Cu、Bi对AgSnO_2复合材料反应合成的组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对AgSn、AgSnCu和AgSnBi合金的内氧化实验,以及反应合成AgSnO_2CuO和AgSnO_2Bi_2O_3复合材料实验的研究。从热力学和动力学上分析了Cu、Bi添加对内氧化以及反应合成制备AgSnO_2材料的影响,并对反应合成的AgSnO_2CuO和AgSnO_2Bi_2O_3复合材料在不同工艺时期的组织结构和物理性能进行了分析。
     通过热力学计算得到:1)各金属与氧的亲合力Sn>Bi>Cu;2)在热力学上SnO_2比SnO更稳定,CuO比Cu_2O更稳定;3)在AgSnCu系统中的化学位Cu>Ag>Sn,在AgSnBi系统中的化学位Ag>Sn>Bi。
     AgSn合金内氧化的过程中,很容易发生外氧化。AgSnCu合金内氧化机理与AgSn类似,在反应的过程中未氧化的Sn又可以夺取CuO中的O,但这需要一定的温度来提供足够的能量,去克服能垒,所以在这个温度点之前,AgSnCu的内氧化增重曲线跟AgSn很接近,或者比AgSn的增重少,因为Sn是比Cu更容易氧化的。这个关键的温度点为350℃。AgSnBi合金中,Bi几乎不溶氧,Bi的存在,稀释了Sn的浓度,降低了Sn形成氧化膜的速率,随着反应的进行,Bi依附吸附了过量氧的Sn生成氧化物,但内层中未氧化的Sn又可以夺取已氧化的Bi的氧,这需要一定的温度来提供足够的能量去克服能垒,这关键温度点为250℃。
     反应合成AgSnO_2CuO(SnO_27.42wt%,CuO6.21wt%)和AgSnO_2Bi_2O_3(SnO_27.79wt%,Bi_2O_35.44wt%)复合材料的过程中,AgSnBiO系统的反应激活能约为235KJ/mol,AgSnCuO系统约为229KJ/mol,在相同的加热条件下,AgSnCuO系统先发生化学脱附,反映在温度上,就是AgSnCuO的脱附温度比AgSnBiO的脱附温度低20℃左右,为350℃。
     反应合成过程中:1)AgSnCu合金系统吸附氧的能力比较强,合金中Cu浓度越高,则吸附氧的能力越强,AgSnBi合金系统吸附氧的能力就比较弱,并且合金中Bi浓度越高,吸附氧的能力就越弱;2)AgSnCuO系统先是发生明显的置换反应,生成数量较多的氧化物,其中CuO的大量生成使基体的密度明显下降,再是基体中未反应Sn、Cu与游离氧的反应,生成的混合氧化物(SnO_2和CuO混杂在一起)弥散分布于基体,在晶界处有明显聚集。3)AgSnBiO系统,Bi被浓缩在晶界上,脆化了晶界,SnO_2在大颗粒的界面处偏聚,由于生成Bi_2Sn_2O_7使基体的密度下降。
In the present study, both the oxidation behavior of AgSn AgSnCu AgSnBi alloys and the reactive synthesis of AgSnO_2CuO and AgSnO_2Bi_2O_3 composites are investigated.Hence, the effect of Cu Bi additive to fabriacte the AgSnO_2 composites is analysed by means of thermodynamic and kinetics.Also, microstructure and physical property of AgSnO_2CuO and AgSnO_2Bi_2O_3 composites at the different stage of process are detail studied.
    In this case , three conclusions are concluded by thermodynamic computation: l)The chemical affinity (Oxygen potential) of tin is stronger than bismuth, and bismuth stronger than copper. 2) The SnO_2 is more stable than SnO, and CuO more stable than Cu_2O. 3)From high to low, the order of chemical potential is Cu, Ag, Sn, Bi.
