华山新麦草种子贮藏蛋白基因向普通小麦的导入及其分子克隆和品质效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华山新麦草(Psathyrostachys huashanica Keng.)是我国一个特有种,为国家一类珍稀濒危植物和急需保护的农作物野生亲缘物种;具有抗寒、抗旱、耐瘠薄、早熟、优质、矮杆、抗病等特点。本研究通过细胞学、原位杂交和PAGE电泳鉴定出携带华山新麦草的HMW-GS、LMW-GS和醇溶蛋白基因的华山新麦草1Ns二体异附加系,并对该异附加系进行了农艺性状、品质特性和SSR标记研究,同时对华山新麦草的HMW-GS、LMW-GS和醇溶蛋白基因进行了克隆和序列分析。主要结果如下:
     1、在小麦与华山新麦草的杂交和回交后代中,选育出小麦-华山新麦草二体异附加系H9021-28-5。对其进行细胞遗传学研究表明:H9021-28-5的染色体数目及构型为2n=44=22Ⅱ,遗传基本稳定;荧光原位杂交表明,H9021-28-5包含42条小麦染色体和1对华山新麦草染色体;种子贮藏蛋白聚丙烯酰胺凝胶电泳(SDS-PAGE和A-PAGE)表明:H9021-28-5携带有华山新麦草的高分子量谷蛋白亚基(HMW-GS)、低分子量谷蛋白亚基(LMW-GS)和醇溶蛋白(Gliadin)基因。说明,H9021-28-5为普通小麦-华山新麦草的1Ns二体异附加系,且华山新麦草的HMW-GS、LMW-GS和醇溶蛋白(Gliadin)基因已导入普通小麦。
     2、对异附加系H9021-28-5的农艺性状调查表明,附加华山新麦草1Ns染色体后,小麦株高、穗长、小穗数、穗粒数等性状显著降低,小麦籽粒的长度和粒径等性状显著升高,条锈病抗性增强。面粉加工品质分析表明,含有华山新麦草HMW-GS、LMW-GS和醇溶蛋白基因的异附加系比小麦亲本7182,在沉降值、蛋白质含量、面团形成时间、稳定时间、拉伸曲线面积、拉伸阻力和延伸度等品质指标上得到明显提高。矿物质元素含量测定表明,华山新麦草的多种矿物质元素含量均比普通小麦高,异附加系H9021-28-5的钙、磷、镁、锌等11种元素的含量得到明显提高。SSR和EST-SSR标记分析表明,在278对SSR引物中有Xgdm19、Xgdm43、Xgwm213和Xgwm497等4对引物,在49对EST-SSR引物中有Ksum11、Ksum19、Ksum117、Ksum220、Ksum255和Swes145共6对引物,在华山新麦草和异附加系H9021-28-5中均可扩增出特异条带,这些引物可初步用来检测华山新麦草的1Ns染色体。
     3、采用PCR方法,从华山新麦草基因组中分离到了华山新麦草HMW-GS的启动子基因序列。对该启动子基因HGp-Ns-1(GQ139524)序列分析显示,该序列在起始位点上游,从5’至3’侧翼方向,依次有E-box,N-box,G-box,HMW谷蛋白特异38bp增强子序列和TATA-box等HMW-GS特异表达的顺式或反式作用调控元件;系统进化分析表明,该启动子序列(HGp-Ns-1)与拟鹅观草Ps. spicata的y-型HMW-GS启动子基因具有相对较近的亲缘关系。
     4、通过PCR方法,从华山新麦草基因组中分离克隆到了4条LMW-GS基因序列。序列结构分析显示,这4条序列的编码区依次都有信号肽、N-末端保守区、中间重复区、C-末端I区、C-末端II区和C-末端保守区等特征区域,都含有8个半胱氨酸残基(C),N-末端起始氨基酸序列为METSRIPS-或METSRIPG-,说明,这4条序列都为华山新麦草的LMW-m型LMW-GS基因。序列FJ600493(LG-Ns-1)、FJ600494(LG-Ns-2)和GQ223386(LG-Ns-3)在编码区出现提前终止密码子,可能为假基因。序列GQ139528(LG-Ns-4)包含LMW-GS的基因完整编码区和部分启动子序列,该启动子序列的5’侧翼端,从5’到3’方向,依次有保守胚乳框、E-box、F-box、CAAT box、TATA框等LMW-GS基因的特异表达调控元件。这4条序列的系统进化分析表明,它们与纤毛鹅观草E. ciliaris的LMW-GS基因具有相对较近的亲缘关系。
     5、采用PCR方法,从华山新麦草基因组中分离获得了4条α-型和1条ω-型醇溶蛋白基因序列。对4条α-醇溶蛋白基因序列结构分析表明,这4条序列都依次含有信号肽、N-末端重复区、多聚谷氨酰胺Ⅰ区、特征区Ⅰ、多聚谷氨酰胺Ⅱ区和特征区Ⅱ等结构区域;序列Gli-Ns-2(FJ713595)在特征区Ⅰ出现了2个提前终止密码子,可能为假基因。序列Gli-Ns-2和Gli-Ns-3(GQ139525)的重复单元为P(F/Y)P(P/Q)(P/Q)Q;这4条序列都含有8或9个半胱氨酸残基;系统进化分析表明,序列FJ713595与柔软赖草和纤毛鹅观草的α-醇溶蛋白基因具有相对较近的亲缘关系,序列Gli-Ns-3、Gli-Ns-4(GQ139526)和Gli-Ns-5(GQ139527)可能为α-醇溶蛋白基因家族中的新类型。对获得的1条ω-醇溶蛋白基因Gli-Ns-1(FJ600500)序列结构分析表明,该序列具有ω-醇溶蛋白典型的信号肽、N-末端区和部分重复区序列,但在重复区内出现了1个提前终止密码子,可能为假基因。系统进化分析显示,其可能为ω-醇溶蛋白基因家族中的新类型。
     华山新麦草的HMW-GS、LMW-GS和醇溶蛋白基因的分子克隆和序列分析,以及华山新麦草1Ns异附加系的培育及其品质效应的研究,对丰富小麦品质遗传种质资源、研究和利用华山新麦草优异基因、开发和保护这一珍稀濒危物种具有重要意义。
Psathyrostachys huashanica Keng. (2n = 2x = 14, NsNs) is an endemic species in China that has been listed as an endangered and imperatively protected wild species. It is characterized by early maturity and resistance to drought, salinity, wheat take-all fungus and stripe rust. In this paper, a wheat-P. huashanica 1Ns disomic addition line“H9021-28-5”was developed and its chromosomal configuration and behaviors were analyzed, and the high molecular weight glutenin subunit (HMW-GS), low molecular weight glutenin subunit (LMW-GS) and gliadin genes of P. huashanica were identified. The agronomic traits, the quality effect, and the mineral element content of this alien addition line were surveyed. The HMW-GS, LMW-GS and gliadin genes of P. huashanica were molecular cloned and the sequence were analyzed. Main results are as follows:
