崇明岛农田土壤重金属的分布与累积特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是一种重要的自然资源,它不仅是农业生产的基础,而且还是人类环境的重要组成部分,可以通过各种途径直接或间接影响人类健康。Pb、Cd、Cr、As、Hg等重金属作为持久性有毒污染物的重要组成部分已越来越受到国内外学者的重视。崇明岛位于长江流域和东部沿海地区“T”字形格局的交汇点,是上海市最具潜在战略意义的发展空间之一,已被上海市政府列入“建设现代综合性生态岛”的规划,主导产业为农业,水稻是主要的粮食作物,而蔬菜的种植面积也相当大。近年来,现代农业的发展势必对当地的土壤环境造成一定的影响,进而影响到当地人民的身体健康。
     本研究依据上海市科委重大项目:“崇明岛数字生态建设决策支持系统的开发与利用——崇明生态岛建设农业用地健康诊断决策支持系统开发与应用示范”(07DZ12037)的研究内容,并在此项目及国家自然科学基金项目“饮用水源地底泥重金属再悬浮释放与水源地水质安全研究”(40701164)、上海市环保局招标项目“饮用水源地持久性毒害污染物调研及对策”(07-15)、国家环保部公益项目(WFLY-2009-1-SK-06-03)及国家重大水专项课题“城市黑臭河道外源阻断、工程修复与原位多级生态净化关键技术研究与示范”(2009ZX07317-006)的资助下,以崇明岛为研究区域,分析了农田土壤重金属Pb、Cd、Cr、As、Hg的含量特征及时空分布特征、蔬菜地重金属的分布及富集特征、重金属元素Pb、Cd、Cr、As、Hg的大气沉降通量及典型生态农业示范区土壤重金属的环境质量评价等,以期为研究区农田土壤重金属的进一步研究提供基础数据和理论依据。
     取得的主要研究结果如下:
     1.崇明岛农田土壤重金属Pb、Cd、Cr、As和Hg的平均含量分别为:Pb 21.60mg.kg-1、Cd 0.176 mg.kg-1、Cr 69.40 mg·kg-1、As 9.209 mg·kg-1、Hg 0.128 mg·kg-1。除Pb、Cr外,其余重金属平均含量均高于该区的背景值含量,Cd、As和Hg分别高出其背景值33.0%、1.2%和26.3%。不同土地利用方式对土壤重金属的累积影响明显,菜地受重金属的污染程度最为严重,这可能与菜地施用更多的农药、化肥有关。
     2.崇明岛农田土壤质量整体尚好,土壤生态率为1.26%,优良率为97.14%,合格率为1.47%,不合格率仅为0.12%。生态级土壤呈小面积块状分布;优级土壤分布于崇明大部;良级土壤主要分布于陈家镇、港沿镇、竖新镇、三星镇和农场的部分地区;合格级土壤主要分布于港沿镇、陈家镇和农场的部分地区;不合格土壤分布于港沿镇。本次调查农田土壤质量较03年有一定程度下降,生态级、优级土壤面积有一定程度减小,良级、合格级和不合格级土壤已出现。
     3.崇明岛菜地土壤Pb、Cd、Cr、As和Hg平均含量分别为20.51 mg·kg-1、0.22mg·kg-1、72.15 mg·kg-1、12.30 mg·kg-1和0.1894 mg·kg-1。蔬菜中Pb、Cd、Cr、As和Hg平均含量分别为0.0081 mg·kg-1、0.0078 mg·kg-1、0.0100 mg·kg-1、0.0186mg·kg-1和0.0049 mg·kg-1。对于Pb、Cd和Cr而言,全部样品均未超过《食品中污染物限量标准》(GB2762-2005)中的限量值。对于As而言,9.52%的样品(茄子和空心菜)超过了该标准的限量值,对于Hg而言,14%的样品(空心菜和卷心菜)超过了该标准的限量值。蔬菜中Pb、Cd、Cr、As含量与它们的富集系数呈极显著的正相关关系,蔬菜Hg含量与土壤Hg含量呈显著性正相关。在种植蔬菜时,应根据土壤重金属含量状况选择富集能力较弱的蔬菜品种,但对于Hg污染严重的土壤除外。4.各类蔬菜中Pb、Cd、Cr、As和Hg的年健康风险均表现为儿童大于成人。对于基因毒物质(Cd、Cr、As)而言,成人和儿童的年平均风险值分别为2.53E-06a-1、5.37E-06 a1-,高于大部分机构和学者的最大可接受水平,低于美国环保局(EPA)和国际辐射防护委员会(ICRP)的最大可接受水平。对于躯体毒物质(Pb、Hg)而言,成人的年平均风险值为5.81E-07 a-1,低于大部分机构和学者的最大可接受水平。儿童的年平均风险值为1.23E-06 a-1,高于大部分机构和学者的最大可接受水平,低于美国环保局(EPA)和国际辐射防护委员会(ICRP)的最大可接受水平。
     5.崇明岛重金属Pb、Cd、Cr、As和Hg年沉降通量分别为:Pb 7735μg·m-2·a-1、Cd 208μg·m-2·a-1、Cr 4620μg·m-2·a-1、As 2238μg·m-2·a-1、Hg 52.78μg·m-2·a-1,具体表现为Pb>Cr>As>Cd>Hg。Pb、Cr、As主要以颗粒态形式存在于沉降样品中,Cd、Hg主要以溶解态形式存在于沉降样品中。1年中有两个时间段各重金属的沉降通量较大,第一时间段是12、1、2、3月,第二时间段是5、6、8、9月。大气沉降对研究区农田表层土壤中As、Hg的年净贡献率约为16%和2%。与国内外某些地区相比,崇明岛重金属大气沉降通量相对较小,这可能与研究区所处的地理位置、较少的工业污染及生态岛的规划建设有关。
     6.大棚芦笋种植示范区LS04和LS07大棚土壤质量为1级,属于清洁水平。LS98大棚土壤质量为2级,属于尚清洁水平。3个不同年限大棚土壤重金属含量均未超标,适宜作为无公害蔬菜的种植基地。土壤中各重金属含量与大棚使用年限密切相关,所有重金属均与棚龄呈正相关关系,即土壤中重金属的含量随大棚使用年限的增加而增加,其中Cd的含量与棚龄的相关性较强,达到显著水平(P<0.05)。清园工作对大棚土壤重金属含量影响显著,期间频繁施肥与灌溉导致部分重金属含量明显增加。露天花菜种植示范区和稻-麦轮作种植示范区土壤环境质量属于2级,为优级土壤,符合上海市地方标准及安全卫生优质农产品(或原料)产地环境标准。绝大多数重金属元素在土壤表层呈现出一定的累积。
Soil was one of the important natural resources. It was not only the foundation of agricultural production, but also the important component of the environment. It could affect human health directly or indirectly through various channels.Heavy metals such as Pb, Cd, Cr, As and Hg, are the important parts of persistent toxic substances, which attached more and more attention by scholars. Chongming Island, located in the middle of Yangtze, is one of the most potential developing areas of Shanghai. Agriculture is the leading industry of Chongming Island, and farmland in the study area predominantly consists of paddy fields and vegetable plots. The population census in 2004 reported that more than 75% of employed people are engaged in agriculture for both subsistence and commercial purpose. However, the high population density and modern agricultural development have put great pressure on the natural and economic resources. A number of substantial environmental pressures and symptoms of environmental degradation have been identified in recent years.
