土壤水分胁迫对藏川杨光合生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,环境恶化严重威胁着人类的生存与发展,干旱成为世界上最为严重的灾害之一。本研究以藏川杨(Populus szechuanica var. tibetica)为材料,采用人为控水,模拟了4种梯度下的土壤水分胁迫,以研究不同土壤水分条件对藏川杨光合生理特性的影响,以期为华北干旱半干旱地区人工植被建设中树种选择和经营措施提供参考,以便更有效地利用、改良植物,对提高农林业生产力以及保护环境都具有重大意义。主要结果如下:
     藏川杨叶片的叶绿素a含量随着土壤水分胁迫程度的增加而逐渐降低,而叶绿素b含量变化不明显;叶绿素a/b在轻度及中度干旱胁迫下逐渐加大,而在重度干旱胁迫下,叶绿素a/b降低。
     随着土壤水分胁迫加剧,藏川杨的净光合速率(Pn)逐渐降低,气孔导度(Gs)也呈现出逐渐降低的趋势;胞间CO_2浓度(Ci)在轻度水分胁迫下降低,但随着水分胁迫的加剧,当水分条件处于中度及重度胁迫时,其胞间CO_2浓度又呈现出增加的趋势;藏川杨的气孔限制值(Ls)在轻度干旱胁迫下增大,在中度及重度干旱胁迫下减小。随着土壤水分胁迫的加剧,藏川杨叶片的蒸腾速率(Tr)日平均值减小,其中在中度及重度干旱胁迫条件下藏川杨的蒸腾速率与正常水分处理下的蒸腾速率差异显著。藏川杨叶片的水分利用效率在轻度干旱胁迫下高于正常水分处理,当土壤水分胁迫为中度及重度时,水分利用效率才明显低于正常水分处理,这表明一定的土壤水分胁迫条件可以提高藏川杨的水分利用效率。
     采用直角双曲线模型、非直角双曲线模型、直角双曲线修正模型和指数函数模型分别对藏川杨叶片光响应曲线进行了拟合与相互比较,拟合结果表明,采用直角双曲线修正模型拟合的藏川杨叶片光响应参数均比较准确。
     随土壤水分含量的降低,藏川杨的光量子效率(AQY)、最大净光合速率(Pmax)、光饱和点(LSP)、暗呼吸速率(Rd)均呈现下降的趋势,光补偿点(LCP)则呈现出升高的趋势。藏川杨对研究中设定的轻度干旱和中度干旱胁迫表现出一定的适应性,但对重度干旱胁迫适应性较差。干旱胁迫下,藏川杨对弱光和强光的适应性减弱,利用弱光和强光的能力降低,但仍保持在较高的水平上,基本能够适应华北干旱半干旱地区的自然光照条件。
Environmental deterioration posed great threat on the survival and development of people,especially the drought which was one of the most serious disasters. Populus szechuanica var. tibetica was used as the experiment material in the study .Four kinds of the water stress was simulated with the method of water controlling. The effect of the water stress was studied on the photosynthetic characteristics of Populus szechuanica var. tibetica to provide the main theoretical basis for the selection and management of the trees. It also had the great significance for us to utilize the plant more effectively and enhance the productivity of the forest and protect the environment.
     The Chia of Populus szechuanica var. tibetica decreased gradually with the increasing of the water stress, but the Chib did not change obviously.The Chia/b increased gradually under the mild or moderate drought, but decreased under the serious drought.
