact of epoprostenol therapy. Circulation 2002;106:1477-1482.
    11. Sitbon O, Humbert M, Nunes H, et al.Long-term intravenous epoprostenol infusion in primary pulmonary hypertension:prognostic factors and survival. J Am Coll Cardiol 2002;40:780-788.
    12. Wensel R, Opitz CF, Ewert R, et al.Effects of iloprost inhalation on exercise capacity and ventilatory efficiency in patients with primary pulmonary hypertension. Circulation 2000;101:2388-2392.
    13. Hoeper MM, Schwarze M, Ehlerding S, et al.Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med 2000;342:1866-1870.
    14. Olschewski H, Simonneau G, Galie N.Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 2002;347:322-329.
    15.熊长明,柳志红,何建国等.伊洛前列素治疗肺动脉高压的疗效.中国新药杂志,2007,12(16):973—976.
    16. Channick RN, Simonneau G, Sitbon O, et ac.Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension:a randomised placebo-controlled study.Lancet 2001;358:1119-1123.
    17. Rubin LJ, Badesch DB, Barst RJ, et al.Bosentan therapy for pulmonary arterial hypertension.N Engl J Med.2002 Mar 21;346(12):896-903. Erratum in:N Engl J Med 2002;346:1258.
    18. Mok MY, Tsang PL, Lam YM, et al.Bosentan use in systemic lupus erythematosus patients with pulmonary arterial hypertension. Lupus 2007;16:279-285.
    19. Apostolopoulou SC, Manginas A, Cokkinos DV, et al.Long-term oral bosentan treatment in patients with pulmonary arterial hypertension related to congenital heart disease:a 2-year study. Heart 2007;93:350-354.
    20. Ivy DD, Doran A, Claussen L, et al.Weaning and discontinuation of epoprostenol in children with idiopathic pulmonary arterial hypertension receiving concomitant bosentan. Am J Cardiol 2004;93:943-946.
    21. Barst RJ, Rich S, Widlitz A, et al.Clinical efficacy of sitaxsentan, an endothelin-A receptor antagonist, in patients with pulmonary arterial hypertension:open-label pilot study. Chest 2002; 121:1860-1868.
    22. Barst RJ, Langleben D, Frost A, et al.STRIDE-1 Study Group. Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med 2004; 169:441-447.
    23. Barst RJ, Langleben D, Badesch D, et al. STRIDE-2 Study Group. Treatment of pulmonary arterial hypertension with the selective endothelin-A receptor antagonist sitaxsentan. J Am Coll Cardiol 2006;47:2049-2056.
    24. Benza RL, Mehta S, Keogh A, et al. Sitaxsentan treatment for patients with pulmonary arterial hypertension discontinuing bosentan. J Heart Lung Transplant 2007; 26:63-69.
    25. Ghofrani HA, Voswinckel R, Reichenberger F, et al. Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension:a randomized prospective study. J Am Coll Cardiol 2004;44:1488-1496.
    26. Singh TP, Rohit M, Grover A, et al. A randomized, placebo-controlled, double-blind, crossover study to evaluate the efficacy of oral sildenafil therapy in severe pulmonary artery hypertension. Am Heart J 2006;151(4):851.e1-5.
    27. Jochmann N, Kiecker F, Borges AC, et al. Long-term therapy of interferon-alpha induced pulmonary arterial hypertension with different PDE-5 inhibitors:a case report. Cardiovasc Ultrasound 2005;3:26.
    28. Aizawa K, Hanaoka T, Kasai H, et al.Long-term vardenafil therapy improves hemodynamics in patients with pulmonary hypertension. Hypertens Res 2006;29:123-128.
    29. Giacomini M, Borotto E, Bosotti L, et al.Vardenafil and weaning from inhaled nitric oxide:effect on pulmonary hypertension in ARDS. Anaesth Intensive Care 2007;35:91-93.