     With the support of the National Natural Science Foundation (No.40701164), the bidding projects of Shanghai Environmental Protection Bureau (No.07-15), the Public Project of Environmental Protection Ministry of China (No. WFLY-2009-1-SK-06-03)and the National Key Water Program during the 11th Five-Year Plan Period (No.2009ZX07317-006),the concentrations, the spatial and temporal distribution characteristics, the distribution and accumulation in vegetable soil, atmospheric deposition fluxes of five heavy metals (Pb, Cd, Cr, As and Hg)in agricultural soils of Chongming Island were studied. Besides, the environmental quality of heavy metals in soils of three ecological agriculture demonstration areas were also studied in order to provide basis data and scientific support for further exploring heavy metals in the agricultural soil in the study area.
     The main conclusions can be summed up as follows.
     1.The Average concentrations of Pb, Cd, Cr, As and Hg in agricultural soils in the study area were 21.60 mg·kg-1,0.176 mg·kg-1,69.40 mg·kg-1,9.209 mg·kg-1 and 0.128 mg·kg-1, respectively. Except for Pb and Cr, the average contents of Cd, As and Hg in soils were 33.0%,1.2% and 26.3% higher than the background values of soil heavy metals in soils of Shanghai. Of the three land use types, vegetable plot was polluted most seriously by heavy metals, which was probably related to the over-application of pesticides and fertile.
     2. Most of the agricultural soils quality is still good overall. The percentages of ecological soil, good soil, qualified soil and unqualified soil were 1.26%,97.1%, 1.47% and 0.12%, respectively. The ecological soil shows a small area of block distribution. The superior soil, accounting for 72.11% of the total area, distributed widely in the island.The satisfactory soil mainly distributed in Chenjia Town, Gangyan Town, Shuxin Town, Sanxing Town and some areas of Nongchang. The unqualified soil mainly distributed in Gangyan Town. Compared to 2003, the soil quality decreased to some extent in the survey. The soil area of ecological grade, superior grade reduced to some extent and the other three grades has existed.
     3.The contents of Pb, Cd, Cr, As and Hg in vegetable soil averaged 20.51 mg·kg-1,0.22 mg·kg-1,72.15 mg·kg-1,12.299 mg·kg-1 and 0.1894 mg·kg-1, respectively. The contents of Pb, Cd, Cr, As and Hg in the edible portions of vegetables averaged 0.0081 mg·kg-1,0.0078 mg·kg-1,0.0100 mg·kg-1,0.0186 mg·kg-1 and 0.0049 mg·kg-1, respectively. In all of the vegetable samples, the contents of Pb、Cd and Cr were less than the tolerance limit of the maximum levels of contaminants in foods (GB 2762-2005).While for As and Hg,9.52%(eggplant and water spinach) and 14% (water spinach and cabbage) vegetable samples were beyond the tolerance limit of the maximum levels of contaminants in foods, respectively. For Pb, Cd, Cr and As, there were significantly positive correlations between the contents and the Bioconcentration factor (BCF) in vegetables. As to Hg, there were significantly positive correlations between the Hg contents in vegetables and the contents in vegetable soils.
     4.Vegetables of lower bioconcentration factors could be grown in soil, which was moderately polluted by Pb, Cd, Cr or As, not Hg. The average annual health risk value of child was higher than that of adult affect by Pb, Cd, Cr, As and Hg in the edible portions of vegetables in the study area. For carcinogens (Cd, Cr and As), The average annual risk values of adult and child were 2.53E-06 a- and 5.37E-06 a-1, respectively. The risk values were higher than the maximum allowance levels recommended by some organizations and researchers, but lower than the maximum allowance levels recommended by US EPA and ICRP.For non-carcinogens (Pb and Hg), The average annual risk values of adult and child were 5.81E-07 a-1 and 1.23E-06 a-1, respectively. The average annual risk values of adult were lower than the maximum allowance levels recommended by some organizations and researchers。The average annual risk values of child were higher than the maximum allowance levels recommended by some organizations and researchers, but lower than the maximum allowance levels recommended by US EPA and ICRP.
