基于TM影像的棉花旱情遥感监测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是一种常见的自然现象,它造成的影响与损失在所有的自然灾害中所占比重较大。对干旱监测与预测,长期以来已开展了多专题多手段的理论与技术研究,并建立了多个业务应用系统对区域或全球尺度旱情进行监测。传统田间实测法和土壤旱情模型法多适用于小范围的农田,遥感影像具有丰富的地物信息,且覆盖地表面积大,并能及时获取,所以对大范围农田土壤旱情的实时监测还需用遥感的手段完成。
     本文结合863课题“杂交棉田间信息管理技术研究与应用”子课题的工作,以新疆石河子生产建设兵团147和148团场的棉花种植区域为对象,研究大范围农田土壤旱情遥感监测的方法与模型。由于新疆地区接收的卫星数据种类有限,因此课题组选取了实验区应用较多的TM影像,根据棉花旱灾发生关键时期的Landsat TM图像(2008年7月13日、7月29日、8月14日、8月30日)及同步外业调查数据,研究应用简单而有效的棉田旱情监测方法,以期指导生产实践。本文主要研究内容如下:
     ①光学与热红外融合的农田土壤含水量遥感模型与方法研究。应用Landsat TM影像穗帽变换的方法,获取湿度分量,同时结合TM第6波段反演高植被棉花冠层温度信息进行分析、建模和反演棉田含水量。
     ②可见光-近红外光谱特征空间与农田旱情遥感方法研究。应用Red-Nir二维特征空间分布分析,获取土壤线,分别采用垂直干旱指数PDI和改进的垂直干旱指数建模反演棉田旱情,并进行两种模型适用性比较。
     ③基于混合像元分解的土壤含水量遥感监测方法研究。应用混合像元线性解混方法对影像分解,获得土壤纯净像元进行土壤湿度反演,验证结果显示精度达到监测需求。
     ④农田旱情的综合遥感监测方法与应用研究。针对新疆石河子生产建设兵团147和148团场的大田开展实验,反演的结果表明遥感监测的旱情分布规律与实际情况是相符的。同时开展了农田旱情综合反演模型和方法研究,监测与评价棉田土壤墒情,对其进行旱情划分等级,根据旱情等级确定灌溉量,为合理灌溉和水资源高效利用提供了技术支持。
Drought is a common natural disaster,which leads to the worst impact and largest loss of all natural disasters. The drought monitor and forecasting,since a long time,has developed multi-methods of the theory and the technology research. Meanwhile,has established lots of application systems serve the monitoring of the region drought or the global drought. Traditional Field measurement method and the model of soil drought method are usually used on the small-scare farmland;Remote sensing image has abundant information of ground object,it not only covers large area,but also timely,so for the Large-scale fields,the real-time monitoring of drought needs remote sensing technology.
     This paper combine with Sub-topics of 863 subject“Research and apply management technique in hybrid cotton field information”.This thesis takes cotton field of Construction Corps 147,148 groups in Xinjiang Shihezi as research object,studies the method and the model in large-scale field’monitoring of drought.As Xinjiang receives the satellite data types are limited,we selected TM image which type is applied more in the area. According to the combination of TM images(July 13,July 29,August 14,August 30in2008)and field data during the crucial moment when drought would occur,we developed a simple and effective method on the monitoring of soil drought in cotton field,which can conduct the production and practice. The main content of this thesis in the following are as:
     ①Research of remote sensing in cropland's soil moisture model and method falling together optical and thermal infrared.Using tasseled cap transformation method to get moisture data,meanwhile,combined with cotton canopy temperature information for analyze which inverting from the 6-band of TM image,then established model and got the water content of soil.
     ②Research of remote sensing method in Visible - Near Infrared Spectroscopy of space and cropland's drought.Two-dimensional of the spatial distribution analysis was applied with Red-Nir to gain the soil line,the vertical drought index PDI and the improved vertical drought index was separately used to found cotton field drought model. Moreover,compared the applicability of the two models.
     ③Research of remote sensing monitoring method in soil moisture which based on spectral unmixing.The linear mixed-pixel unmixing method was used to decompose the images and got the soil pure pixel for soil moisture. The precision result reaches the demand of the monitoring.
     ④Research of remote sensing monitoring methods and application in agricultural drought.Carried out Xinjiang Shihezi Construction Corps (147 and 148) field experiments to obtain the results,and which shows the ravages of a drought and the real situation are unanimous.At the same time,research agricultural drought in an integrated model and the method of inversion,monitoring and evaluation of soil moisture content in cotton field,then divide the drought level. So that,people can according to the different drought level to apply the corresponding management measure. Meanwhile,this thesis provide technical support to make irrigating reasonably and water resources utilize efficiently.