    It's easy to form thick external oxide layer for AgSn alloy during the internal oxidation process.The internal oxidation mechanism in AgSnCu alloy has much common with the AgSn alloys.When copper gets oxidation, tin captures the oxygen from the copper oxide.The key point temperatures for tin to overcome energy barrier to capture the Oxygen belong to copper oxide is 350℃ .Bismuth has low cohesive affinity to oxygen.So, at first, the present of bismuth decreases the oxidation rate of the tin in the AgSnBi alloy.Tin is easy to fix oxygen and makes excessive oxygen in the matrix.Later, bismuth depends on tin oxide to form new oxide, such as Bi_2Sn_2O_7.At last, tin snatches oxygen from this new bismuth oxide at the 250℃.
    During the reactive synthesis of AgSnO_2CuO(SnO_27.42wt% , CuO6.21wt%) and AgSnO_2Bi_2O_3(SnO_2 7.79wt% , Bi_2O_35.44wt%) composites, the activation energy of AgSnBiO system is higher than the AgSnCuO system.The activation energy to decompose for AgSnCuO system is about 229kJ/mole, AgSnBiO system about 235kJ/mole.The decompose temperature for AgSnCuO system is 350℃ , which is lower than AgSnBiO system about 20℃.
    During the reactive synthesis process: 1) The higher concentration of
    copper is, the higher ability for AgSnCu alloy to absorb oxygen.As for the bismuth in the AgSnBi alloy, quite the reverse. 2) The chemical reaction in the AgSnCuO or AgSnBiO system can be divided into two parts: One is displacement reactions between alloys and Ag_2O.The other is alloys reacting with active oxygen.Displacement reaction happens at the low temperature(<352℃) for the AgSnCuO system.Because of large quantity of copper oxide apperance, the density of matrix obviously decreases. 3) Bismuth is condensed at the grain boundary and decreases the property of the boundary.The SnO_2 particle uniformly disperses at the matrix and segregates at the grain boundary. The appearance of Bi_2Sn_2O_7 decreases the density of matrix.
引文
[1] 邵文柱,崔玉胜,杨德庄.电接触材料的发展与现状.电工合金,1999,1:11-35
    [2] 史久熙.电触头材料的技术发展和节银回顾.粉末冶金工业,1999,9(3):37-40
    [3] 黄大鹏,贾成厂,曲选辉.银基氧化物电接触材料的发展与现状.电工材料,2003,4:41-45
    [4] 陈敬超,孙加林,张昆华等.银氧化镉材料的欧盟限制政策与其它银金属氧化物电接触材料的发展.电工材料,2002,4:41-44
    [5] L Kosec, J Roth, M Bizjak, et al. Internal Oxidation of an Ag-1.3at%Te Alloy. Oxidation of Metals, 2001, 56(5/6): 395-414
    [6] W P Vellinga, J Th M De Hosson. Atomic Structure and Orientation Relations of Interfaces Between Ag and ZnO. Acta mater, 1997, 45(3): 933-950
    [7] J Roth, L Kosec, P Skraba, et al. Internal Oxidation of Ag-1.3at%Se Alloy. Part Ⅰ: Composition and Appearance of Oxidation Products. Oxidation of Metals, 2004, 62(3/4): 273-291