     5.The annual deposition fluxes of Pb, Cd, Cr, As and Hg in the study area were 7735μg·m-2·a-1,208μg·m-2·a-1,4620μg·m-2·a-1,2238μg·m-2·a-1 and 52.78μg·m-2·a-1, respectively. The annual deposition fluxes were in the order of Pb>Cr>As>Cd> Hg. The deposition fluxes of particulate Pb and As were higher than the fluxes of soluble Pb and As, but Cd and Hg was on the contrary. The atmospheric deposition fluxes of heavy metals were higher in December, January, February and March, highest in December and decreased gradually from December to March. Additionally, the deposition fluxes were also higher in May, June, August and September, highest in June. Compared with other regions, the atmospheric deposition fluxes of heavy metals were relatively lower in the study area, which was probably related to the location, less industrial pollution and the construction planning of eco-island. The annual contribution rates of As、Hg in the agricultural topsoil (0~20cm) of the study area were 16% and 2%, respectively.
     6.According to Grading Standards of Environment Quality in Vegetable Greenhouses(GB/T 18407.1-2001),soils of three asparagus greenhouses in different age were suitable for planting non-environmental pollution vegetable. Concretely speaking, the soil environmental quality in LS04 and LS07 greenhouse was grade one, and that in LS98 was grade two.The correlation analysis showed that there were positive correlations between five heavy metals concentrations and the greenhouse planting years. Especially for Cd, the Cd concentration significantly correlated to the greenhouse planting year (P<0.05).The reaping work had a significant effect on the heavy metals concentrations in the greenhouses. Frequent fertilization and irrigation during the period lead to the increase of some heavy metals concentration. The soil environmental quality in cauliflower and paddy-wheat rotation demonstration area was grade two, namely superior grade, conformed to Environmental Standard of Safe, Healthy, High Quality Agricultural Products (Shanghai Local Standard, DB31/T391-2000). Several heavy metals presented certain accumulation in the topsoil.
引文
[1]Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited six commonly grown vegetables. Environmental Pollution,2006, 144(3):736-745.
    [2]Azimi S, Ludwig A, Thvenot D R, et al. Trace metal determination in total atmospheric deposition in rural and urban areas, The Science of the Total Environment,2003,308: 247-256.
    [3]Azimi S, Rocher V, Muller M, et al. Sources, distribution and variability of hydrocarbons and metals in atmospheric deposition in an urban area (Paris, France), Science of the Total Environment,2005,337:223-239.
    [4]Berg T, Steinnesb E. Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995moss survey, The Science of the Total Environment,1997,208: 197-206.
    [5]Bruce S. L., Noller B. N., Grigg A. H., et al. A field study conducted at Kidston Gold Mine, to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle. Toxicology Letters,2003,137(1-2):23-34.
    [6]Chekushin V A, Bogatyrev I V, Caritat P, et al. Annual atmospheric deposition of 16 element in eight catchments of the central Barents region, The Science of the Total Environment, 1998,220:95-114.
    [7]Chen C. J., Hsu L. I., Tseng C. H., et al. Emerging Epidemics of Arseniasis in Asia[J]. Arsenic Exposure and Health Effects,1999:113-121.
    [8]Chojnacka K, Chojnacki A, Gorecka H, et al. Bioavailability of heavy metals from polluted soils to plants. Science of The Total Environment,2005,337(1-3):175-182.
    [9]Cochran J K, Hirschberg D J, Wang J, et al. Atmospheric deposition of metals to coastal waters (Long Island Sound, New York U.S.A.):evidence from saltmarsh deposits, Estuarine, Coastal and Shelf Science,1998,46:503-522.
    [10]Colqan A, Hankard P K, Spurgeon D J, et al. Closing the loop:a spatial analysis to link observed environmental damage to predicted heavy metal emissions. Environmental Toxicology and Chemistry,2003,22(5):970-976.
    [11]Coskun M, Frontasyeva M V, Steinnes E, et al. Atmospheric deposition of heavy metals in thrace studied by analysis of moss (Hypnum cupressiforme), Bull Environ Contam Toxicol, 2005,74:201-209.
    [12]Dudka S, Piotrowska M, Chlopecka A. Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and the meal contents of the plants. Water, Air, and Soil Pollution,1994, 76(3-4):333-341.
    [13]Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution,2001,114(3):313-324.
    [14]Frontasyeva M V, Galinskaya T Y, Krmar M, et al. Atmospheric deposition of heavy metals in northern Serbia and Bosnia-Herzegovina studied by the moss biomonitoring, neutron activation analysis and GIS technology, Journal of Radio-analytical and Nuclear Chemistry, 2004,259(1):141-147.
    [15]Galsomi S L, Letrouit M A, Deschamps C, et al. Atmospheric metal deposition in France: initial results on moss calibration from the 1996 biomonitoring, The Science of the Total Environment,1999,232:39-47.
    [16]Gil C, Boluda R, Ramos J. Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almeria (Spain).Chemosphere,2004,55(7):1027-1034.
    [17]Golomb D, Ryan D, Eby N, et al. Atmospheric deposition of toxies onto Massachusetts Bay I: metals[J], Atmospheric Environment,1997,31(9):1349-1359.
    [18]Gray C W, Melaren R Q Roberts A H C. Atmospheric accessions of heavy metals to some New Zealand pastoral soils, The Science of the Total Environment,2003,305:105-115.
    [19]Gupta A K, Sinha S. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge:Selection of single extractants. Chemosphere,2006,64(1):161-173.
    [20]Hakanson L. An ecological risk index for aquatic pollution control a sedimentological approach, Water Research,1980,14:975-1001.
    [21]Halstead M J, Cunninghame R G,Hunter K A. Wet deposition of trace metals to a remote site in Fiordland, New Zealand, Atmospheric Environment,2000,34:665-676.
    [22]Han Y M, Jin Z D, Cao J J, et al. Atmospheric Cu and Pb deposition and transport in lake sediments in a remote mountain area, Northern China, Water, Air and Soil Pollution,2007, 179(1):167-181.
