红树林土壤微生物卤代酶基因和宏基因组非核糖体肽合酶基因的克隆和表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树林是分布于热带、亚热带海岸的潮间带的木本植物群落,是海滩上特有的森林类型。红树林生态系统具有高生产率,高归还率,高分解率的“三高”特点。微生物是红树林生态系统中重要的生物组成成份,它在红树林生态系统的能量物质循环中起着关键的作用。由于红树林生态系统处于咸淡水交汇的特殊环境,兼具海洋与陆地的性质,因而其中的微生物形成了独特的生长代谢调控机制和化学防御机制,其独特的代谢产物也将成为我们获取新型天然产物的资源宝库。
     首先,用不同的针对卤代酶基因设计的引物对分离自红树林土壤的放线菌进行筛选,发现其中含有丰富的卤代酶基因,且类型多样。由此推测这些放线菌具有产生类型多样的卤代化合物的潜力。并对其中的几个FADH_2依赖型卤代酶进行表达,试图阐明其催化机制,但一直无法实现可溶性表达。
     在对分离自红树林土壤沉积物的放线菌进行卤代酶基因筛选时,发现MGR072菌株中的卤代酶基因与Actinosynnema pretiosum subsp.Auranticum中卤代酶基因asm12的相似性为64%,另外用针对安莎类抗生素起始合成酶AHBA合酶基因设计的引物对其进行扩增,发现AHBA合酶基因扩增结果为阳性。综合以上结果,推测其中含有合成安莎类抗生素的生物合成基因簇,构建了其基因组文库,发掘出其中与安莎类抗生素生物合成相关的约70Kb的基因簇。并对其培养条件进行了初步的研究。
     我们还构建了含有至少260Mb红树林沉积物环境样品DNA的沉积物宏基因组文库,并利用序列同源性驱动筛选方法对其中所含有的NRPS基因加以系统的发掘和整理,发现了克隆4F11可能包含一段完整的NRPS基因簇。
Mangroves are unique woody plant communities growing in intertidal zones of tropical and subtropical coast. The mangrove ecosystem has the characteristics of high productivity, high return rates and high rates of decomposition which are called "three-high" feature. Microorganisms are an important biological composition in mangrove ecosystem, and play a key role in its energy and substances cycle. Because the mangrove ecosystem is in the intersection of freshwater and seawater and have both marine and terrestrial nature, the microorganisms form particular mechanisms of metabolism regulation and chemical defense and their secondary metaboites will also become a new source of natural products.
     First, we investigated the diversity of halogenase genes of the actinomycetes which were isolated from mangrove sediments by using two pairs of specific degenerate primers and found it was abundant in halogenase genes. Based on these results it was believed that these actinomycetes had potential ability to produce kinds of organohalogen compounds. And then three FADH_2-dependent halogenases were expressed in E.coli in order to explain the mechanism of halogenation. But they couldn't express as soluble protein in our experiments.
     when investigating the diversity of halogenase genes of the actinomycetes, we found a halogenase gene fragment of strain MGR072 exhibited 64% similarity with the halogenase gene asm12 of Actinosynnema pretiosum subsp. Auranticum. Then we used the primers which could amplify the AHBA synthetase gene to test the strain MGR072, and the result was positive. Based on the results above we presumed the strain MGR072 could produce a new ansamycin compound. After construction the genomic library of it, we got a 70Kb gene cluster associated with the biosynthesis of the new ansamycin compound, and preliminary studied on the cultural condition.
     At last, a metagenomic cosmid library was constructed with the large DNA fragments obtained from mangrove sediments, and was screened the NRPS gene by sequence-driven screening. A clone 4F11 was obtained and it maybe contains a whole NRPS gene cluster.
引文
[1]刘峰,洪葵.红树林微生物及其代谢产物多样性[J].海南医学,2006,17(5):171-173.
    [2]林鹏.中国红树林研究进展[J].厦门大学学报(自然科学版),2001,40(2):592.
    [3]林鹏.中国红树林生态系[M].北京:科学出版社.1997.
    [4]Alongi D M.Bacterial productivity and microbial biomass intropical mangrove sediments[J].Microbial Ecology,1988,15(1):59-79.