     With the escalation of water stress in soil, net photosynthetic rate of Populus szechuanica var. gradually decreased, stomatal conductance also showed one kind of trend of gradual decrease. The intercellular carbon dioxide of Populus szechuanica var. decreased under the mild water stress. But with the escalation of water stress, when the water stress was moderate and severe, the concentration of intercellular carbon dioxide showed the trend of increase. The stomatal limitation of Populus szechuanica var. increased under the mild drought stress but decreased under moderate and severe drought stress. With the escalation of water stress in soil, daily average value of leaf transpiration rate of Populus szechuanica var. tibetica decreased. There were great differences of transpiration rate between Populus szechuanica var. under moderate and severe drought stress and Populus szechuanica var. under normal water treatment. The efficiency of water of Populus szechuanica var. under mild drought stress was higher than that under normal treatment. The efficiency of water utilization under moderate and severe water stress was obviously lower than that under normal treatment. It had been showed that appropriate intensity of water stress in soil could elevate the efficiency of water utilization of Populus szechuanica var.
     Four empirical models of light-response curve of leaf net photosynthesis, such as nonrectangular hyperbolic model, rectangular hyperbolic model, modified rectangular hyperbolic model and index function model, were tested to compare their fitness in this paper and the application of four empirical models in study on photosynthesis light response of Populus szechuanica var. tibetica was discussed. The results showed that the parameters of light-response curve simulated by modified rectangular hyperbolic model were more accurate than other models.
     The apparent quantum yield (AQY)、maximum net photosynthetic rate (Pmax)、light saturation point (LSP)、dark respiration rate (Rd) declined gradually with the decrease of the water in soil, but the light compensation point (LCP) increased. Certain adaptability of Populus szechuanica var. tibetica appeared to light drought and medium drought setted in the study, but it was out of condition to severe drought. Both of the adaptability to low light environment and high light environment and the ability to use low light and high light of Populus szechuanica var. tibetica reduced under drought stress, but both still remained at a high level, basically able to adapt to arid and semi-arid condition in North China.
引文
[1]彭坷珊,徐宣斌,胡晋辉,等.干早是西部地区生态系统受损的关键因素[J].石家庄经济学院学报,2002,25:257-262.
    [2]薛乃雯,冷平生,孙譞,等.土壤干旱胁迫对8种景天属植物生长与生理生化指标的影响[J].中国农学通报,2010,26(13):302-307.
    [3]曹清尧.对我国干旱半干旱地区国土绿化的思考[J].求是,2010.19.
    [4]王彦辉,张星耀,张守攻.我国林业生态环境的建设[J].科学对社会的影响,2002,3:31-36.
    [5]类延宝.青杨组杨树不同种群对土壤干旱和重金属锰污染的生态生理响应[D].中国科学院研究生院,2007.
    [6]李芳兰,包维楷,吴宁.白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J].生态学报,29(10):5406-5416.
    [7]夏阳,罗新书.几种果树水分生理指标的比较研究[J].落叶果树,1993,(1):1-8.
    [8]夏阳.水分逆境对果树脯氨酸和叶绿素含量变化的影响[J].甘肃农业大学学报,1993,1:26-31.
    [9]蔡锡安,孙谷畴,赵平,等.土壤水分对单性木兰幼苗光合特性的影响[J].热带亚热带植物学报,2004,12(3):207-212.
    [10]任丽花,王义祥,翁伯琦,等.土壤水分胁迫对圆叶决明叶片含水量和光合特性的影响[J].厦门大学学报:自然科学版,2005,44:28-31.
    [11]张秋英,李发东,刘盂雨.冬小麦叶片叶绿素含量及光合速率变化规律的研究[J].中国生态农业学报,2005,13(3):95-95.
    [12]吴锦容,赵厚本,潘烷饪,等.土壤水分变化对外来入侵植物飞机草生长的影响[J].生态环境,2007,16(3):935-935.
    [13]郭相平,刘展鹏,王青梅,等.采用PEG模拟干旱胁迫及复水玉米光合补偿效应[J].河海大学学报:自然科学版,2007,25(3):286-290.
    [14]樊卫国.刺梨对土壤干旱胁迫的生理响应[J].中国农业科学,2003,36(10):1243-1248.
    [15]曹慧,韩振海,许学峰,等.水分胁迫下苹果属植物叶片叶绿素降解的膜脂过氧化损伤作用[J].中国农业科学,2004,36(10):1191-195.