    30. Palmieri EA, Affuso F, Fazio S, et al.Tadalafil in primary pulmonary arterial hypertension. Ann Intern Med 2004;141:743-744.
    31. Affuso F, Palmieri EA, Di Conza P, et al.Tadalafil improves quality of life and exercise tolerance in idiopathic pulmonary arterial hypertension. Int J Cardiol 2006; 108:429-431.
    32. de Carvalho AC, Hovnanian AL, Fernandes CJ, et al.Tadalafil as treatment for idiopathic pulmonary arterial hypertension. Arq Bras Cardiol 2006;87:e195-197.
    33.Kim HS, Park JH, Park SJ, et al. Use of tadalafil for treating pulmonary arterial hypertension secondary to chronic obstructive pulmonary disease.Korean J Intern Med 2007;22:37-39.
    34.McLaughlin VV, Oudiz RJ, Frost A, et al. Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. Am J Respir Crit Care Med 2006;174:1257-1263.
    35. Humbert M, Barst RJ, Robbins IM, Combination of bosentan with epoprostenol in pulmonary arterial hypertension:BREATHE-2. Eur Respir J 2004;24:353-359.
    36. Seyfarth HJ, Pankau H, Hammerschmidt S, et al. Bosentan improves exercise tolerance and Tei index in patients with pulmonary hypertension and prostanoid therapy. Chest 2005; 128:709-713.
    37. Hoeper MM, Taha N, Bekjarova A,Bosentan treatment in patients with primary pulmonary hypertension receiving nonparenteral prostanoids. Eur Respir J 2003;22: 330-334.
    38. Hoeper MM, Leuchte H, Halank M, et al. Combining inhaled iloprost with bosentan in patients with idiopathic pulmonary arterial hypertension. Eur Respir J 2006;28:691-694.
    39.Gomberg-Maitland M, McLaughlin V, Gulati M, et al. Efficacy and safety of sildenafil added to treprostinil in pulmonary hypertension. Am J Cardiol 2005;96:1334-1336.
    40. Ruiz MJ, Escribano P, Delgado JF, et al. Efficacy of sildenafil as a rescue therapy for patients with severe pulmonary arterial hypertension and given long-term treatment with prostanoids:2-year experience.J Heart Lung Transplant 2006;25:1353-1357.
    41. Hoeper MM, Markevych I, Spiekerkoetter E, et al. Goal-oriented treatment and combination therapy for pulmonary arterial hypertension. Eur Respir J 2005;26:858-863.
    42. Glanville AR, Burke CM, Theodore J, et al. Primary pulmonary hypertension. Length of survival in patients referred for heart-lung transplantation. Chest 1987;91:675-681.
    43.高莹,戴汝平,程显声等.房间隔球囊造口术治疗重症原发性肺动脉高压一例.中国循环杂志,2002,4(17):294.
    44. Law MA, Grifka RG, Mullins CE, et al. Atrial septostomy improves survival in select patients with pulmonary hypertension. Am Heart J 2007; 153:779-784.
    45. Champion HC, Bivalacqua TJ, D'Souza FM, et al. Gene transfer of endothelial nitric oxide synthase to the lung of the mouse in vivo:Effect on agonist-induced and flow-mediated vascular responses. Circ Res 1999;84:1422-1432.
    46.Nagaya N, Yokoyama C, Kyotani S, et al.Gene transfer of human prostacyclin synthase ameliorates monocrotaline-induced pulmonary hypertension in rats. Circulation 2000; 102:2005-2010.
    47. Nagaya N, Kangawa K, Kanda M, et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation 2003;108:889-895.
    48.马彩艳,陈君柱.内皮祖细胞移植治疗儿童原发性肺动脉高压的初步探讨.浙江医学,2006,28(7):526-531.
    49. Wang XX, Zhang FR, Shang YP, et al. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial
    hypertension:a pilot randomized controlled trial. J Am Coll Cardiol 2007;49:1566-1571.
    1. Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004;43:13S-24S.