引文
[1]闰峰,覃志豪,李茂松,王艳姣.农业旱灾监测中土壤旱情遥感反演研究进展[J].自然灾害学报,2006,15(6):115.
    [2] Bindlish R,BarrosA P. Parameterization of vegetation backscattering in radar-based, soil moisture estimation[J]. Remote Sensing of Environment,2001(76):130-1371.
    [3] Zielinska K D,Inoue Y,KowalikW,et al. Inferring the effect of plant and soil variables on C-and L-band SAR backscatter over agricultural fields,based on model analysis[J]. Advances in Space Research,2006,2 (32):1-10.
    [4] Rosnay P D,Calvet J C,Kerr Y,et al.SMOSREX:A long term field campaign experiment for soilmoisture and land surface processes remote sensing[J].Remote Sensing of Environment,2006(102):377-389.
    [5] Jackson T J,Chen D,Cosh M,et al. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans[J]. Remote Sensing of Environment,2004(92):475-482.
    [6] Ulaby F T,Moore R K,Fung A K.Microwave Remote Sensing:Active and Passive Dedham[M].MA:Artech House,1986.
    [7]毛克彪,唐华俊,周清波,等.被动微波遥感土壤水分反演研究综述[J].遥感技术与应用,2007,22(3):466-470.
    [8]钟若飞,郭华东,王为民.被动微波遥感反演土壤水分进展研究[J].遥感技术与应用,2005,20(1):49-57.
    [9] Shi Jiancheng,Lingmei Jiang,Lixin Zhang,et a1.A Parameterized Multifrequency -polarization Surface Emission Model [J].IEEE Transactions on Geoscience and Remote Sensing,2005,43:2831-2841.
    [10] Njoku E G,Li L.Retrieval of Land Surface Parameters Using Passive Microwave Measurements at 6~18 GHz [J].IEEE Transactions on Geoscience and Remote Sensing,l999,37(1):79-93.
    [11]李宗谦,冯孔豫.从雷达后向散射系数反演土壤湿度与复介电常数[J].中国科学,1997,27(3):243-248.
    [12]任鑫.多极化、多角度SAR土壤水分反演算法研究[D] .中国科学院遥感应用研究所, 2003.
    [13] Ulaby F T,Elachi C.Radar Polarimetry for Geoscience Applications.Artech House,1990.
    [14]黄世奇,刘代志,陈亮.光滑地表面毁伤检测方法研究[J].地球物理学报,2007,50(4):1261-1267.
    [15] Attema E P W,Ulaby F T.Vegetation Modeled as A Water Cloud[J].Radio Science,1978,13(2):357-364.
    [16] Magagi R D.Kerr Y H.Retrieval of soil moisture and vegetation characteristics by use of ERS-1 wind scaterometer over arid and semi-arid area[J].Journal of Hydrology ,1997,189:361-384.
    [17] Wigneron J P,Fermzzoli P,et a1.A simple approach to monitor crop biomass from C-Band radar data[J].Remote Sensing of Environment l999,69,179-l88.
    [18]戈建军,王超,张卫国.土壤湿度微波遥感中的植被散射模型进展[J].遥感技术与应用,2002,17(4):209-214.
    [19]刘万侠,王娟,刘凯,等.植被覆盖地表主动微波遥感反演土壤水分算法研究[J].热带地理,2007,27(5):411-415.
    [20] Weimann A,et a1.Soil moisture with ERS-lSAR data in the East-German loess soil area[J].Int.J,Remote Sense,1998,19(2):237-243.
    [21] Ulaby F,Sarabandi K,Whitt M,et a1.Michigan microwave canopy scattering mode[J].International Journal of Remote Sensing,1990,11(7):l223-1253.
    [22] Sano E E,Moran M S,Huete A R,et a1.C-and multiangle Ku- band SAR data for Bail soil moisture estimation agricultural areas.Remote Sensing of Environ,1998,64.
    [23]刘志明.利用气象卫星信息遥感土壤水分的探讨[J].遥感信息,1992,(1):21-23.
    [24]罗秀陵,薛勤,张长虹,等.应用NOAA-AVHRR资料监测四川干旱[J].气象,1996,22(5):35-38.
    [25]李杏朝,董文敏.利用遥感和GIS监测旱情的方法研究[J].遥感技术与应用,1996.11(3):7-15.
