百日草主要观赏性状遗传规律和杂种优势的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
百日草是国际上夏秋常用的草本花卉,在我国广泛栽培。然而国内外对其性状遗传规律和杂种优势利用的系统性研究却很少。本试验选择4个自交系(A1、A3、S5、J10)与两个不育系(MAh003AB、MS5001AB)为亲本,按NCⅡ不完全双列杂交方法配置了8个杂交组合,选用4个自交系(A1、A3、J6、J10)为亲本,按Griffing完全双列杂交方法1配制了12个杂交组合和4个自交组合,一方面对杂交组合的结实率、发芽率和初花期及12个杂交组合主要观赏性状的杂种优势进行了比较;另一方面对13个主要观赏性状的遗传规律进行了研究。主要结果如下:
     (1)应用雄性不育两用系的NCⅡ不完全双列杂交试验。杂交优势分析表明,百日草杂交F1代结实率较高,变幅在70.62%-83.75%之间,组合Ms5001×S5结实率最高达83.75%。杂交组合F1代发芽率在49.15%-86.43%之间,其中MAh003×J10具有最高的杂种优势,超亲优势可达41.80%。F1代初花期在总体上具有负向超亲优势,都在4%-12%之间。F1代花头直径、分枝数这些性状总体上具有超亲优势,超亲优势最大的是分枝数(21.05%),其次为花头直径(15.54%)。配合力的分析表明6个亲本一般配合力方差差异不显著,但MAH003×A3、MAH003×S5、MAH003×J10这3个组合的花头直径和纵切舌装花轮数等重要观赏性状具有较高的特殊配合力,是在以矮化大花型为育种目标时的优良组合。遗传力的结果表明,性状不同其遗传力不同,总体广义遗传力(55.46%)和总体狭义遗传力(8.88%)都不高,其变幅分别为36.7%-76.41%%和0%-29.88%。节间长的广义遗传力(63.83%)和狭义遗传力(48.94%)均较高,早代选择效果较好;其它性状的广义遗传力较高但狭义遗传力较低或直接为0,适宜在较高世代选择。综上所述,组合Ms5001×S5和MAH003×A3具有较高的结实率和发芽率,且F1代植株性状稳定均一,株型与花型等相关性状符合育种目标,为适合推广的优良组合。
     (2)百日草自交系间Griffing完全双列杂交。杂交优势分析表明,百日草杂交F1代结实率杂种优势明显,结实率变幅在29.28%-66.43%之间,其中结实率最高的组合为A3×A1(66.43%)。不同杂交组合发芽率之间差异较大,变幅在23.61%-89.10%之间,组合J6×J10具有最高的杂种优势,超亲优势可达79.69%,发芽率接近90%。初花期的F1代在总体上具有负向超亲优势,都在6.67%-13.33%之间。分枝数、花梗长、花心直径、花头直径、花头高度和叶长总体上具有超亲优势,变幅为29.89%-7.01%。株高、株幅、叶宽和节数具有中亲优势。一般配合力分析表明,在选育矮化紧凑型品种时应选择亲本A3,在以重瓣性为育种目标时应选择亲本J6。特殊配合力分析表明,J6×A3的冠幅、节数、节间长具有较高的负效应,花头直径和纵切舌状花轮数具有较高的正效应,这个组合的株型紧凑、花朵较大且重瓣性较强。株高的广义遗传力(61.56%)和狭义遗传力(41.82%)均较高,表明其对环境影响不敏感,且子代有较高几率表现出亲本性状,能早期通过单株的表型进行选择;其它性状的广义遗传力和狭义遗传力均较低或低,变化范围分别为17.01%-45.13%和0-32.35%,适和在较高世代选择。综上所述,杂交组合J6×A1、J6×A3和A3×A1具有较高的结实率和发芽率,且F1代植株性状稳定均一,株型与花型等相关性状符合育种目标,为适合推广的优良组合。
Zinnia elegans is an important ornamental plant used in the summer and autumn. However,the study on character inheritance laws and heterosis use of Zinnia is not systematical inland and oversea.In the first study four inbred lines and a couple of two-type lines of Zinnia were selected as parents for crossing according to the NCⅡcross method.Firstly,the heterosis of main ornamental characters and seed set were investigated on 12 Fls;On the other hand,the studies on inheritance laws were carried out for 13 main ornamental characters.Secondly,four inbred lines of Zinnia were selected as parents for crossing according to the Griffing diallel cross method 1.The main results were as following:
     1.In the crossing according to the NCⅡcross method,Fls have got an high rate of seed set rang from 70.62%-83.75%.High heterosis was observed in most of Fls,and Ms5×S5 got highest rate of seed set(83.75%).Germinating rate of Fls was ranging from 52.3%to 72.4%which showd high heterosis.Over-low parent heterosis was observed in initial bloom stage of ten Fls ranging from 4%to 12%.It was indicated high heterosis on diameter of inflorescence(15.54%) and number of branches(21.05%).According to the g.c.a,there was no significantly different among 6 parents.According to the g.c.a,it was indicated that the largest inflorescence and the most of whorls of ray florets