    [5]Shome R,Shome B R,Mandal A B,et al.Bacterial flora in mangroves of Andaman:Part Ⅰ.Isolation,identification and antibiogram studies[J].Indian Journal of Marine Sciences,1995,24(2):97-98.
    [6]Hyde K D,Lee S Y.Ecology of mangrove fungi and their role in nutriert cycling:What gaps occur in our knowledge?.[J].Hydrobiologia,1995,295(1-3):107-188.
    [7]Volkmann-Kohlmeyer B,Kohlmeyer J.Biogeographic observation on Pacific marine fungi[J].Mycologia,1993,85(3):337-346.
    [8]Kohlmeyer J,Kohlmeyer E.Marine Mycology.The Higher Fungi[M].New York:Academic Press,1979.
    [9]Jones E B G,Hyde K D.Methods for the study of marine fungi from the mangroves.In:Agate A D,Subramanian C V,Vannucci M.Mangrove Microbiology;Role of microorganism in nutrient cycling of mangrove soils and waters[M].1988.
    [10]Wu R Y.Studies on the microbial ecology of Tansui Estuary[J].Botanical Bulletin of Academin Sinica,1993,34(1):13-30.
    [11]江晓路,梁晓婷,曹杰铭.深圳福田红树林生态中放线菌的筛选及其抗菌活性测定[J].中国海洋大学学报,2006,36(4):601-605.
    [12]闫莉萍,洪葵,胡申才,et al.海南近海30株抗B16细胞活性放线菌的16SrDNA多样性分析[J].微生物学报,2005,45(2):185-189.
    [13]林文翰.红树附生微生物的化学成分研究第三届海洋高技术论坛(下册)[M].2005.
    [14]Poch G K,Gloer J B.Auranticins A and B:two new depsidones from a mangrove isolate of the fungus Preussia aurantiaca[J].J Nat Prod,1991,54(1):213-217.
    [15]Schlingmann G,Milne L,Williams D R,et al.Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256.Ⅱ.Isolation and structure determination[J].J Antibiot(Tokyo),1998,51(3):303-316.
    [16]李厚金.六种南海海洋微生物的代谢产物及柳珊瑚酸衍生物的生物合成[D].中山大学博士学位论文,2002.
    [17]Wu X,Liu X,Jiang G,et al.Xyloketal G,a Novel Metabolite from the Mangrove Fungus Xylaria sp.2508[J].Chemistry of Natural Compounds,2005,41(1):27-29.
    [18]Asolkar R N,Maskey R P,Helmke E,et al.Chalcomycin B,a new macrolide antibiotic from the marine isolate Streptomyces sp.B7064[J].J Antibiot(Tokyo),2002,55(10):893-898.
    [19]Stritzke K,Schulz S,Laatsch H,et al.Novel caprolactones from a marine streptomycete[J].J Nat Prod,2004,67(3):395-401.
    [20]朱九滨,洪葵,庄令等.红树林细胞毒活性放线菌的筛选及其所产活性物质的初步研究[J].华南热带农业大学学报,2005,11(3):5-8.
    [21]Gribble G W.The diversity of naturally produced organohalogens[J].Chemosphere,2003,52(2):289-297.
    [22]Gribble G W.Naturally occurring organohalogen compounds--a comprehensive survey[J].Fortsehr Chem Org Naturst,1996,68(1-423.
    [23]van Pee K H.Biosynthesis of halogenated metabolites by bacteria[J].Annu Rev Mierobiol,1996,50(375-399.
    [24]van Pee K H,Ligon J M.Biosynthesis of pyrrolnitrin and other phenylpyrrole derivatives by bacteria[J].Nat Prod Rep,2000,17(2):157-164.
    [25]Pereira E R,Belin L,Sancelme M,et al.Structure-activity relationships in a series of substituted indolocarbazoles:topoisomerase I and protein kinase C inhibition and antitumoral and antimicrobial properties[J].J Med Chem,1996,39(22):4471-4477.
    [26]Hager L P,Morris D R,Brown F S,et al.Chloroperoxidase.Ⅱ.Utilization of halogen anions[J].J Biol Chem,1966,241(8):1769-1777.