    2. Voelkel NF, Cool C, Lee SD,et al. Primary pulmonary hypertension between inflammation and cancer. Chest 1988; 114:225-230.
    3. Cool CD, Groshong SD, Oakey J, et al. Pulmonary hypertension cellular and molecular mechanisms. Chest 2005;128:565S-571S.
    4. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in lungs of patients with pulmonary hypertension. N Eng J Med 1995;333:214-221.
    5. McLaughlin VV, McGoon MD. Pulmonary arterial hypertension. Circulation 2006; 114:1417-1431.
    6. Nakazawa H, Hori M, Ozaki H, et al. Mechanisms underlying the impairment of endothelium-dependent relaxation in the pulmonary artery of monocrotaline-induced pulmonary hypertensive rats. Br J Pharmacol 1999;128:1098-1104.
    7. Benedict N, Seybert A, Mathier MA. Evidence-based pharmacologic managenment of pulmonary arterial hypertension. Clin Ther 2007;29:2134-2153.
    8. Rabinovitch M. Cellular and molecular pathobiology of pulmonary hypertension conference summary. Chest 2005; 128:642-646.
    9. Tuder RM, Chacon M, Alger L, et al. Expression of angiogenesis-related molecules in plexiform lesions of severe pulmonary hypertension:evidence for a process of disordered angiogenesis. J Pathol 2001;195:367-394.
    10. Deng Z, Morse JH, Slager SL, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-Ⅱ gene. Am J Hum Genet 2000;67:737-744.
    11. Lane KB, Machado RD, Pauciulo MW, et al. Heterozygous germline mutations in BMPR2 encoding a TGF-β receptor, cause familial pulmonary hypertension. Nat Genet 2000;26:81-84.
    12. Machado RD, James V, Southwood M, et al. Investigation of second genetic hits at the BMPR2 locus as a modulator of disease progression in familial pulmonary arterial hypertension. Circulation 2005; 111:607-613.
    13. Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet 2003;361:1533-1544.
    14. Yuan X-J, Rubin LJ. Pathogenesis of pulmonary arterial hypertension:the need for multiple hits. Circulation 2005;111:534-538.
    15.Harrison RE, Flanagan JA, Sankelo M, et al. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary hemorrhagic telangiectasia. J Med Genet 2003;40:865-871.
    16.Rudrakanchana N, Flanagan JA, Chen H, et al. Functional analysis of bone morphogenetic protein type Ⅱ receptor mutations underlying primary pulmonary hypertension. Hum Mol Genet 2002; 11:1517-1525.
    17.Di Guglielmo GM, Le Roy C, Goodfellow AF, et al. Distinct endocytic pathways regulate TGF-β receptor signaling and turnover. Nat Cell Biol 2003;5:410-421.
    18. Panopoulou E, Gillooly DJ, Wrana JL, et al. Early endosome regulation of Smad-dependent signaling in endothelial cells. J Biol Chem 2002;277:18046-18052.
    19.Shah M, Patel K, Mukhopadhyay S, et al. Membrane associated STAT3 and PY-STAT3 in the cytoplasm. J Biol Chem 2006;281:7302-7308.
    20. Heath D, Smith P, Gosney J, et al. The pathology of early and late stages of primary pulmonary hypertension. Br Heart J 1987;58:204-213.
    21. Smith P, Heath D. Electron microscopy of the plexiform lesion. Thorax 1979;34:177-186.
    22. Smith P, Heath D, Yacoub M, et al. The ultrastructure of plexogenic pulmonary arteriopathy. J Pathol 1990; 160:111-121.
    23. Mette SA, Palevsky HI, Pietra GG, et al. Primary pulmonary hypertension in association with human immunodeficiency virus infection. A possible viral etiology for some forms of hypertensive pulmonary arteriopathy. Am Rev Respir Dis 992;145:1196-1200.