across capitulum was obtained in Mah003×A3、Mah003×S5、Mah003×J10.The results of heritability analysis indicated that the broad heritabilities(h2B) of different traits varied from 36.7%to 76.41%with an average of 55.46%,and the narrow heritabilities(h2N) varied from 0 to 29.88%with an average of 8.88%.Both h2N and h2B were high for length of node,so it could be effectively selected in the early generations.The selection for other traits could be delayed to later generations because of low h2N and h2B. Combinations Ms5001×S5 and MAH003×A3 showed high seed setting and germinating rate,which could be as the new species push into the market
     2.In the crossing according to the Griffing diallel cross method 1,the rate of seeds set which ranging from 29.28%-66.43%showd high heterosis,and A3×Al got the highest rate(66.43%).Germinating rate of seeds was significantly different among 12 Fls ranging from 23.61%to 89.10%,transgressive heterosis was observed in the germinating rate of ten Fls.Over-low parent heterosis was observed in initial bloom stage of ten Fls ranging from 6.67%to 13.33%.High heterosis was detective on number of branches and pedicel length and diameter of inflorescence and diameter of center disk varied from 29.89%to 7.01%.According to the g.c.a,it was indicated that we shoud choose parents of J6 for breeding large flower size,and parents A3 was the best choice for smaller plant size. The g.c.a indicated that the largest inflorescence and the most of whorls of ray florets across capitulum was obtained in J6×A3,which also had inverse domino offect in crown size and length of node.The results of heritability analysis indicated that both h2N and h2B were high for plant height,so it could be effectively selected in the early generations. The other traits could be delayed to later generations because of low h2N and h2B. Combinations J6×A1、J6×A3 and A3×A1 showed high high seed setting and germinating rate,which could be as the new species into the market.
引文
1.陈俊愉.国内外花卉育种研究与生产开发的现状与展望.广东园林,1998,(2):16-21
    2.程伟东,时成俏,覃兰秋.不同来源超甜玉米种质自交系的配合力分析.2001,9(3):3-7
    3.郭彦,杨洪双,张文会,蒋基建.黑糯玉米主要品质性状的遗传分析.玉米科学,2005,13(4):44-45
    4.胡中立,刘后利.甘蓝型油菜品质性状的配合力分析及低硫普新种质开发的理论探讨.作物学报,1989,15(3):221-229
    5.黄邦全,常玲,居超民.Ogura细胞质雄性不育紫菜薹×萝卜属间杂种F1的获得及细胞遗传学研究.遗传学报,2001,28(6):556-561
    6.姜昱,何中国.向日葵亲本配合力分析.吉林农业科学,1997,(4):11-15
    7.李惠芬,李倩中.我国花卉研究进展.西南园艺,1999,1(27):36-39
    8.李顺英.向日葵亲本遗传距离及聚类分析同其杂种优势关系的研究.辽宁农业科学,1997,(4):22-26
    9.李艳波.作物杂种优势机理和优势预测的研究.吉林师范大学学报(自然科学版),2004(2):84-87
    10.梁炫强,郑广柔,向荣英.珍珠豆型花生产量和含油率性状配合力分析.花生科技,1991,(3):11-14
    11.刘来福.作物数量遗传.北京:农业出版社,1984:250-262
    12.卢和项,陈山虎,林建新,纪荣昌.甜玉米主要穗部性状配合力研究.江西农业学报,2007,19(1):18-20
    13.马育华.试验统计.北京:农业出版社,1985
    14.苗重庆,赵安常.釉稻主要数量性状配合力的研究.安徽农业科学(水稻数量遗传论文专辑),1981,79-83
    15.裴新澎.数理遗传与育种.上海科学技术出版社,1987:9-31
    16.乔春贵,官万明.向目葵主要农艺性状的遗传分析.吉林农业科学,1994,(4):8-11
    17.沈德绪,林伯年.园艺植物遗传学.农业出版社,1985.11
    18.孙其信,倪中福,陈希勇.冬小麦部分基因杂合性与杂种优势表达.中国农业大学学报,1997,2(1):64-116.