    [26] Price J C.On the analysis of thermal infrared imagery:The limited utility of apparent thermal inertia[J].Remote Sensing of Environment,1985,18:59-73.
    [27] John C,Price.On the Analysis of Therma. Infrared Imagery. The Limited Utility of Apparent Thermal Inertia[J]. Remote Sensing of Environment,1985,18:59- 73.
    [28] John C Price.The Potential of Remote Sensed Thermal Infrared Data to Infer Surface Soil Moisture and Evaporation[J]. Water Resources Research,1980,16(4):787-795.
    [29] Pratt D A.A Calibration Procedure for Fourier Series Thermal Inertia Models[J]. Photogram metric Engineering and Remote Sensing,1980,46(4):529-538.
    [30]刘兴文,冯勇进.应用热惯量编制土壤水分图及土壤水分探测效果[J].土壤学报,1987,24(3):272-280.
    [31]肖乾广,陈维英,盛永伟,等.用气象卫星监测土壤水分的试验研究[J].应用气象学报,1994,5(3):312-318.
    [32]张仁华,苏红波,李召良.地表受光面和阴影温差的潜在信息及遥感土壤水分的新途径[J].中国科学(E辑),2000,30(增刊):45-53.
    [33]陈怀亮,冯定原,邹春辉.麦田土壤水分NOAA/AVHRR遥感监测方法研究[J].遥感技术与应用,1998,13(4);27-35.
    [34]李星敏,刘安麟,张树誉,等.热惯量法在干旱遥感监测中的应用研究[J].干旱地区农业研究,2005,23(1):54-9.
    [35]赵玉金,赵红,刘文,等.2002年秋季山东省干旱遥感监测分析[J].国土资源遥感,2004,59(1):65-68.
    [36]王晓云,郭文利,奚文,等.利用“3S”技术进行北京地区土壤水分监测应用技术研究[J].应用气象学报,2002,13(4):422-429.
    [37]薛辉,倪绍祥.我国土壤水分热红外遥感监测研究进展[J].干旱地区农业研究,2006,24,(6):168-170.
    [38]齐述华,王长耀,牛铮.利用温度植被早情指数(TVDI)进行全国旱情监测研究[J].遥感学报,2003,7(5):420-427.
    [39]姚春生,张增祥,汪潇.使用温度植被干旱指数法(TVDI)反演新疆土壤湿度[J].遥感技术与应用,2004,19(6):473-478.
    [40]齐述华,李贵才,王长耀,等.利用MODIS数据产品进行全国干旱监测的研究[J].水科学进展,2005,16(1):56-61.
    [41]冉琼,张增祥,张国平,等.温度植被干旱指数反演全国土壤湿度的DEM订正[J].中国水土保持科学,2005,3(2):32-36.
    [42]王鹏新,龚健雅,李小文.条件植被温度指数及其在干旱监测中的应用[J].武汉大学学报(信息科学版),2001,26(5):412-418.
    [43]刘良云,张兵,郑兰芬,等.利用温度和植被指数进行地物分类和土壤水分反演[J].红外与毫米波学报,2002,21(4):269-273.
    [44]郭铌,陈添宇,雷建勤,等.用NOAA卫星可见光和近红外资料估算甘肃省东部农田区土壤湿度[J].应用气象学报,1997.8(2):212-218.
    [45] Idso S B Reginato R J and Jackson R D. An equation for potential from soil,water and crop surfaces and adaptable to use by remote sensing. Geophys Res Lett,1977(4):187-188.
    [46]刘湘南,周占鳌,倪淑沽.CWSI理论及其在玉米遥感监测与估产中的应用[J].东北师大学报自然科学版,1995,(3):98-102.
    [47]蔡焕杰,康绍忠,熊运章.用冠层温度计算作物缺水指标的一种简化模式[J].水利学报,1996,(5):44-49.
    [48]刘安麟,李星敏,何延波,等.作物缺水指数法的简化及在干旱遥感监测中的应用[J].应用生态学报,2004,15(2):2l0-214.
    [49]隋洪智,田国良,李付琴.农田蒸散双层模型及其在遥感干旱监测中的应用[J].遥感学报,1997,(3):220-224.
    [50] Moran M S,Clarke T R,Inoue Y,et a1.Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J].Remote Sensing of Environment,1994,49:246-263.
    [51]刘培君,张琳,库尔班,等.用TM数据估测光学植被盖度的方法[J].遥感技术与应用,1995,10(4):9-14.
    [52]李建龙,蒋平.利用遥感光谱法进行农田土壤水分遥感动态监测[J].生态学报,2003,23(8):1498-1504.