    [23]Hu K L, Zhang F R, Li H, et al. Spatial patterns of soil heavy metals in urban-rural transition zone of Beijing. Pedosphere,2006,16(6):690-698.
    [24]Huang K M, Lin S. Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere,2003,53(9): 1113-1121.
    [25]Jinadasa K B P N, Milham P J, Hawkins C A, et al. Heavy metals in the environment-survey of cadmium levels in vegetables and soils of Greater Sydney, Australia. Journal of Environmental Quality,1997,26:924-933.
    [26]Kloke A S.Changing Metal Cycles and Human health. Berlin:Springer-verlag,1984: 113-141.
    [27]Klumpp A, Hintemann T, Lima J S, et al. Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties. Environmental Pollution,2003,126(3):313-321.
    [28]Kocka M, Kubilaya N, Herutb B. Dry atmospheric fluxes of trace metals (Al, Fe, Mn, Pb, Cd, Zn, Cu) over the Levantine Basin:a refined assessment, Atmospheric Environment,2005,39: 7330-7341.
    [29]Lee P. Heavy metal contamination of settling particle in a retention pond along the A-71 motorway in Sologne, France. Sci. Total Environ.,1997,201(1):1-15.
    [30]Loppi S, Frati L, Paoli L, et al. Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal vatiations of air pollution in the town of Montecatini Terme (central Italy). Science of The Total Environment,2004,29(1-3): 113-122.
    [31]Martin J A R, Arias M L, Corbi J M G.Heavy metals contents in agricultural topsoils in the Erbo basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environmental Pollution,2006,144(3):1001-1012.
    [32]Morselli L, Brusori B, Passarini F, et al. Heavy metals monitoring at a Mediterranean natural ecosystem of Central Italy:trends in different environmental matrixes, Environment International,2004,30:173-181.
    [33]Mulla D. J., Page A. L., Ganje T. J. Cadmium accumulation and bioavailbility in soils from long term phosphorus fertilization. Environ Qual,1980, (9):408-412.
    [34]Nicholson F A, Smith S R, Alloway B J, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales. The Science of The Total Environment,2003, 311(1-3):205-219.
    [35]Pirrie D, Power M R, Wheeler P D, et al. Geochemical signature of historical mining: FoweyEstuary,Cornwall, UK. Journal of Geochemical Exploration,2002,76(1):31-43.
    [36]Pott U, Turpin D H. Assessment of atmospheric heavy metals by moss monitoring with Isothecium stoloniferum bird, in the Fraser Valley, B C, Canada, Water, Air and Soil Pollution, 1998,101:25-44.
    [37]Rossini P, Guerzoni S, Molinaroli E, et al. Atmospheric bulk deposition to the lagoon of Venice Part Ⅰ:fluxes of metals,nutrients and organic contaminants, Environment International,2005,31:959-974.
    [38]Ruhling A, Tyler G. An ecological approach to the lead problem, Boraniska Notiser,1968, 121:321-342.
    [39]Salim R.S., Ai M., Atallah A. Effects of root and foliar treatments with lead cadium, and copper on the uptake distribution and growth of radish plants. Environment International, 1993,9(4):440-445.
    [40]Sandroni V, Migon C. Atmospheric deposition of metallic pollutants over the Ligurian Sea: labile and residual inputs, Chemosphere,2002,47:753-764.
    [41]Schulin R, Geiger G, Furrer G Heavy metal retention by soil organic matter under changing environmental conditions. In:Salomons W, Stigliani W M, eds. Biogeodynamics of Pollutants in Soil sand Sediments-risk Assessment of Delayed and Non-Linear Responses. Springer, Berlin,1995:53-85.
    [42]Sezgin N, Ozcan H K, Demir G, et al. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway, Environment International,2004,29(7):979-985.
    [43]Sharma R K, Agrawal M, Marshall F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India[J].Ecotoxicology and Environmental Sagety,2007,66(2): 258-266.
    [44]Skov H, Christensen J H, Goodsite M E, et al. Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic, Environmenal Science and Technology,2004,38:2373-2382.
    [45]Spokes L, Jickells T, Jarvis K. Atmospheric inputs of trace metals to the northeast Atlantic Ocean:the importance of southeasterly flow, Marine Chemistry,2001,76:319-330.
    [46]Tasdemir Y, Kural C. Atmospheric dry deposition fluxes of trace elements measured in Bursa, Turkey, Environmental Pollution,2005,138:462-472.
    [47]Taylor M D. Accumulation of cadmium derived from fertilizers in New Zealangd, Soil Sci. Total Environ,1997,208:123-126.
    [48]Wang G,Su M Y, Chen Y H et al. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environmental Pollution, 2006,144(1):127-135.
    [49]Wolterbeek H T, Verburg T G. Atmospheric metal deposition in a moss data correlation study with mortality and disease in the Netherlands, The Science of the Total Environment,2004, 319:53-64.
    [50]Wong C S C, Li X D, Zhang G, et al. Atmospheric deposition of heavy metals in the Pearl River Delta, China, Atmospheric Environment,2003,37:767-776.
    [51]Xu MG,Zhang YP,Sun BH. Mechanisms for the movement of Fe, Mn, Cu and Zn to plant roots in Loessal soil and Lou soil. Pedosphere,1996,6(3):245-254.
    [52]Yi S M, Totten L A, Thota S, et al. Atmospheric dry deposition of trace elements measured around the urban and industrially impacted N Y N J harbor, Atmospheric Environment,2006, 40:6626-6637.
    [53]Zhao Y F, Shi X Z, Huang B, et al. Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi, China. Pedosphere,2007,17(1):44-51.
    [54]Zhi Yunlin. The source and fate of Pb in central Sweden, Sci Total Environ,1998,209(1): 47-58.