    19.孙其信,倪中福,刘志勇.作物杂种优势的遗传机理研究进展.王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集。北京:中国农业科技出版社,1981:106-114
    20.唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002.
    21.唐文邦,陈势,雷东阳,邓化冰,陈立云.籼型三系杂交水稻产量及生育期的配合力分析.湖南农业科学,2007,(1):28-31
    22.万廷文,李五华,年登瀛,王晓武,杜红.玉米自交系性状的遗传差异与杂种优势及特殊配合力的关系。甘肃农业大学学报,1993,03(01):49-52.
    23.王才林,汤玉庚.杂交粳稻主要经济性状的配合力及遗传力的研究.杂交水稻国际学术讨论会论文集.北京:学术期刊出版社,1986:48-53.
    24.王平,赵景云,李娜.矮型百日草芳菲1号选育技术.温室园艺,2005:58-59.
    25.王平,赵景云,苏君伟.百日草雄性不育两用性及其在育种中的应用.北方园艺,20()4(3):70-71
    26.王晓武,方智远,孙培田,刘玉梅,杨丽梅一个与甘蓝显性雄性不育基因连锁的RAPD标记.园艺学报,1998,25(2):197-198
    27.王永飞,马三梅,张鲁刚.大白菜细胞质雄性不育系和其保持系的RAPD分析.西北植物学报,2003,23(4):554-560
    28.向振凡,霍仕平,张兴端,晏庆九,张健,张芳魁,余志江,彭方明,熊闻霞,陈克富.玉米茎秆质量性状的配合力及遗传分析.玉米科学,2007,15(1):44-47.
    29.徐惠风,马岩松.向日葵叶片在空间分布特性的初步研究.吉林农业大学学报,2001,23(3):15-18
    30.徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994
    31.续玉红,我国花卉育种的研究进展.中国农业文摘,1999,(6):111-114
    32.闫世江,赵俊。大白菜杂种优势预测研究.山西农业科学,2007,35(1):33-35.
    33.杨光圣,傅廷栋,杨小牛.甘蓝型油菜生态雄性不育两用系的研究.Ⅰ.雄性不育两用系的遗传.作物学报,1995,21(2):129-135
    34.杨金水,杂种优势机理探讨.作物雄性不育杂种优势研究进展.李竞雄,周洪生.中国农业出版社,1996,1:1-12
    35.叶要妹,陈天花,齐迎春,杨涛.百日草根尖和花药愈伤组织染色体制片技术的研究.广西植物,2007,27(5):673-675
    36.叶要妹,张佳祺,张双凤,包满珠.百日草自交系花粉萌发条件及花粉活力研究.华中农业大学学报,2007,26(5):693-696
    37.叶要妹,张俊卫,齐迎春,陈天花,包满珠.百日草柱头可授性和花粉生活力的研究.中国农业科学,2007,40(10):2376-2381
    38.茵重庆,赵安常.粕稻粒重及粒形性状F:遗传特性的双列分析.中国农业科学,1993,5:14-20
    39.尹衍峰,孙福,彭春生.奥运期间北京少花现状及其对策.中国园林,2004,4:29.
    40.英姿,毛盛贤.基因型与环境互作研究的新进.作物学报,1992,18(2):116-125
    41.赵景云,王平,王志刚,李娜.矮型百日草芳菲2号选育报告.温室园艺,2006(2):34-35.