    [16]李绍鹏.芒果叶片抗旱性鉴定初步研究[J].热带农业科学,1993,(4):56-59.
    [17] Anderson B E, Ward J M, Schroeder J I. Evidence for an extra-cellular reception site for abscisic acid in Commelina guard cells[J].Plant Physiol,1994,(104):1177-1183.
    [18]颜淑云,周志宇,邹丽娜,等.干旱胁迫对紫穗槐幼苗生理生化特性的影响[J].干旱区研究,2011,28(1):139-145.
    [19]孙萍,段喜华.干旱胁迫对长春花光合特性及可溶性糖的影响[J].东北林业大学学报,2010,38(8):54-56.
    [20]韩刚,赵忠.不同土壤水分下4种沙生灌木的光合光响应特性[J].生态学报,2010,30(15):4019-4026.
    [21] Lal A, Edwards G E. Analysis of inhibition of photosynthesis under water stress in the C4species[J]. Australian Journal of Plant Physiology,1996,23(4):403-412.
    [22]孙谷畴,赵平,彭少麟,等.在高CO2浓度下四种亚热带幼树光合作用对水分胁迫的响应[J].生态学报,2001,21(5):738-746.
    [23]卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用机理.作物学报,1994,20(5):601-606.
    [24]杨俊霞,郭宝林,鲁韧强,等.土壤含水量对美国黑莓光合特性的影响[J].果树学报,2003,20(2):116-119.
    [25]牛洪斌,白润娥,张宪.水分胁迫对欧李光合速率日变化的影响[J].湖北民族学院学报:自然科学版,2000,18(2):5-17.
    [26]刘明,齐华,孙世贤,等.水分胁迫对玉米光合特性的影响[J].玉米科学, 2008,16(4):86-90.
    [27]包卓,孟祥英,张晓松,等.干旱胁迫对5种园林绿化植物光合速率和渗透调节的影响[J].江苏农业科学,2010(3): 225-227.
    [28] Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Ann Bot,2009,103:551-560.
    [29]闫海龙,张希明,许浩,等.塔里木沙漠公路防护林3种植物光合特性对干旱胁迫的响应[J].生态学报,2010, 30(10): 2519—2528.
    [30]窦新永,吴国江,黄红英,等.麻疯树幼苗对干旱胁迫的响应[J].应用生态学报, 2008,19(7): 1425-1430.
    [31]柯世省,金则新.干旱胁迫和复水对夏蜡梅幼苗光合生理特性的影响[J].植物营养与肥料学报,2006,26(6): 1-5.
    [32]吴海卿.冬小麦对不同土壤水分的生理和形态响应[J].华北植物学报,2000,15(3):92-96.
    [33]王洪春.植物抗性生理[J].植物生理学通讯,1981,(6):72-81.
    [34] Pasternak D,Wilson G L.Differing effects of water deficit on net photosyn thesis,respirationand transpiration of apple leaves[J]. Plant Physiol,1974,16:565-583.
    [35] Menzel C M, Simpson D R.Plant water relations in lychee: diurnal variations in leaf conductance and leaf water potential[J]. Agricultural and Forest Meteorology,1986,37:267-277.
    [36]王伟.植物对水分亏缺的某些生理反应[J].植物生理学通讯,1998,34(5):388-393.
    [37]陈志辉,张良诚,吴光林,等.水分胁迫对柑桔光合作用的影响[J].园艺学报,1992,19(2):60-66.
    [38]谷瑞升,郗荣庭,刘万生.水分胁迫对早实核桃生长和结果的影响[J].林业科学,1994,30:79-82.
    [39] Hong S W, Jon J H, Kwak J M et al. Identification of a receptor like protein kinases gene rapidly induced by abscisic acid, dehy dration, high salt, and cold treatments in Arabidopsis thaliana[J].Plant Physiol,1997,113:219-226.