    [55]Zurera-Cosano G, Moreno-Rojas R., Salmeron-Egea J., et al. Heavy metal uptake from greenhouse border soils for edible vegetables. J Sci Food Agric,1989,49:307-314.
    [56]蔡保松,陈同斌,廖晓勇等.土壤砷污染对蔬菜砷含量及食用安全性的影响.生态学报,2004,24(4):711-717.
    [57]常青山,马祥庆,王志.南方重金属矿区重金属的污染特征及评价.长江流域资源与环境,2007,16(3):395-399.
    [58]陈怀满,等著.土壤-植物系统中的重金属污染,北京:科学出版社,1996:7-8.
    [59]陈明,曹晓娟,谭科艳,等.土壤环境中化学定时炸弹的研究现状与展望.地质学报,2006,80(10):1607-1615.
    [60]陈同斌,宋波,郑袁明等.北京市蔬菜和菜地土壤砷含量及其健康风险分析.地理学报,2006,61(3):297-310.
    [61]陈同斌,郑袁明,陈煌等.北京市不同土地利用类型的土壤砷含量特征.地理研究, 2005,24(2):229-235.
    [62]程街亮,史舟,朱有为等.浙江省优势农产区土壤重金属分异特征及评价.水土保持学报,2006,20(1):103-107.
    [63]迟爱民,徐忠林.呼和浩特市蔬菜中重金属污染的研究.干旱区资源与环境,1995,9(1):86-94.
    [64]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展.土壤通报,2004,35(3):366-370.
    [65]戴军,刘腾辉.广州采地生态环境的污染特征,土壤通报,1995,26(3):102-104.
    [66]戴清文,曾志明,王继玉,等.江西省主要金属厂矿对畜牧业影响的初步调查.农业环境保护,1993,12(3):124-126.
    [67]戴树桂.环境化学.北京:高等教育出版社,2001.
    [68]窦磊,马瑾,周永章,等.广东东莞地区土壤-蔬菜系统重金属分布与富集特性分析.中山大学学报(自然科学版),2008,47(1):98-102.
    [69]段敏,马往校,李岚.17种蔬菜中铅、镉元素含量分析.干旱区资源与环境,1999,13(4):74-79.
    [70]高继军,张力平,黄圣彪,等.北京市饮用水源水重金属污染物健康风险的初步评价.环境科学,2004,25(2):47-50.
    [71]高永华,王金,赵莉,等.污灌区土壤-植物系统中重金属分布与迁移转化特征研究.河北农业大学学报,2006,29(5):52-56.
    [72]龚子同,黄标.关于土壤中“化学定时炸弹”及其触爆因素的探讨.地球科学进展,1998,13(2):184-191.
    [73]郭平,谢忠雷,李军等.长春市土壤重金属污染特征及其潜在生态风险评价.地理科学,2005,25(1):108-112.
    [74]郭朝晖,肖细元,陈同斌等.湘江中下游土壤和蔬菜的重金属污染.地理学报,2008,.63(1):3-11.
    [75]何江华,柳勇,王少毅,等.蔬菜对重金属富集能力的研究——以广州蔬菜生产基地为例.重庆环境科学,2003,25(12):4-7.
    [76]胡克林,张凤荣,吕贻忠等.北京市大兴区土壤重金属含量的空间分布特征.环境科学学报,2004,24(3):463-468.
    [77]李桂林,陈杰,孙志英,檀满枝.基于土壤特征和土地利用变化的土壤质量评价最小数据集确定.生态学报,2007,27(7):2715-2724.
    [78]李桂林,陈杰,檀满枝,孙志英基于土地利用变化建立土壤质量评价最小数据集.土壤学报,2008,45(1):16-25.
    [79]林君锋,高树芳,陈伟平,等.蔬菜对土壤镉铜锌富集能力的研究.土壤与环境,2002,11(3):248-251.
    [80]刘洪莲.苏南部分地区土壤-作物系统中重金属及其食物安全风险探讨.南京:南京农业大学,2006,44pp.
    [81]刘荣乐,李书田,王秀斌,等.我国商品有机肥料和有机废弃物中重金属的含量状况与分析.农业环境科学学报,2005,24(2):392-397.
    [82]刘廷良,高松武次郎,左濑裕之.日本城市土壤的重金属污染研究.环境科学研究,1996,9(2):47-51.
    [83]刘文新,亲兆坤.河流沉积物重金属污染质量控制基准的研究:n相平衡分配方法,环境科学学报,1999,19(3):230-235.
    [84]吕金妹,郑祥民,周立旻等.崇明岛潮滩沉积物重金属污染及评价.城市环境与城市生态,2007,20(5):23-26.
    [85]马成玲,周健民,王火焰等.农田土壤重金属污染评价方法研究—以长江三角洲典型县级市常熟市为例.生态与农村环境学报,2006,22(1):48-53.
    [86]莫争,王春霞,陈琴,等.重金属Cu,Pb,zn,Cr,Cd在水稻植株中的富集和分布.环境化学,2002,21(2):110-116.
    [87]南忠仁,程国栋.干旱区污灌农田作物系统重金属Cd、Pb生态型为研究.农业环境保护,2001,20(4):210-213.
    [88]聂国朝.采石场大气污染物源强分析研究.资源调查与环境,2003,24(4):287-294.
    [89]庞金华,钱永清,金遐良等.上海农业生产中的自身污染与对策,长江流域资源与环境,1994,3(2):172-177.
    [90]施泽明,倪师军,张成江,等.成都城郊典型蔬菜中重金属元素的富集特征.地球与环境,2006,34(2):52-56.
    [91]田丽梅,藏山水,张建顺等.天津市污灌区蔬菜重金属污染调查及防治途径,天津农林科技,1999,(6):21-22.
    [92]王初,陈振楼,王京等.崇明岛公路两侧蔬菜地土壤和蔬菜重金属污染研究.生态与农村环境学报,2007,23(2):89-93.