    [8] J Roth, L Kosec, I Anzel. Internal Oxidation of Ag-1.3at%Se Alloy Part Ⅱ: Kinetics of Internal Oxidation. Oxidation of Metals, 2004, 62(3/4): 293-308
    [9] Y Niu, F Gesmundo, M Al-Omaryc, et al. The high temperature oxidation of a two-phase Ag-Y alloy under 1 and 10~(-20) atm O~2 Journal of Alloys and Compounds, 2001, 317-318: 573-577
    [10] Kishio Arita, Koichi Fujirara, Shigeyuki Tsurumi, et al. Eutectic Silver-Silicon Internally Oxidized Contacts, IEEE, 1981, 122-127
    [11] Pictro Riello, Stefano Polizzi, Giuliano Fagherazzi, et al. Small angle scattering of Ag-1wt%Mg alloys internally oxidized at high temperatures: a model of interacting spherical clusters. PCCP, 2001, 3: 3213-3216
    [12] 王德仁,何业东,李顺华等.Ag-In合金在不同氧分压下的氧化现象.中国腐蚀与防护学报,2002,22(2):79-83
    [13] 付广艳,宋尽霞,牛焱.机械合金化Ag-30Cr合金在0.1MPA纯氧气中的氧化.金属学报,2003,39(9):995-998
    [14] 赵泽良,牛焱.纳米晶Ni-Ag合金高温氧化行为研究腐蚀科学与防护技术,2001,13增刊:415-420
    [15] 闫杏丽,银氧化铜电接触材料组织性能研究:[硕士学位论文],昆明:昆明理工大学,2004
    [16] 吴春萍,银稀土氧化物电接触材料内氧化制备及机理研究:[硕士学位论文],昆明:昆明理工大学,2005
    [17] 李英民,王俊勃,纪东等.新型ag/SnO_2触头材料的发展现状电气开关,2003,3:20-26
    [18] 张明江AgSnO_2触头材料的发展现状及其在继电器中的应用.电工材料,2004,4:20-26
    [19] 程礼椿,李震彪,邹积岩.汽车继电器用新型Ag/SnO_2无毒触头材料.电工合金,1997,2:6-10
    [20] 周兆锋,甘卫平AgSnO_2触头材料的研究进展.稀有金属与硬质合金,2004,32(2):53-56
    [21] 杜作娟,杨天足,古映莹等.AgSnO_2电触点材料制备方法进展.材料导报,2005,19(2):39-42
    [22] 马站红,陈敬超,周晓龙等.几种金属元素对银基电接触材料的影响作用.材料导报,2002,16(11):23-25
    [23] 林文松,方宁象,林炳.Bi对Ag-Sn合金粉末内氧化机制的影响.粉末冶金技术,2002,20(4):200-204
    [24] 邓忠民,吕贤勇,郑福前等.某些金属元素对Ag-Sn合金内氧化速度的影响.贵金属,2001,3:8-11
    [25] 倪孟良,凌国平,刘远廷.添加剂对AgSnO_2复合粉末烧结体组织的影响.电工材料,2005,2:7-20
    [26] Lu Jianguo, Wang Jingqin, Zhao Jingying. A new contact material Ag/SnO_2-La_2O_3-Bi_2O_3. Rare Metals, 2002, 21(4): 289-293
    [27] A Verma, T R Anantharaman. Internal oxidation of rapidly solidified silver-tin-indium alloy powders, Journal of Materials Science, 1992, 27: 5623-5628
    [28] Joo Wan Lee, Hu Chu Lee. Effects of Tellurium addition on the internal Oxidation of Ag-Sn alloys. Scripta mater, 2000, 42: 169-173
    [29] 马战红,贾江议,孙乐民.银金属氧化物(agMeO)触头材料制备技术研究进展.材料开发与应用,2004,19(4):39-43
    [30] 王庆平,姚明,陈刚.反应生成金属基复合材料制备方法的研究进展.江苏大学学报(自然科学版),2003,24(3):57-61
    [31] 严学华,孙少纯,蒋宗字.原位反应复合材料研究进展.铸造设备研究,2001,1:27-30
    [32] 陈敬超,孙加林,张昆华等.反应合成法制备银氧化锡电接触材料.机电元件,2001(9):17-20
    [33] 李美栓编著金属的高温腐蚀.北京:冶金工业出版社,2001
    [34] 李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2004
    [35] F D Richardson, H E Jeffes. Journal of the Iron and Steel lnstitute. The Metal Society , 1948, 160: 263
    [36] 李正伟,金属高温氧化中的一些基础问题研究——基于固体电化学氧泵系统研究氧化动力学与合金外/内氧化转变:[博士学位论文],北京:北京科技大学,2000
    [37] http://www.library.unsw.edu.au/-thesis/adt-NUN/uploads/approved/adt-NUN20040817.151942/public/03chapter2.pdf
    [38] F Gesmundo, F Viani, Y Niu, et al. The Relation Between the Parabolic Rate Constants for the Internal Oxidation of Binary Alloys in Terms of Weight Gain or Thickness. Oxidation of Metals, 1994, 42(3/4): 239-247