    [53]张清,周可法,赵庆展,尹小君.区域土壤水分遥感反演方法研究[J].新疆地质,2008,26(1):107-116.
    [54]赵英时,等.遥感应用分析原理与方法[M].科学出版社:187-188.
    [55]詹志明,秦其明,阿布都瓦斯提·吾拉木,汪冬冬.基于NIR-Red光谱特征空间的土壤水分监测新方法[J].中国科学D辑地球科学,2006,36 (11):1020-1026.
    [56] Zhao W J,Massayuki Tamura,Hidenori Takahashi.Atmospheric and Spectral Corrections for Estimating Surface Albedo from Satellite Data Using 6S Code.Rem Sen Environ,2000,76: 202-212.
    [57] Byrne G. F,Crapper P. F,Mayo K. K. Monitoring land-cover changes by principal components annlysis of multi-temporal Landsat data[J]. Remote sens Enciron,1980,10:175-184.
    [58] Crist E. P,Laurin R,Cicone R. C,Vegetation and soils information contained in transformed Thematic Mapper data[J]. Proceedings of IGARSS 86 Symposium,1986(8-11):1465-1470.
    [59] Eklundh L,Singh A,A comparative analysis of standardized and unstandardised principal components analysis in remote sensing[J]. Remote Sens,1993,14(7):1359-1370.
    [60] Fung L,LeDrew E,Application of principal components analysis to change detection[J]. Remote Sens,1987,53(12):1649-1658.
    [61] Kauth R. J,G. S. Thoams. The Tasseled Cap-A Graphic Description of the Spectral- Temporal Development of Agricultural Crops as Seen by Landsat,Proceedings,Symposium on Machine Processing of Remotely Sensed Data. West Lafayette,IN:Laboratory for Applications of Remote Sensing,1976:41-51.
    [62] Mark W. Patterson and Stephen R. Yool. Mapping Fire-Induced Vetetation Mortality Using Landsat Thematic Mapper Data:A Comparison of Linear Transformation Techniques[J].Remote Sens Environ,1998,65:132-142.
    [63]牛宝茹.基于遥感信息的沙漠化灾害程度定量提取研究[J] .灾害学。2005,20 (1):18-21.
    [64] Crist E. P,Cicone R. C. A physically-based transformation of Thematic Mapper data—The TM Tasseled Cap[J]. IEEE Trans Geosci. Remote Sens,1984,22(3):256-263.
    [65] Tanner,CB. Plant temperature. Agrom.[J]. 1963,55:210-211.
    [66]石培华,冷石林,梅旭荣,等.冠层-气温差监测和诊断冬小麦农田水分[J].中国农业气象,1995,16(2):13-23.
    [67] J.C. O’Toole et al. Comparison of Some Crop Water Stress Measurement Methods,Crop Science,1984,24:1121-1128.
    [68] J.C.O.Toole et al. Comparison of Some Crop Water Stress Measurment Methods,Crop Science,1984,Vol.24:1121-1128.
    [69]梁银丽,张成娥.冠层温度-气温差与作物水分亏缺关系的研究[J].生态农业研究,2000,8(1):24-26.
    [70]刘良云,张兵,郑芬兰,等.利用温度和植被指数进行地物分类和土壤水分反演[J].红外与毫米波学报,2002,21(4):269-273.
    [71]蔡焕杰,康绍忠.棉花冠层温度的变化规律及其用于缺水诊断研究[J].灌溉排水,1997,16(1):1-5.
    [72]蔡焕杰,张振华,柴红敏.冠层温度定量诊断覆膜作物水分状况试验研究[J].灌溉排水,2001,20(1):1-4.
    [73] Sobrino J A,Li Z L,Stoll M P,Becker F.Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ASTR data.International Journal of Remote Sensing,1996,17(11):2089-2114.
    [74] Gillespie A R,Rokugawa S,Hook S,Matsunaga T,Kahle A B.A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images.IEEE Transactions on Geoscience and Remote Sensing,1998,36:1113-1126.
    [75] Jimrnez-Munoz J C,Sobrino J A.A generalized single channel method for retrieving land surface temperature from remote sensing data.Journal of Geophysical Research,2003,108(doi:10.1029/2003JD003480).
    [76] Sobrino J A,Jimrnez-Munoz J C,Paolini L.Land surface temperature retrieval fromLANDSAT TM 5.Remote Sensing of Environment.2004.90:434-440.
    [77]丁凤,徐涵秋.TM热波段图像的地表温度反演算法与实验分析[J].地球信息科学,2006,9,8(3):125-130.