    [93]王初,陈振楼,王京等.上海崇明岛交通干线两侧农田土壤和蔬菜Pb Cd污染研究.农业环境科学学报,2007,26(2):634-638.
    [94]王初,陈振楼,王京等.上海市崇明岛公路两侧土壤重金属污染研究.长江流域资源与环境,2007,20(5):23-26.
    [95]王军,陈振楼,王初等.上海市崇明岛城镇河流沉积物重金属累积与环境风险.应用生态学报,2007,18(7):1518-1522.
    [96]王军,陈振楼,王初等.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估.环境科学,2007,28(3):647-653.
    [97]王丽凤,白俊贵.沈阳市蔬菜污染调查及防治途径研究.农业环境保护,1994,13(2):84-88.
    [98]王起超,刘汝海,吕宪国,等.湿地汞环境过程研究进展.地球科学进展,2002,17(6):881-885.
    [99]王起超,沈文国,麻状伟.中国燃煤汞排放量估算,中国环境科学,1999,19(4):318-321.
    [100]王学锋,王磊,师东阳,等.新乡市污灌区蔬菜地重金属污染状况调查分析,安徽农业科学,2007,35(36):11980-11981.
    [101]王学松,秦勇.徐州城市表层土壤中重金属环境风险测度与源解析.地球化学,2006,35(1):88-94.
    [102]王英辉,陈学军,赵艳林,等.铅锌矿区土壤重金属污染与优势植物累积特征.中国矿业大学学报,2007,36(4):487-493.
    [103]吴鹏鸣.环境空气监测质量保证手册].北京:中国环境科学出版社,1989:25-28.
    [104]吴善绮.环境铅污染对儿童智商的影响.微量元素与健康研究,2001,18(2):58-60.
    [105]许学宏,纪从亮.江苏蔬菜产地土壤重金属污染现状调查与评价.农村生态环境,2005,21(1):35-37.
    [106]薛艳,沈振国,周东美.蔬菜对土壤重金属吸收的差异与机理.土壤,2005,37(1):32-36.
    [107]张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究—地统计学方法.地理学报,1997,52(2):184-192.
    [108]张翠,毕春娟,陈振楼,等.地表水体中重金属类内分泌干扰物的环境行为.水资源保护,2008,24(2):1-5.
    [109]张汉池,张继军,刘峰.铬的危害与防治.内蒙古石油化工,2004,30:72-73.
    [110]张辉.南京某合金厂土壤铬污染研究,中国环境科学,1997,17(2):80-82.
    [111]张乃明.太原污灌区土壤重金属污染研究,农业环境保护,1996,15(1):21-23.
    [112]张乃明.土壤—植物系统重金属污染研究现状与展望.环境科学进展,1999,7(4): 30-33.
    [113]张书海,林树生.交通干线铅污染对两侧土壤和蔬菜的影响.贵州环保科技,2000,6(4):21-23.
    [114]张书海,沈跃文.灌溉区重金属污染对土壤的危害,环境监测管理与技术,2000,12(2):22-24.
    [115]张永志,李劲峰,王钢军.土壤中的砷在菠菜中的富集规律研究.广东微量元素科学,2005,12(12):23-27.
    [116]张玉龙,王喜艳,刘鸣达.植物硅素营养与土壤硅素肥力研究现状和展望.土壤通报,2004,35(6):785-788.
    [117]张祖锡,白瑛.改良城市污水农灌的作物与土壤效应.农业环境保护,1988,7(2):23-24.
    [118]赵彦锋,史学正,于东升等.太湖典型河网区地表水与沉积物氮、磷和重金属含量空间分异.生态与农村环境学报,2007,23(1):48-53.
    [119]郑春荣,孙兆海,周东美,等.土壤Pb、Cd污染的植物效应(1)—Pb污染对水稻生长和Pb含量的影响.农业环境科学学报,2004,23(3):417-421.
    [120]郑海龙,陈杰,邓文靖等.城市边缘带土壤重金属空间变异及其污染评价.土壤学报,2006,43(1):39-45.
    [121]郑路,常江,章春.合肥市菜园蔬菜矿质营养元素含量研究.安徽农业大学学报,1997,24(4):350-354.
    [122]郑袁明,陈同斌,陈煌等.北京市不同土地利用方式下土壤铅的积累.地理学报,2005,60(5):791-797.
    [123]郑袁明,陈同斌,陈煌等.北京市近郊区土壤镍的空间结构及分布特征.地理学报,2003,58(3):470-476.
    [124]郑袁明,陈同斌,郑国砥等.北京市不同土地利用方式下土壤铬和镍的积累.资源科学,2005,27(6):162-166.
    [125]郑袁明,陈同斌,郑国砥等.不同土地利用方式对土壤铜积累的影响:以北京市为例.自然资源学报,2005,20(5):690-696.
    [126]郑袁明,罗金发,陈同斌等.北京市不同土地利用类型的土壤镉含量特征.地理研究,2005,24(4):542-548.
    [127]郑袁明,宋波,陈同斌等.北京市不同土地利用方式下土壤锌的积累及其污染风险.自然资源学报,2006,21(1):64-72.
    [128]周根娣,汪雅谷,卢善玲·上海市农畜产品有害物质残留调查.上海农业学报,1994,10(2):45-48.
    [129]周焱,陆若辉,董越勇,等.浙江省复混肥料、有机-无机复混肥料和有机肥料品质的研究.植物营养与肥料学报,2007,13(1):148-154.
    [130]朱建军,崔保山,杨志峰等.纵向岭谷区公路沿线土壤表层重金属空间分异特征.生态学报,2006,26(1):146-153.
    [131]邹海明,李粉茹,官楠,等.大气中TSP和降尘对土壤重金属累积的影响,中国农学通报,2006,22(5):393-395.