    [39] C Wagner. Reaktionstypen bei der Oxydation yon Legieungen. Z Elektrochem, 1959, 63: 772-782
    [40] C Wagner. Passivity and Inhibition during the Oxidation of Metals at Elevated Temperatures. Corros. Sci. 1965, 5: 751-764
    [41] R A Rapp. The transition from Internal to External Oxidation and Formation of Interruption Bands in Silver-Indium Alloys, Acta Met, 1961, 9: 730-741
    [42] R A Rapp. Kinetics. Microstructures and Mechanism of Internal Oxidation, its Effect and Prevention in High Temperature Alloy Oxidation. Corroeion, 1996, 21: 382-401
    [43] Ge Wang, B Gleeson, D L Douglass. An extension of Wagner's Analysis of Competing Scale Formation. Oxidtion of Metals, 1991, 35(3/4): 317-332
    [44] 彭晓,平德海,李铁藩.内氧化形核反常现象的一种解释.科学通报,1996,41(17):1619-1621
    [45] 彭晓,李铁藩.AgCu合金的内氧化行为.中国腐蚀与防护学报.1997,17(4):248-254
    [46] A Paul, M J H van Dal, A A Kodentsov, et al. The Kirkendall effect in multiphase diffusion. Acta Materialia, 2004, 52: 623-630
    [47] Yoshitaka Matsukawa, Steven J Zinkle. Dynamic observation of the collapse process of a stacking fault tetrahedron by moving dislocations. Journal of Nuclear Materials, 2004, 329-333: 919-923
    [48] B D Wirth, V V Bulatov, T Diaz de la Rubia. Dislocation-Stacking Fault Tetrahedron Interactions in Cu, Journal of Engineering Materials and Technology, 2002, 124: 329-334
    [49] 田素贵,邵会孟,周龙江等1.Cu-Al粉末烧结合金内氧化研究.沈阳工业大学学报,1995,17(3): 30-34
    [50] 田素贵,邵会孟.粉末烧结Cu-Al合金内氧化动力学的研究.腐蚀科学与防护技术,1996,8(4):291-295
    [51] 田素贵,孙太礼,周龙江等.Cu-Al粉末烧结合金的内靴行为.中国腐蚀与防护学报,2001,21(1)59-64
    [52] 申玉田,崔春翔,孟凡斌,et al.Cu-Al合金内氧化及Cu氧化行为的热力学分析.粉末冶金技术,2001,19(1):28-32
    [53] 申玉田,孙建忠,崔春翔等1.Cu-Al合金内氧化产物及分布的研究,粉末冶金技术,2004,22(3):131-134
    [54] 申玉田,崔春翔,申玉发等1.Cu-Al合金内氧化的热力学分析——Ⅰ热力学函数.稀有金属材料与工程,2004,33(6):576-579
    [55] 申玉田,崔春翔,申玉发等1.Cu-Al合金内氧化的热力学分析——Ⅱ热力学函数.稀有金属材料与工程,2004,33(7):692-695
    [56] 张运,武建军,李国彬等.铜铝合金的内氧化.材料科学与工艺,1996,7(2):91-95
    [57] 梁淑华,徐磊,方亮等.Cu-Al预合金粉末中Al内氧化工艺的分析.金属学报,2004,4(3):309-313
    [58] Shuhua Liang, Zhikang Fana, Lei Xua, et al. Kinetic analysis on Al_2O_3/Cu composite prepared by mechanical activation and internal oxidation, Composites: Part A, 2004, 35: 1441-1446
    [59] J Brito Correia, M Pereira Caldas, N Shohoji. Dependence of internal oxidation rate of water atomized Cu-Al alloy powders on oxygen partial pressure. Journal of Materials Science Letters, 1996, 15: 465-468
    [60] Kexing Song, Jiandong Xing, Qiming Dong, et al. Internal oxidation of dilute Cu-Al alloy powers with oxidant of Cu_2O. Materials Science and Engineering, 2004, A380: 117-122