    [78] Kahle A B,Palluconi F D,Soha J M.Middle infrared multispectral aircraft scanner data analysis for gelological applications.1985,19:2279-2290.
    [79] Kealy P S.Hook S J.Separating temperature and emisivity in thermal infrared multisp- ectral scanner data:implications for recovering land surface temperatures.IEEE Trans.Geosci.Remote Sens.1993,31:1155-1164.
    [80]荣丰涛.农业旱情实时评价中确定土壤墒情评定标准的方法初探[J].山西水利科技,2006年8月第3期:1-4.
    [81]荣丰涛.对农业旱情实时评价指标体系中两个问题的意见[J].山西水利科技,2007,163:8-10.
    [82]阿布都瓦斯提·吾拉木.基于n维光谱特征空间的农田干旱遥感监测[D].2006,6月:105.
    [83] Richardson,A. J,Wigand,C. L. Distinguishing vegetation from soil background information[J]. Photogrammertric Engineering and Remote Sensing,1977,43(12):1541-1552.
    [84] Jackson,R. D. Spectral indices in n-space[J]. Remote Sensing of Environment,1983,13:409-421.
    [85] Jackson,R. D,Slaler,P. N and Pinter,P. J. Discrimination of growth and water stress in wheat by various Vegetation indices through clear and turbid atmosphere[J]. Remote Sensing of Environment,1983,3:187-208.
    [86] Boardman J. W,Automated spectral unmixing of AVIRIS data using convex geometry concepts:in Summaries. Fourth JPL Airborne Geoscience Workshop. JPL Publication 1993,26(1):11-14.
    [87] Borel C. C,Gerstl S. A. W,Nonlinear spectral mixing models for vegetative and surface[J]. Remote Sensing Environment,1994,47:403-416.
    [88] D. A. Roberts,M. Gardner. R. Church,et al. Mapping chaparral in the santa monica mountains using multiple endmember spectral mixture modles[J]. Remote sensing environment,1998,65:267-279.
    [89] Adams J. B,Smith M. O,Gillespie A. R. Imaging spectroscopy:Interpretation based on spectral mixture analysis[J]. Remote Geochemical Analysis:Elemental and Mineralogical Composition 7,Cambridge University Press,New York,1993:145-166.
    [90] Gillespie A. R,et al. Interpretation of residual images:spectral mixture analusis ofAVIRS images[J]. Proc. 2nd Airborne Visible/Infrared Imaging Spectrometer Workshop, 1990:243-270.
    [91] Graetz R. D,Gentle M. R,The relationship between reflectance in the Landsat wavebands and the composition of an Australian semi-arid shrub rangeland[J]. Photogramm Eng Remote Sens,1982,48(11):1721-1730.
    [92] Huete A. R,Separation of soil-plant spectral mixtures by factor analysis[J]. Remote Sens Environ,1986,19:237-251.
    [93]童庆禧,张兵,郑兰芬.高光谱遥感——原理、技术与应用[M].高等教育出版社,2006:246-247.
    [94]张熙川,赵英时.应用线性光谱混合模型快速评价土地退化的方法研究[J].中国科学院研究生院学报,1999,16(2):170—172.
    [95]万军,蔡运龙.应用线性光谱分离技术研究喀斯特地区土地覆被变化——以贵州省关岭县为例[J].地理研究,2003,22(4):44J0—443.
    [96] Boardman J W,Kruse F A,Green R O.Mapping target signatures via partial unmixing of AVIRIS data:in Summaries[C].Fifth JPL Airborne Earth Science Workshop.1995,95-1(1):23-26.
    [97]邹蒲,王云鹏,王志石,樊风雷.基于ETM+图像的混合像元线性分解方法在澳门植被信息提取中的应用及效果评价[J].华南师范大学学报(自然科学版),2007年5月第2期:133.
    [98] Van de Griend A A,Owe M.On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces.International Journal of Remote Sensing,1993,14(6):l1 19-l131.
    [99]詹志明,秦其明,阿布都瓦斯提·吾拉木,汪冬冬.基于Nir-Red光谱特征空间的土壤水分监测新方法[J].中国科学D辑,地球科学,2006,36(11):1020-1026.
    [100]徐建华.现代地理学中的数学方法[M].高等教育出版社,2002:85-87.
    [101] Conese C,Maracchi G,Miglietta F,Maselli F,Sacco V. M. Forest Classification by Principal components analysis of TM data[J],Remote Sens,1988,9(10-11):1597-1612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700