    [27]van Pee K H.Microbial biosynthesis of halometabolites[J].Arch Microbiol,2001,175(4):250-258.
    [28]Sundaramoorthy M,Terner J,Poulos T L.Stereochemistry of the chloroperoxidase active site:crystallographic and molecular-modeling studies[J].Chem Biol,1998,5(9):461-473.
    [29]Hemrika W,Renirie R,Dekker H L,et al.From phosphatases to vanadium peroxidases:a similar architecture of the active site[J].Proc Natl Acad Sci U S A,1997,94(6):2145-2149.
    [30]Picard M,Gross J,Lubbert E,et al.Metal-free bacterial haloperoxidases as unusual hydrolases:activation of H2O2 by the formation of peracetic acid[J].1997,36(1196-1199.
    [31]Dairi T,Nakano T,Aisaka K,et al.Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline[J].Biosci Biotechnol Biochem,1995,59(6):1099-1106.
    [32]Hammer P E,Hill D S,Lam S T,et al.Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin[J].Appl Environ Microbiol,1997,63(6):2147-2154.
    [33]Keller S,Wage T,Hohaus K,et al.Purification and Partial Characterization of Tryptophan 7-Halogenase (PrnA) from Pseudomonas fluorescens[J].Angew Chem Int Ed Engl,2000,39(13):2300-2302.
    [34]Murphy C D.Recent developments in enzymatic chlorination[J].Nat Prod Rep,2006,23(2):147-152.
    [35]Dong C,Flecks S,Unversucht S,et al.Tryptophan 7-halogenase(PrnA) structure suggests a mechanism for regioselective chlorination[J].Science,2005,309(5744):2216-2219.
    [36]Chang Z,Flatt P,Gerwick W H,et al.The barbamide biosynthetic gene cluster:a novel marine cyanobacterial system of mixed polyketide synthase(PKS)-non-ribosomal peptide synthetase(NRPS) origin involving an unusual trichloroleucyl starter unit[J].Gene,2002,296(1-2):235-247.
    [37]Guenzi E,Galli G,Grgurina I,et al.Characterization of the syringomycin synthetase gene cluster.A link between prokaryotic and eukaryotic peptide synthetases[J].J Biol Chem,1998,273(49):32857-32863.
    [38]Vaillancourt F H,Yin J,Walsh C T.SyrB2 in syringomycin E biosynthesis is a nonheme FeⅡalpha-ketoglutarate-and O2-dependent halogenase[J].Proc Natl Acad Sci U S A,2005,102(29):10111-10116.
    [39]Vaillancourt F H,Yeh E,Vosburg D A,et al.Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis[J].Nature,2005,436(7054):1191-1194.
    [40]Eustaquio A S,Pojer F,Noel J P,et al.Discovery and characterization of a marine bacterial SAM-dependent chlorinase[J].Nat Chem Biol,2008,4(1):69-74.
    [41]Sanchez C,Zhu L,Brana A F,et al.Combinatorial biosynthesis ofantitumor indolocarbazole compounds [J].Proc Natl Acad Sci U S A,2005,102(2):461-466.
    [42]Homung A,Bertazzo M,Dziarnowski A,et al.A genomic screening approach to the structure-guided identification of drug candidates from natural sources[J].Chembiochem,2007,8(7):757-766.
    [43]Rappe M S,Giovannoni S J.Evolution,diversity and molecular ecology of marine prokaryotes,p.47-84.In D.L.Kirchman(ed.),Microbial ecology of the oceans[M].New York:Wiley,2000.
    [44]代焕琴.安丝菌素生物合成的后修饰研究[D].中国科学院昆明植物研究所博士学位论文,2006.
    [45]Chiu H T,Hubbard B K,Shah A N,et al.Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster[J].Proc Natl Acad Sci U S A,2001,98(15):8548-8553.
    [46]Zehner S,Kotzsch A,Bister B,et al.A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005[J].Chem Biol,2005,12(4):445-452.
    [47]Corina S,Heige S,Julia R.et al.A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis[J].Biocatalysis and biotransformation,2006,24(6):401-408.
    [48]张致平.微生物药物学[M].北京:化学工业出版社,2003.