    [40] Knetsch M L M, Wang M, Snaar jagalska B E et al. Abscisic acid induced mitogen activated protein in kinase activation in barley aleurone protoplasts[J].Plant Cell,1996,8:1062-1067.
    [41]郭卫华,李波,黄永梅,等.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响[J].生态学报,2004,24(12):2716-2723.
    [42]汪瑾,苏现伐,王东超,等.Cu,Cd对小麦幼苗生长代谢及2种酶活性的影响[J].河南师范大学学报:自然科学版,2008,36(2):92-94.
    [43]宋玉伟,刘宗才,杨建伟.干旱条件下蚕豆光合和生理特性变化研究[J].河南师范大学学报:自然科学版,2009,37(4):109-113.
    [44] Farquhar G D,Sharker T D. Stomatal conductance and Photosynthesis [J]. Ann Rev Plant Physiol, 1982,33:317.
    [45]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,4:241-244.
    [46]朱艳艳,贺康宁,唐道锋,等.不同土壤水分条件下白榆的光响应研究[J].水土保持研究,2007,14(2):92-94.
    [47] Walting J R,Press M C,Quick W P.Elevated CO2induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum[J].Plant Physiology,2000,123(3):1143-1152.
    [48]张弥,吴家兵,关德新,等.长白山阔叶红松林主要树种光合作用的光响应曲线[J].应用生态学报,2006,17(9):1575-1578.
    [49]张淑勇,周泽福,夏江宝,等.不同土壤水分条件下小叶扶芳藤叶片光合作用对光的响应[J].西北植物学报,2007,27(12):2514-2521.
    [50]刘世荣,赵广东,马全林.沙木蓼和沙枣对地下水位变化的生理生态响应Ⅱ.叶片光合作用及其对温度和光的反应[J].植物生态学报,2003,27(2)223-227.
    [51] Larcher W.植物生态生理学[M].第5版.翟志席,郭玉海,马永泽,等.译.北京:中国农业大学出版社,1997:78.
    [52] Joseph M C,Peter B R.Leaf-level light compensation points in shade-tolerant woody seedlings[J].New Phytologist,2005,166(3):710-713.
    [53]张岁岐,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究,2002,20(4):1-5.
    [54] Gimenez C, Mitehell V J,Lawlor D W. Regulation of Photosynthetic rate of two sunflower hybrids under water stress[J]. Plant Physiology,1992,98:516-524.
    [55]赵平,孙谷畴,曾小平,等.两种生态型榕树的叶绿素含量、荧光特性和叶片气体交换日变化的比较研究[J].应用生态学报,2000,11(3):327-332.
    [56]周秋平,程积民,万惠娥,等.干旱胁迫下本氏针茅光合特性和水分利用效率日动态研究[J].草地学报,2009,17(4):510-514.
    [57] Xu H,Li Y, Zou T, Xie J X. Eco-physiological response and morphological adjustment of Haloxylon ammodendron towards variation in summer precipitation[J]. Acta Ecologica Sinica, 2007,27 (12): 5019-5028.
    [58]闫海龙,张希明,许浩,等.塔里木沙漠公路防护林植物沙拐枣气体交换特性对干旱胁迫的响应[J].中国沙漠,2007,27(3),460-465.
    [59] Larcher W. Physiological Plant ecology(third edition)[M]. New York: Berlin: Heidelberg,Aufl. Springer-Verlag.1995.
    [60] Levittt J. Response of Plants to environmental stress[M].New York: Academic Press.1972.
    [61]王森,陶大力.长白山主要树种耐早性的研究[J].应用生态学报,1998,9(1):7-10.
    [62]李银芳,杨戈,蒋进.盆栽条件下不同供水处理对六个树种蒸腾速率的影响[J].干旱区研究,1994,11(3):39-44.