    [61] Li Guobin, Sun jibing, Guo Quanmei, et al. Fabrication of the nanometer Al_2O_3/Cu composite by internal oxidation, Journal of Materials Processing Technology, 2005, 170: 336-340
    [62] 熊易芬.银及银合金的内氧化贵金属,1990,11(2):41-47
    [63] 刘承峰.银合金内氧化动力学分析.电工合金,1997,1:1-9
    [64] 牛焱,宋尽霞.Ag-Y两相合金在高-低氧压下的高温氧化.中国腐蚀与防护学报,2001,21(4):200-205
    [65] 丁万山,林晓莎,林炳,et al.预合金粉末内氧化法生产高性能AgMeO触头材料.电工材料,2004,4:12-17
    [66] 彭晓,周龙江,李铁藩等.低氧分压系统及其在二元合金选择性氧化中的应用.中国腐蚀与防护学报,1996,16(2):140-144
    [67] J R DiStefano, B A Pint, J H DeVan. Oxidation of refractory metals in air and low pressure oxygen gas. International Journal of Refractory Metals & Hard Materials, 2000, 18: 237-243
    [68] A Combe, J Cabane. Mechanism of Internal Oxidation in Silver Alloys. Oxidation of Metals, 1984, 21(1/2): 21-37
    [69] B C Proroka, K C Goretta, J H Parka, et al. Oxygen diffusion and internal oxidation of Mg in Ag/1.12at%Mg.Physica C, 2002, 370: 31-38
    [70] C Kluthe, T A Kassab, R Kirchheim. Tomographic atom probe investigation of MgO precipitates in silver. Materials Science and Engineering, 2002, A327: 70-75
    [71] C Kluthe, T A Kassab, R Kirchheim, Eady stages of oxide precipitation in Ag-0.42at%Mg examined with the Tomographic atom probe, Materials Science and Engineering, 2003, A353: 112-118
    [72] D A Shashkov, D A Muller, D N Seidman. Atomic-scale structure and chemistry of ceramic/metal interfaces Ⅱ Solute segregation at MgO/Cu(Ag) and CdO/Ag(Au) interfaces, Acta mater. 1999, 47(15/16): 3953-3963
    [73] D A Shashkov, M F Chisholm, D N Seidman, Atomic-Scale Structure and Chernistry of Ceramic/Metal Interfaces Ⅰ Atomic structure of {222}. MgO/Cu(Ag) Interfaces. Am mater, 1999, 47(15/16): 3939-3951
    [74] E Pippel, J Woltersdorf, J Gegner, et al. Evidence of Oxygen segregation at Ag/MgO Interfaces. Acta mater, 2000, 48: 2571-2578
    [75] A Katsman, H J Grabke, L Levin. Penetration of oxygen along grain boundaries during oxidation of alloys and intermetallics. Oxidation of Metals, 1996, 46: 313-331
    [76] D P Whittle, F Gesmundo, B D Bastow, et al. The Formation of solid solution Oxides During Internal Oxidation. Oxidation of Metals, 1981, 16(1/2): 159-174
    [77] F Gesmundo, Y Niu. The Formation of Two Layers in the Internal Oxidation of Binary Alloys by Two Oxidants in the Absence of External Scales. Oxidation of Metals, 1999, 51(1/2): 129-158
    [78] F Gesmundo, F Viani, V Dovit, et al. The Effect of Supersaturation on the Parabolic Rate Constant for Internal Oxidation with Production of a Pure Oxide: An Approximate Analytical Treatment. Oxidation of Metals, 1982, 17(1/2): 99-125
    [79] K M Vedula, A W Funkenbusch, R W Heckel. A. Mathematical Model for Internal Oxidation. Oxidation of Metals, 1981, 16(5/6): 385-398