    24. Marecki JC, Cool CD, Parr JE, et al. HIV Nef is associated with complex pulmonary vascular lesions in SHIV-nefinfected macaques. Am J Respir Crit Care Med 2006; 174:437-445.
    25. Merkow L, Kleinerman J. An electron microscopic study of pulmonary vasculitis induced by monocrotaline. Lab Invest 1966; 15:547-564.
    26. Meyrick B, Reid L. Hypoxia-induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression. Am J Pathol 1980; 100:151-178.
    27. King AP, Smith P, Heath D. Ultrastructure of rat pulmonary arterioles after neonatal exposure to hypoxia and subsequent relief and treatment with monocrotaline. J Pathol 1995;177:71-81.
    28. Wilson DW, Segall HJ. Changes in type Ⅱ cell populations in monocrotaline pneumotoxicity. Am J Pathol 1990;136:1293-1299.
    29. Reindel JF, Roth RA. The effects of monocrotaline pyrrole on cultured bovine pulmonary artery endothelial and smooth muscle cells. Am J Pathol 1991;138:707-719.
    30. Jaenke RS, Alexander AF. Fine structural alterations of bovine peripheral pulmonary arteries in hypoxia-induced hypertension. Am J Pathol 1973;73:377-398.
    31. Sztul E, Lupashin V. Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 2006;290:C11-C26.
    32. Stow JL, Manderson AP, Murray RZ. SNAREing immunity:the role of SNAREs in the immune system. Nat Rev Immunol 2006;6:919-929.
    33. Jahn R, Scheller RH. SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 2006;7:631-643.
    34. Bonifacino JS, Glick BS. The mechanism of vesicle budding and fusion. Cell 2004; 116:153-166.
    35. Hong W. SNAREs and traffic. Biochim Biophys Acta 2005; 1744 (3):493-517.
    36. Tani K, Shibata M, Kawase K, et al. Mapping the functional domains of y-SNAP. J Biol Chem 2003;278:13531-13538.
    37. Matsushita K, Morrell CN, Cambein B, et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethlymaleimide Sensitive Factor. Cell 2003;115:139-150.
    38. Cooper AA, Gitler AD, Cashika A, et al. Alpha-synuclein blocks ER-Golgi traffic and Rabl rescues neuron loss in Parkinson's models. Science 2006;313:324-328.
    39. Gissen P, Johnson CA, Morgan NV, et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat Genet 2004;36:400-404.
    40. Mizumoto H, Hata D, Yamamoto K, et al. Familial hemophagocytic lymphohistiocytosis with the MUNC13-4 mutation:a case report. Eur J Pediatr 2006;165:384-388.
    41. Nozawa K, Fritzler MJ, von Muhlen CA, et al. Giantin is the major Golgi autoantigen in human anti-Golgi complex sera. Arthritis Res Ther 2003;6:R95-R102.
    42. Sahashi K, Ibi T, Ohno K, et al. Progressive myopathy with circulating autoantibody against giantin in the Golgi apparatus. Neurology 2004;62:1891-1893.
    43. Toki C, Fujiwara T, Sohda M, et al. Identification and characterization of rat 364-kDa Golgi-associated protein recognized by autoantibodies from a patient with rheumatoid arthritis. Cell Struct Funct 1997;22:565-577.
    44. Donati RJ, Thukral C, Rasenick MM. Chronic treatment of C6 glioma cells with antidepressant drugs results in a redistribution of Gsα. Mol Pharmaco 2001; 159:1426-1432.
    45. Todorovich-Hunter L, Johnson DJ, Ranger P, et al. Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline. A biochemical and ultrastructural study. Lab Invest 1988;58:184-195.
    46. Rosenberg HC, Rabinovitch M. Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension. Am J Physiol Heart Circ Physiol 1988; 255:H484-H491.
    47. Mathew R, Huang J, Shah M, et al. Disruption of endothelial-cell caveolin-1_/raft scaffolding during development of monocrotaline-induced pulmonary hypertension. Circulation 2004;110:1499-1506.