    [63] Lassoie J P, D J Salo. Physiological response of large Douglas fir to natural and induced soil water deficits[J].Can.J.For.Res.1981,11(3):139-144.
    [64] Schulte P J, P E Marshall. Growth and water relations of black locust and pine seedlings exposed to controlled water stress[J].Can.J.For.Res.1983,13(4):334-338.
    [65] Aussenae G, G Levy. Effect of soil drying on the Plant water relation and growth of pedunculate oak and Ash grown in buried cubs[J].Forestry Abstraets.1984,45(3):67-72.
    [66] Kramer P J. Changing concepts regarding plant water relations [J].Plant Cell Environ.1988,11:565-569.
    [67]许大全.光合作用测定及研究中一些值得注意的问题[J].植物生理学通讯,2006,42(6):1163-1167.
    [68] Larocque G R. Coupling a detailed photosynthetic model with foliage distribution and light attenuation functions to compute daily gross photosynthesis in sugar maple (Acer saccharum Marsh.) stands[J]. Ecol Model,2002,148(3): 213-232.
    [69]卜令铎,张仁和,常宇,等.苗期玉米叶片光合特征对水分胁迫的响应[J].生态学报,2010,30(5):1184-1191.
    [70]王凯,朱教军,于立忠.光环境对胡楸幼苗生长与光合作用的影响[J].应用生态学报,2010,21(4):821-826.
    [71]郑有飞,胡成达,吴荣军,等.地表臭氧浓度增加对冬小麦光合作用的影响[J].生态学报,2010,30(4):847-855.
    [72]段爱国,张建国,何彩云,等.干热河谷主要植被恢复树种干季光合相应生理参数[J].林业科学,2010,46:68-73.
    [73]刘玉梅,王云诚,于贤昌,等.黄瓜单叶净光合速率对二氧化碳浓度、温度和光照强度响应模型应用[J].生态学报,2007,18(4): 883-887.
    [74]叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):727-740.
    [75]叶子飘.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用[J].生态学杂志,2007, 26(8): 1323-1326.
    [76]刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报,2005,121(8):76-79.
    [77]高峻,孟平,吴斌,等.杏—丹参林药复合系统中丹参光合和蒸腾特性的研究[J].北京林业大学学报,2006,28(2):64-67.
    [78]刘国华,王福升,丁雨龙,等. 4种地被竹光合作用日变化及光合光响应曲线[J].福建林学院学报,2009,29(3): 258-263.
    [79]高志奎,高荣孚,何俊萍,等.日光温室茄子光合的数学模型模拟研究[J].河北农业大学学报,2005,28(2):44-47.
    [80]叶子飘,于强.一个光合作用光响应新模型与传统模型的比较[J].沈阳农业大学学报, 2007,38(6):771-775.
    [81]叶子飘,于强.光合作用光响应模型的比较[J].植物生态学报,2008,32(6):1356-1361.
    [82]万雪琴,张帆,钟宇,等.中国西南地区乡土杨树基因资源的保护与利用[J].林业科学,2009,45(4):139-144.
    [83]纪惠芳,阎海霞,贝蓓,等.藏川杨引种及硬枝扦插育苗技术研究[J].安徽农业科学,2008,36(27):11714-11718.
    [84]张海武,米玛次仁,巫流民.藏川杨硬枝扦插育苗技术[J].西藏科技,2008,2:72-73.
    [85]刘洋,贝蓓,黄大庄,等.藏川杨与中林46光合特性比较[J].北华大学学报:自然科学版,2010,11(1):69-72.
    [86]许大全,张玉忠.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-24.
    [87]张治安.植物生理学实验指导[M].中国农业科学技术出版社.2004.
    [88]李合生.植物生理生化原理和技术[M].北京:高等教育出版社,2000.
    [89] MIKO U F K, GRAHAM D F. Investigation of the CO2 dependence of quantum yield and respiration in eucalyptus pauciflora [J].Plant Physiology,1987,83 (4):1032-1036.