    [80] Yali Li, J E Morral.. A local equilibrium model for internal oxidation. Acta Materialia, 2002, 50: 3683-3691
    [81] 赵泽良,牛焱.Cu-15Ni-15Ag合金在600~700℃空气中的氧化.腐蚀科学与防护技术,2001,13(4):187-191
    [82] 牛焱.低氧压下三元合金最活泼组元单一内氧化的理论分析.腐蚀科学与防护技术,20Q5,17(1):23-30
    [83] F Gesmundo, Y Niu. The Internal Oxidation of Temary Alloys Ⅰ: The Single Oxidation of the Most-Reactive Component under low Oxidant Pressures. Oxidation of Metals, 2003, 60(5/6): 347-370
    [84] Y Niu, F Cresmundoy. The Internal Oxidation of Ternary Alloys Ⅱ: The Coupled Internal Oxidation of the Two Most-Reactive Components under Intermediate Oxidant Pressures. Oxidation of Metals, 2003, 60(5/6): 371-391
    [85] Y Niu, F Gesmundo. The Internal Oxidation of Ternary Alloys Ⅲ: The Coupled Internal Oxidation of the Two Most-Reactive Components under High Oxidant Pressures. Oxidation of Metals, 2004, 62(5/6): 341-355
    [86] F Gesmundo, Y Niu. The Internal Oxidation of Ternary Alloys Ⅳ: The Internal Oxidation of the Most-Reactive Component Beneath External Scales of the Component Having Intermediate Reactivity. Oxidation of Metals, 2004, 62(5/6): 357-374
    [87] F Gesmundo, Y Niu. The Internal Oxidation of Ternary Alloys Ⅴ: The Transition from Internal to External Oxidation of the Most-Reactive Component under Low Oxidant Pressures. Oxidation of Metals, 2004, 62(5/6): 375-390
    [88] Y Niu, F Gesmundo. The Internal Oxidation of Ternary Alloys Ⅵ: The Transition from Internal to External Oxidation of the Most-Reactive Component under Intermediate Oxidant Pressures. Oxidation of Metals, 2004, 62(5/6): 391-410
    [89] S W Guan, W W Smeltzer. Oxygen Solubility and a Criterion for the Transition from Internal to External Oxidation of Ternary Alloys. Oxidation of Metals, 1994, 42(5/6): 375-391
    [90] S W Guan, H C Yi, W W Smeltzer. Internal Oxidation of Temary Alloys. Part Ⅰ: Kinetics in the Absence of an External Scale. Oxidation of Metals, 1994, 41(5/6): 377-387
    [91] S W Guan, H C Yi, W W Smeltzer. Internal Oxidation of Ternary Alloys. Part Ⅱ: Kinetics in the Presence of an External Scale. Oxidation of Metals, 1994, 41(5/6): 389-400
    [92] 邓茂华,三种分析反应动力学及烧结资料的新方法:[硕士学位论文],台湾:国立台湾大学,2003
    [93] 潘金生,仝健民,田明波.材料科学基础.北京:清华大学出版社,1998
    [94] R L Coble. Sintering Crystalline Solids I Intermediate and State Diffusion Models. Journal of Applied Physics, 1961, 32: 787-792
    [95] R L Coble. Intermediate-Stage Sintering: Modification and Correction of a Lattice Diffusion Model. Journal of Applied Physics, 1965, 36: 2327
    [96] J D Hansen, R P Rusin, M H Teng, et al. Combined Stage Sintering Model. Journal of the American Ceramic Society, 1992, 75(5): 1129-1135
    [97] H Su, D L Johnson. A Practical Approach to Sintering. Thee American Ceramic Society Bulletin, 1997, 76(2): 72-76.