    [1]Amezketa E.. An integrated methodology for assessing soil salinization, a pre-condition for land desertification. Journal of Arid Enviroments,2006,67:594-606.
    [2]Bruce S. L, Noller B. N., Grigg A. H., et al. A field study conducted at Kidston Gold Mine, to evaluate the impact of arsenic and zinc from mine tailing to grazing cattle. Toxicology Letters,2003,137(1-2):23-34.
    [3]冯万忠,段文标.不同土地利用方式对城市土壤理化性质及其肥力的影响-以保定市为例.河北农业大学学报,2008,31(2):61-64.
    [4]胡焕成,靖学青.土地利用研究的背景、任务及发展趋向.地理学与国土研究,1996,12(3):6-11.
    [5]胡泽友,郭朝辉.湖南省稻田化肥施用与氮磷流失状况的研究.湖南农业大学学报,2000,26(4):264-266.
    [6]刘景双,杨继松,于君宝.三江平原沼泽湿地土壤有机碳的垂直分布特征研究.水土保持学报,2003,17(3):5-8.
    [7]刘旭霞.北疆部分区域土壤pH、可溶性总盐及有机质含量调查.干旱环境监测,2004,18(3).
    [8]鲁如坤.土壤-植物营养学原理和施肥.北京:化学工业出版社,1998.
    [9]上海市质量技术监督局.安全卫生优质农产品(或原料)产地环境标准(DB31/T252-2000).上海:上海市质量技术监督局,2000.
    [10]王云,汪雅谷,罗海林,等.上海市土壤环境背景值.北京:中国环境科学出版社,1992.
    [11]闫培峰,周华荣.白杨河-艾里克湖湿地土壤理化性质的空间分布特征.干旱区研究,2008,25(3):406-411.
    [12]姚春霞,陈振楼,许世远.上海市郊保护地土壤盐分研究.环境科学,2007,28(6):1372-1376.
    [13]于春兰.长兴县水田速效磷、钾和pH值的变化浅析.上海农业科技,2005,5:115-116.
    [14]赵风艳,吴凤芝,刘德.大棚菜地土壤理化特性的研究.土壤肥料,2000(2):11-13.
    [15]中华人民共和国农业部.绿色食品产地环境技术条件(NY/T 391_2000).北京:中国标准出版社,2000.
    [16]中华人民共和国农业部.无公害食品蔬菜产地环境条件(NY 5010-2001).北京:中国标准出版社,2001.
    [1]Cui Y J, Zhu Y G, Zhai R H, et al. Transfer of metals from soil to vegetables in an area near a smelter in Nanjing, China. Environmental International,2004,30(6):785-791.
    [2]Fytianos K, Katsianis G, Triantafylou P, et al. Accumulation of heavy metals in vegetables grown in an industrial area in relation to soil. Environmental Contamination and Toxicology, 2001,(67):423-430
    [3]Kachenko A G,Singh B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air and Soil Pollution,2006,(169):101-123.
    [4]Kisku G C, Barman S C, Bhargava S K. Contamination of soil and plants with potentially toxic elements irrigate with mixed industrial effluent and its implication on the environment. Water, Air and Soil Pollution,2000, (120):121-137.
    [5]Li Y, Wang Y B, Gou X, et al. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. Journal of Environmental Sciences,2006,18(6):1124-1134.
    [6]Norwegian Pollution Control Authority. Guidelines for the Risk Assessment of Contaminated Sites. Norway:Norwegian Pollution Control Authority,1999.
    [7]USEPA. EPA/540/186060. Superfund public health evaluation manual. Washington DC: USEPA,1986.
    [8]Voutsa D, Grmanis A, Sanara C. Trace elements in vegetables grown in an industrial in relation to soil and air particulate matter. Environmental Polltrion,1996, (94):325-335.
    [9]Zheng N, Wang Q C, Zheng D M. Health risk of Hg, Pb, Cd, Zn and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Science of The Total Environment,2007,383(1-3):81-89.
    [10]蔡保松,陈同斌,廖晓勇,等.土壤砷污染对蔬菜砷含量及食用安全性的影响.生态学报,2004,24(4):711-717.
    [11]陈同斌,宋波,郑袁明,等.北京市蔬菜和菜地土壤砷含量及其健康风险分析.地理学报,2006,61(3):297-310.
    [12]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47(3):207-210.
    [13]黄昀,刘光德,李其林,等.农产品对土壤中重金属的富集能力研究.中国农学通报,2004,20(6):285-289.
    [14]李军辉,卢瑛,尹伟,等.佛山市某工业区周边蔬菜重金属富集特征的研究.华南农业大学学报,2008,29(4):17-20.
    [15]史贵涛.痕量有毒金属元素在农田土壤-作物系统中的生物地球化学循环.上海:华东师范大学,2009:116-117.
    [16]覃志英,黄兆勇,陈广林,等.食品重金属污染的研究进展.广西预防医学,2003,9:5-8.
    [17]汪雅谷,章国强.蔬菜区土壤镉污染及蔬菜种类选择.农业环境保护,1985,(4):141-143.
    [18]许中坚,史红文,邱喜阳.铅锌冶炼厂周边蔬菜对重金属的吸收与富集研究.湖南科技大学学报(自然科学版),2008,23(4):107-110.
    [1]Azimi S, Ludwig A, Thevenot D R, et al. Trace metal determination in total atmospheric deposition in rural and urban areas. Sci Total Environ,2003,308:247-256.
    [2]Chester R, Bradshaw G F, Corcoran P A. Trace metal chemistry of the North Sea particulate aerosol:Concentrations, sources and sea water fates. Atmospheric Environment,1994,28: 2873-2883.
    [3]Christophe M, Blandine J, Emmanuel N. Measurement of trace metal wet, dry and total atmospheric fluxes over the Ligurian Sea. Atmospheric Environment,1997,31(6):889-896.