    42.赵景云,王平,王志刚,李娜.矮型百日草芳菲2号选育报告.温室园艺,2006(2):34-35.
    43.赵淑艳,沈向群,王平,王志刚,臧淑珍.百日草雄性不育两用系AB201遗传研究及性状比较.北方园艺,2007,3(1):149-151.
    44.郑常祥.一般配合力的遗传实质一个体遗传力及其在作物遗传育种中的应用.贵州农业科学,2005,33(5):104-106
    45.朱军.遗传模型分析方法.北京:中国农业出版社,1997.
    46.朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),1999,33(3):327-344
    47.A Preuss,J Fimpel,G Diekert.Arch.Microbiol,1993,159:345-353
    48.Adefris Teklewold,Heiko C.Becker.Heterosis and Combining Ability in a Diallel Cross of Ethiopian Mustard Inbred Lines.Crop Science,ProQuest Biology Journals,2005,45(6):26-29
    49.Alone R K(Reprint),Mate S N(Reprint).Heterosis in sunflower(Helianthus annus L.Indian Journal of Agricultural Research,2003,37(1):56-59
    50.Baker RJ,Bendelow VM,Buchccmmom KW.Early Generation inheritnace of malting quality characters in a barlye.J.Sci.Food Agri.1968,28:157-104..
    51.Birchler J A,Auger D L,Riddle N C.In Search of the Molecular Basis of Heterosis.The Plant Cetl,2003,15:2236-2239
    52.Cockerham C C.an extension of concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present.Genetics,1954,39:859-882
    53.Cockerham CC,Weir BS.Quadratic analyses of reciprocal crosses.Biometrics.1977,33:187-203.
    54.Cockerham CC,Zeng ZB.Design Ⅲ with marker loci.Genetics.1996,143:1437-1456.
    55.Cockerham CC.Random and fixed erects in plant genetics.Theor.Apple.Genet.1980,56:119-131.
    56.Comstock RE,Robinson HF.Estimation of average dominance of genes.Griowan J.W Hererosis.Arms.Iowa:Iowa State University Press.1952,494-516.
    57. Comstock RE, Robinson HF. Estimation of average dominance of genes. Griowan J.W Hererosis. Arms. Iowa: Iowa State University Press. 1952, 494-516.
    58. Conrad, J. and G. Kaul, Time-variation in expected returns. Journal of Business, 1988, 61(4), 409-425.
    59. Edeardson J.R. Cytoplasmic male-sterility. The Bot. Rev., 1956. 22: 696-732
    60. Gabelman, Nucleoli and cytoplasmic male sterility. Molecular and General Genetics MGG. 1965, 03(10): 22-27.
    61. Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust.J.Biol.Sci.1956,15:5-14.
    62. Hayman BI. Interaction, heterosis and diallel crosses. Geneties.1957, 42; 336-355.
    63. Hayman BI. The analysis of variance of diallil tbales. Biomertics[J]. 1954b, 10: 235-244.
    64. Hayman BI. The theory and analysis of diallel cross.Geneties.1954a,39:789-809.
    65. Ikehashi H and H. Araki. Screening and genetic analysis of wide-compatibility in Fl hybrids of distant crosses in rice Oryza sativa L, Technical Bulletin of Tropical Agricultural Research Center, 1987
    66. Jinks JL, Pooni SH. Non-linear genotypeexenvriomnent interactions arising from response therholds: I.Parents, Fls and selections. Heredity. 1979, 43; 57-70.
    67. Jinks JL, The analysis continuous variation in diallel cross of Nicotina rusrtica varieties.I.The analysis of Fldata. Geneties.1954, 39; 767-788.
    68. Jinks JL, The F2 and backcross generations from a set of diallel crosses.Heredity 1956, 10:1-30.
    69. Johannsen W.Elen1enie der exakten Ebrlichkeitslehre. Fiseher,Jena.1909
    70. Jones D F. Domiance of linked factors as a means of accounting for heterosis. Proc Natl Acad Sci UAS, 1917, 3:310-312.
    71. Kaul, G., Predictable components in stock returns, in: G.S. Maddala and C.R. Rao (eds.), Handbook of Statistics, 1996, Vol.14 (Elsevier, Amsterdam): 269-296.