    [90] BASSMAN J, ZWIER J C.Gas exchange characteristics of populous trichocarpa, populous deltoids and populous trichocarpa X.P.Deltoids clone [J].Tree Physiology, 1991, 8: 145-159.
    [91]段爱国,张建国.光合作用光响应曲线模型选择及低光强属性界定[J].林业科学究,2009,22(6):765-771.
    [92]张友胜,张苏峻,李镇魁.植物叶绿素特征及其在森林生态学研究中的应用[J].安徽农业科学,2008,36(3):1014-1017.
    [93]徐飞,郭卫华,王玉芳,等.济南市校园6个绿化树种光合荧光特征比较初探[J].山东大学学报:理学版,2007,42(5):86-94.
    [94]张卫强,贺康宁,田晶会.不同土壤水分下侧柏苗木光合特性和水分利用效率的研究[J].水土保持研究,2006,13(6):44-47.
    [95]喻方圆,徐锡增.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响[J].林业科学,2004,40(2):38-44.
    [96] Montgomery D C.实验设计与分析(汪仁官,陈荣昭译)[M].北京:中国统计出版社,1998.
    [97]朱万泽,王金锡,薛建辉.台湾桤木引种的光合生理特性研究[J].西北植物学报,2004,24(11):2012-2019.
    [98]李伟成,王树东,钟哲科.几种经验模型在丛生竹光响应曲线拟合中的应用[J].竹子研究汇刊,2009,28(3):20-24.
    [99]芦站根,赵昌琼,韩英,等.不同光照条件下生长的曼地亚红豆杉光合特性的比较研究[J].西南师范大学学报:自然科学版,2003,28(1): 117-120.
    [100]杨秀芳,玉柱,徐妙云,等.2种不同类型的尖叶胡枝子光合-光响应特性研究[J].草业科学,2009,26(7):61-65.
    [101]谢会成,姜志林,李际红.栓皮栎林光合特性的研究[J].南京林业大学学报:自然科学版,2004,28(5):83-85.
    [102] ColeyP D. Herbivory and defensive characteristics of tree species in a low land tropical forest [J].Ecological Monographs,1983,53(2):209-233.
    [103]张淑勇,周泽福,夏江宝,等.不同土壤水分条件下小叶扶芳藤叶片光合作用对光的响应[J].西北植物学报,2007,27(12):2514-2521.
    [104]张中峰,黄玉清,莫凌,等.岩溶区4种石山植物光合作用的光响应[J].西北林学院学报,2009,24(1): 44-48.
    [105]伍维模,李志军,罗青红,等.土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特性的影响[J].林业科学,2007,43(5):30-35.
    [106]陈建,张光灿,张淑勇,等.辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程[J].应用生态学报,2008,19(6):1185-1190.
    [107]王玉涛,李吉跃,刘平,等.水分胁迫对常见绿化植物苗木光响应特性的影响[J].东北林业大学学报,2010,38(7):42-45.
    [108] E F Elstner. Oxygen activation and oxygen toxieity[J].Ann Rev Plant Physiology,1982,33:73-96.
    [109]蒋明义,杨文英,徐江,等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报,1994,36:289-295.
    [110]陈根云,俞冠路,陈悦.光合作用对光和二氧化碳响应的观测方法[J].植物生理与分子生物学学报,2006,32(6): 691-69.
    [111]付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报,2006,17(11):2016-2019.
    [112] Logan B A,Demmig-Adams B, Rosenstiel T N,et al. Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics [J]. Planta,1999,209:213-220.
    [113]孟繁静.植物生理学[M].武汉:华中科技大学出版社,2000:206-213.
    [114]刘世荣,赵广东,马全林.沙木蓼和沙枣对地下水位变化的生理生态响应Ⅱ.叶片光合作用及其对温度和光的反应[J].植物生态学报,2003,27(2):223-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700