    48. Jasmin JF, Mercier I, Dupuis J, et al. Short-term administration of a cell-permeable caveolin-1 peptide prevents the development of monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy. Circulation 2006; 114:912-920.
    49. Taraseviciene-Stewart L, Scerbavicius R, Choe H-H, et al. Simvastatin causes endothelial cell apoptosis and attenuates severe pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2006;291:L668-L676.
    50. Achcar ROD, Demura Y, Rai PR, et al. Loss of caveolin and heme oxygenase expression in severe pulmonary hypertension. Chest 2006; 129:696-705.
    51.Mukhopadhyay S, Sehgal PB. Discordant regulatory changes in monocrotaline-induced megalocytosis of lung arterial endothelial and alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006;290:L1216-L1226.
    52. Mukhopadhyay S, Sehgal PB. Dysfunction of Golgi tethers, SNAREs and SNAPs in monocrotaline-induced pulmonary hypertension. Mol Biol Cell 2006; 17 (suppl): abstract 2627.
    53. Mukhopadhyay S, Shah M, Patel K, et al. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells:disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response. Toxicol Appl Pharmacol 2006;211:209-220.
    54. Mukhopadhyay S, Xu F, Sehgal PB. Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia and senescence:subcellular eNOS localization and live-cell caveolar and cytoplasmic NO imaging studies. Am J Physiol:Heart and Circ Physiol 2006;292:H1373-H1389.
    55. Shah M, Patel K, Sehgal PB. Monocrotaline induced endothelial cell megalocytosis involves a Golgi blockade mechanism. Am J Physiol Cell Physiol 2005;288: C850-C862.
    56. Sehgal PB, Mukhopadhyay S, Xu F, et al. Dysfunction of Golgi tethers, SNAREs and SNAPs in monocrotaline-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol.2007;292:L1526-L1542.
    57. Afzelius BA, Schoental R. The ultrastructure of the enlarged hepatocytes induced in rats with a single oral dose of retrorsine, a pyrrolozidine (Senecio) alkaloid. J Ultrastruc Res 1967;20:328-345.
    58. Madrid R, Janvier K, Hitchin D, et al. Nef-induced alteration of the early/recycling endosomal compartment correlates with enhancement of HIV-1 infectivity. J Biol Chem 2005;280:5032-5044.
    59. Roeth JF, Williams M, Kasper MR, et al. HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail. J Cell Biol 2004;167:903-913.
    60. Tyler RC, Muramatsu M, Abman SH, et al. Variable expression of endothelial NO synthase in three forms of rat pulmonary hypertension. Am J Physiol 1999;276: L297-L303.
    61. Murata T, Sato K, Hori M, et al. Decreased endothelial nitric-oxide synthase (eNOS) activity resulting from abnormal interaction between eNOS and its regulatory proteins in hypoxia-induced pulmonary hypertension. J Biol Chem 2002;277:44085-44092.
    62. Iwakiri Y, Satoh A, Chatterjee S, et al. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proc Natl Acad Sci USA 2006; 103:19777-19782.
    63. Nishihara A, Watabe T, Imamura T, et al. Functional heterogeneity of bone morphogenetic protein receptor-Ⅱ mutants found in patients with primary pulmonary hypertension. Mol Biol Cell 2002;13:3055-3063.
    64. Beppu H, Ichinose F, Kawai N, et al. BMPR-Ⅱ heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 2004;287:L1241-L1247.
    65. Long L, MacLean MR, Jeffery TK, et al. Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res 2006;98:818-827.
    66. Song Y, Jones JE, Beppu H, et al. Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 2005;112:553-562.
    67. West J, Fagan K, Steudel W, et al. Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 2004;94:1109-1114.
    68. Hartung A, Bitton-Worms K, Rechtman MM, et al. Different routes of bone morphogenetic protein (BMP) receptor endocytosis influence BMP signaling. Mol Cell Biol 2006;26:7791-7805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700