    72. Li B and Wu R. Genetics caused of heterosis in juvenile aspen: a quantitative comparison across infra- and inter-specific hybrids. Theor. Appl. Genet, 1996, 93: 380-391
    73. Li Z K, Lou L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. biomass and grain yield. Genetics, 2001,158: 1737-1753
    74. Li Z K, Pinaon S R M, Park W D, Paterson A H, Stansel J W. Epistasis for Three Grain Yield Components in Rice saliva L.. Genetics. 1997,145: 453465
    75. Lou L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominance and epistasis loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. grain yield components. Genetics, 2001,158: 17551771
    76. Malmberg R L, Held S, Waits A, Mauricio R. Epistasis for fitness-related quantitative traits in Arabidopsis lhaliana grown in the field and in the greenhouse. Generics, 2005, 171: 2013-2027.
    77. Mather K, Jinks JL. Biometrical Genetics. Chapman and Hall. 1982.
    78. Mather K. Biometrical Genetics. Champman and Hall, London. 1949
    79. Mather,K.and J. L. Jinks. Biometrical Genetics. Champman and Hall, London. 1971.
    80. Mithell-Olds T. Interval mapping of viability loci causing heterosis in Arabidopsis: Genetics, 1995,140: 1105—1109
    81. Phad D S, Joshi B M. Heterosis and combining ability analysis in sunflower (Helianthus annuus L.). Journal of Maharashtra Agricultural Universities, 2002, 27(1):115-117
    82. Power L. An expansion of Jones theory for explanation of heterosis. Amer Nat, 1944 78: 275-280
    83. R.B.Rogers,M.A.L.Smith &R.K.D.Cowen. In vitro production of male sterile Zinnia elegans. Euphtica, 1992, 61:217-223.
    84. R.K.D.Cowen L.C.Ewart Inheritance of a male apetalous inflorenscence in Zinnia elegans. Acta Horticulturae ,1990 ,272:37-40.
    85. Sernyk J L., Stefansson B R. Heterosis in summer rape(B.napus). Can J Plant Sci, 1983,63:407-413
    86. Shull G H. The composition of a field of maize. Amer. Breed. Ass., 1908, 4: 296-301
    87. Shun G H. What is "heterosis" ? Genetics, 1948, 33: 439-446
    88. Song R, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. Proc. Natl. Acad. Sci., 2003 100: 9055-9060.
    89. Stuber C W, Lincoln S E, Wolff D W, Helentjarisn T, Lander E S. Identification of Genetic Factors Contributing to Heterosis in a Hybrid From Two Elite Maize Inbred Lines Using Molecular Markers. Genetics, 1992, 132: 823-839
    90. Thomas H.Boyle.Responses of Zinnia angustifolia × Z. violacea Backcross Hybrids to Three Pathogens. Hort Science, 1996,31(5):851-854.
    91. Thomas H.Boyle.Responses of Zinnia angustifolia × Z. violacea Backcross Hybrids to Three Pathogens. HortScience, 1996,31 (5):851 -854.03(09), 05-06.
    92. Xiao J H, Li J, Yuan L P, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular makers. Genetics, 1995, 140(2): 745-754
    93. Ye Yaomei, Hu Qiushi, Chen Tianhua, et al. Male sterile lines of Zinnia elegans and their cytological observations. Agricultural Sciences in China, 2008,7(4):423-431
    94. Yukio Nomura,Toshiharu Kazuma,Koichi Makara,Teruyuki Nagai.Interspecific hybridization of autumn-flowering Allium species with ornamental Alliums and the characteristics of the hybrid plants.Scientia Horticulture,2002,95:223-227
    95. Zhu J, Weir BS. Analysis of cytoplasmic and maternal effects. Ⅰ .a genetic model for diploid plant and animals. Theor.Apple. Genet. 1994a, 89: 153-159.
    96. Zhu J, Weir BS. Mixed-model approaches for genetic analysis of quantitative traits. Chen LS, Ruan SG, and Zhu J .Advanced topics in biomathematics. Proc Inter Conf on Mathematical Biol. World Scientific Publishing Co., Singapore, 1998,321-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700