    [4]Firzgerald W F, Mason R P, Vandal G M. Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions. Water, Air and Soil Pollution,1991,56: 745-767.
    [5]Galloway J N, Thorton J D, Norton S A, et al. Trace metals in atmospheric deposition:A review and assessment. Atmos Environ,1982,16:1677-1700.
    [6]Garnaud S, Mouchel J M, Chebbo G,et al. Heavy metal concentrations in dry and wet atmospheric deposits in Paris district:comparison with urban runoff. Sci Total Environ,1999, 235:235-245.
    [7]Golomb D, Ryan D, Eby N, et al. Atmospheric deposition of toxics onto Massachusetts Bay, Atmospheric Environment.1997,31:1349-1359.
    [8]Injurk J, Grieken R V, Leeuw G D. Deposition of atmospheric trace elements into the North Sea:coastal, ship, platform measurements and model predictions. Atmospheric Environment, 1998,32:3011-3025.
    [9]Landis M S, Keeler G J. Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study. Environmental Science and Technology,2002,36: 4518-4524.
    [10]Masahiro S, Yukinori T, Tomoharu T. Wet and dry deposition fluxes of trace elements in Tokyo Bay. Atmospheric Environment,2008,42:5913-5922.
    [11]Morselli L, Olivieri P, Brusori B, et al. Soluble and insoluble fractions of heavy metals in wet and dry atmospheric depositions in Bologna, Italy. Environ Pollut,2003,124:457-469.
    [12]Motelay-Massei A, Ollivon D, Tiphagne K, et al. Atmospheric bulk deposition of trace elements to the Seine River Basin, France:concentrations, sources and evolution from 1988 to 2001 in Paris. Water, Air and Soil Pollution,2005,164:119-135.
    [13]Remoudaki E, Bergametti G, Losno R. On the dynamics of the atmospheric input of Copper and Manganese into the western Mediterranean Sea. Atnos Environ,1991,25:733-744.
    [14]Sandroni V, Migon C. Atmospheric deposition of metallic pollutants over the Ligurian Sea: labile and residual inputs. Chemosphere,2002,47:753-764.
    [15]Sweet C W, Weiss A, Vermette S J. Atmospheric deposition of trace metals at three sites near the Great Lakes. Water, Air and Soil Pollution,1998,103:423-439.
    [16]Tasic M, Rajsic S, Novakovic V, et al. Contribution to the methodology of dry deposition measurements. Fres Environ Bull,2001,10:305-309.
    [17]Wan Q, Feng X B, Lu J L, et al. Atmospheric mercury in Changbai Mountain area, northeastern China Ⅱ.The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes. Environmental Research,2009,109:721-727.
    [18]Wong C S C, Li X D, Zhang G, et al. Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmospheric Environment,2003,37:767-776.
    [19]丛源,陈岳龙,杨忠芳,等.北京平原区元素的大气干湿沉降通量,地质通报,2008,27(2):257-264.
    [20]汤奇峰,杨忠芳,张本仁,等.成都经济区As等元素大气干湿沉降通量及来源研究,地学前缘,2007,14(3):186-196.
    [21]吴辰熙,祁士华,苏秋克,等.福建省兴化湾大气沉降中重金属的测定,环境化学,2006,25(6):781-784.
    [22]张乃明.大气沉降对土壤重金属累积的影响,土壤与环境,2001,10(2):91-93.
    [1]Amezketa E.. An integrated methodology for assessing soil salinization, a pre-condition for land desertification. Journal of Arid Enviroments,2006,67:594-606.
    [2]Stalikas C D, Mantalovas A C, Pilidis G A. Multieliment concentrations in vegetable species grown in two typical agricultural areas of Greece. Sci Total Environ,1997,206(1):17-24.
    [3]Zhao G X, Li J, Li T, et al. Utilizing landsat TM imagery to map greenhouses in Qingzhou, Shandong province, China. Pedosphere,2004,14(3):363-369.
    [4]邓玉龙,张乃明.设施土壤pH值与有机质演变特征研究.生态环境,2006,15(2):367-370.
    [5]范庆锋,张玉龙,陈重.保护地蔬菜栽培对土壤盐分积累及pH值的影响.水土保持学报,2009,23(1):104-106.
    [6]房云波,孟春玲.保护地内土壤次生盐渍化对土壤形状的影响及对策.辽宁农业科学,2006,(6):104-106.
    [7]国家环境保护总局.温室蔬菜产地环境质量评价标准.北京:中国环境科学出版社,2007.
    [8]黄国锋,吴启堂,容天雨,等.无公害蔬菜生产基地环境质量评价.环境科学研究,1999,12(4):53-56.
    [9]李德成,李忠佩,周祥,等.不同使用年限蔬菜大棚土壤重金属含量变化.农村生态环境,2003,19(3):38-40.
    [10]李俊良,崔德杰,孟祥霞,等.山东寿光保护地蔬菜施肥现状及问题的研究.土壤通报,2002,33(2):126-129.
    [11]李文庆,骆洪义,刘加芬.大棚生态系统物流能流分析及效益评价.生态农业研究,1996,4(3):53-55.
    [12]李鱼,董德明,吕晓君,等.汽车尾气中铅对公路两侧土壤的污染特征.生态环境,2004,13(4):549-552
    [13]刘苹,杨力,于淑芳,等.寿光市蔬菜大棚土壤重金属含量的环境质量评价.环境科学研究,2008,21(5):66-71.
    [14]鲁如坤.土壤-植物营养学原理和施肥.北京:化学工业出版社,1998.
    [15]宋波,陈同斌,郑袁明,等.北京市菜地土壤和蔬菜镉含量及其健康风险分析.环境科学学报,2006,26(8):1343-1353.
    [16]诸海焘,田吉林,余廷园.崇明绿芦笋合理施肥技术研究初报.北方园艺,2009,(3):68-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700