    [98] H Su, D L Johnson. Master Sintering Curve: a Practical Approach to Sintering. Journal of the American Ceramic Society, 1996, 79(12): 3211-3217
    [99] M Avrami, Kinetics of Phase Change Ⅰ, Journal of Chemical Physics, 1939, 7: 1103-1112
    [100] M Avrami, Kinetics of Phase Change: Transformation Time Relations for Random Distribution of Nuclei. Journal of Chemical Physics, 1940, 8: 212-224
    [101] W A Johnson, R F Mehl. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min (Metal) Engs. 1939, 135: 416-442
    [102] H E Kissinger. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 1957, 29: 1702-1706.
    [103] G Ruitenberg. Applying Kissinger analysis to the glass transition peak in amorphous metals, Thermochimica Acta, 2003, 404: 207-211
    [104] Young Shin Cho, Mi Ja Shim. Thermal degradation kinetics of PE by the Kissinger equation, Materials Chemistry and Physics, 1998, 52: 94-97
    [105] 颜怡文,银-锡/铜与银-锡/金系统之相平衡与界面反应的研究:[博士学位论文],台湾:国立清华大学,2002
    [106] Thaddeus B. Massalski. Binary Alloy Phase Diagrams Second Edition, The Materials Information Society, ASM international, 1990
    [107] W DeQing, J Neumann, H F Lopez. Reactive Synthesis of In-Situ ZrAl_3-Al_2O_3-Al Composites. Metallurgical and Materials Transactions, 2003, 34A: 1357-1360
    [108] S H Ko, S Hanada. In-situ production and microstructures of iron Aluminide/TiC composites. Intermetallics, 1999, 7: 947-955
    [109] S C Deevi, S Deevi. In-situ synthesis of MoSi_2-Al_2O_3 Composite by a thermite reaction. Scripta Metallurgica et Materialia, 1995, 33(3): 415-420,
    [110] M Hanabe, P B Aswath. Synthesis of In-situ reinforced Al composites from Al-Si-Mg-O precursors. Acta mater, 1997, 45(10): 4067-4076
    [111] S L Zhang, F M D Heurle. Precisions on reaction monitoring from in-situ resistance measurements: relations between such measurements and actual reaction kinetics. Thin Solid Films, 1996, 279: 248-252
    [112] Noboru Yoshikawa, Akira Hattori, Shoji Taniguchi. Growth rates and microstructures of reacted layers between molten Al-Fe alloy and SiO_2. Materials Science and Engineering, 2003, A342: 51-57
    [113] K L Tee, L Lu, M O Lai. Improvement in mechanical properties of in-situ Al-TiB2 composite by incorporation of carbon. Materials Science and Engineering, 2003, A: 227-231
    [114] Toru FuJimura, Shun-lchiro Tana.In-situ high temperature X-ray differaction study of Cu/Al_2O_3 interface reactions.Actamater, 1998, 46(9):3057-3061
    [115] 梁英教,车荫昌主编.无机物热力学数据手册.沈阳:东北大学出版社,1993
    [116] 叶大伦,胡建华编著.实用无机物热力学数据手册.北京:冶金工业出版社,2002
    [117] 邓忠民,吕贤勇,郑福前等.内氧化粉体制备的Ag-SnO_2接点材料的显微结构.贵金属,2000,21(4):12-15
    [118] N Lorrain, L Chaffron, C Carry, et al. Kinetics and formation mechanisms of the nanocomposite powder Ag-SnO2 prepared by reactive milling. Materials Science and Engineering, 2004, A367 (1-2): 1-8
    [119] 程传煊.表面物理化学.北京:科学出版社,1994
    [120] 杨南如.无机非金属材料测试方法.武汉:武汉工业大学出版社,1998
    [121] M J Starink.A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochimica Acta, 1996, 288:97-104
    [122] O.Kubaschewski, Dr.phil.habil, B.E.Hopkins, et al, .Oxidation of metals and alloys.Butterworths and Co.Ltd, 1962
    [123] Ivana Radosavljevic Evans, Judith A. K. Howard, John S. O. Evans.a-Bi_2Sn_2O_7-a176 atom crystal structure from powder diffraction data. Journal of Materials Chemistry, 2003, 13:2098-2103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700