    [49]August P R,Tang L,Yoon Y J,et al.Biosynthesis of the ansamycin antibiotic rifamycin:deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699[J].Chem Biol,1998,5(2):69-79.
    [50]Watanabe K,Rude M A,Walsh C T,et al.Engineered biosynthesis of an ansamycin polyketide precursor in Escherichia coli[J].Proc Natl Acad Sci U S A,2003,100(17):9774-9778.
    [51]Rondon M R,August P R,Bettermann A D,et al.Cloning the soil metagenome:a strategy for accessing the genetic and functional diversity of uncultured microorganisms[J].Appl Environ Microbiol,2000,66(6):2541-2547.
    [52]Handelsman J.Metagenomics:application of genomics to uncultured microorganisms[J].Microbiol Mol Biol Rev,2004,68(4):669-685.
    [53]Riesenfeld C S,Schloss P D,Handelsman J.Metagenomics:genomic analysis of microbial communities[J].Annu Rev Genet,2004,38(525-552.
    [54]Streit W R,Schmitz R A.Metagenomics—the key to the uncultured microbes[J].Curr Opin Microbiol,2004,7(5):492-498.
    [55]Moreira D,Rodriguez-Valera F,Lopez-Garcia P.Analysis of a genome fragment of a deep-sea uncultivated Group Ⅱ euryarchaeote containing 16S rDNA,a spectinomycin-like operon and several energy metabolism genes [J].Environ Microbiol,2004,6(9):959-969.
    [56]Yutin N,Beja O.Putative novel photosynthetic reaction centre organizations in marine aerobic anoxygenic photosynthetic bacteria:insights from metagenomics and environmental genomies[J].Environ Microbiol,2005,7(12):2027-2033.
    [57]Fieseler L,Quaiser A,Schleper C,et al.Analysis of the first genome fragment from the marine sponge-associated,novel candidate phylum Poribacteria by environmental genomics[J].Environ Microbiol,2006,8(4):612-624.
    [58]Gillespie D E,Brady S F,Bettermann A D,et al.Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA[J].Appl Environ Microbiol,2002,68(9):4301-4306.
    [59]Lorenz P,Eck J.Metagenomics and industrial applications[J].Nat Rev Mierobiol,2005,3(6):510-516.
    [60]Li X,Qin L.Metagenomics-based drug discovery and marine microbial diversity[J].Trends Biotechnol,2005,23(11):539-543.
    [61]Handelsman J.Sorting out metagenomes[J].Nat Biotechnol,2005,23(1):38-39.
    [62]孙宇辉,邓子新.聚酮化合物及其组合生物合成[J].中国抗生素杂志,2006,31(1):6-14.
    [63]郑宗明,顾晓波,俞海青等.非核糖体肽合酶主要结构域的研究进展[J].中国抗生素杂志,2005,30(2):120-125.
    [64]Hopwood D A.Genetic Contributions to Understanding Polyketide Synthases[J].Chem Rev,1997,97(7):2465-2498.
    [65]Schwarzer D,Finking R,Marahiel M A.Nonribosomal peptides:from genes to products[J].Nat Prod Rep,2003,20(3):275-287.
    [66]Schirmer A,Gadkari R,Reeves C D,et al.Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Diseodermia dissoluta[J].Appl Environ Microbiol, 2005, 71(8): 4840-4849.
    
    [67] Ayuso-Sacido A, Genilloud O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups [J]. Microb Ecol, 2005,49(1): 10-24.
    
    [68] Martens T. Bacteria of the Roseobacter clade show high potential for secondary metabolite production In <'Secondary metabolite production and physiological characterisation of marine heterotrophic bacteria from the german Wadden Sea.' Dissertation> [M]. 2005.
    
    [69] Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition [J]. Appl Environ Microbiol, 1996, 62(2): 316-322.
    
    [70] Courtois S, Cappellano C M, Ball M, et al. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products [J]. Appl Environ Microbiol, 2003, 69(1): 49-55.
    
    [71] Martinez A, Kolvek S J, Yip C L, et al. Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts [J]. Appl Environ Microbiol, 2004, 70(4): 2452-2463.
    
    [72] Hoffmann D, Hevel J M, Moore R E, et al. Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224 [J]. Gene, 2003, 311(171-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700