     1) The Cytogenetics investigations revealed that the chromosome number and configuration of“H9021-28-5”were 2n = 44 = 22 II. The mitotic and meiotic GISH analysis indicated that“H9021-28-5”contained 42 wheat chromosomes and a pair of P. huashanica chromosomes. The SDS-PAGE and A-PAGE analysis showed that“H9021-28-5”carried the HMW-GS, LMW-GS and gliadin genes of P. huashanica. The results suggest that these storage protein genes of P. huashanica had been transferred into common wheat, and“H9021-28-5”is a wheat-P. huashanica 1Ns disomic addition line.
     2) The agronomic traits survey on H9021-28-5 indicated that P. huashanica 1Ns chromosome may be have a reduced effect on the wheat plant height, length of spike, No. of spikelets, and grains per spike, and may be have a stimulating effect on grain weight, length, diameter, and hardness. The processing quality analysis indicated that H9021-28-5 have been significantly improved in the sedimentation value, protein content, dough development time, stability time, extention resistance, and dough extensibility. Determination of mineral elements shows that many kinds of element content in P. huashanica is higher than wheat, and 11 kinds of element content in alien addition line H9021-28-5 have been markedly enhanced, compared with wheat cv. 7182.. The SSR and EST-SSR markers analysis showed that, there are four pairs of SSR primers and six pairs of EST-SSR primers can be preliminary used as P. huashanica 1Ns chromosome-specific molecular markers.
     3) The HMW-GS promoter of P. huashanica were cloned by PCR method, and its sequences were analyzed. Analysis on this promoter gene HGp-Ns-1 (GQ139524) showed that the sequence contain an E-box, N-box, G-box, HMW-endosperm-specific 38bp enhancer and TATA-box. Phylogenetic analysis indicated that HGp-Ns-1 has a relatively closer relationhip with the y-type HMW-GS promoter gene of Ps. spicata.
     4) The four LMW-GS gene of P. huashanica were isolated, and sequences analysis showed that these four sequences all included signal peptide, N-terminal region, the repetitive domain, and C-terminal region, successively. There are eight cysteine residues in coding region. Starting as METSRIPSL- or METSRIPGL- in N-terminal domain indicated that these 4 sequences are the m-type LMW-GS gene. FJ600493 (LG-Ns-1), FJ600494 (LG-Ns-2) and GQ223386 (LG-Ns-3) may be pseudogene because of two premature stop codons appeared in coding sequences. Structural analysis on GQ139528 (LG-Ns-3) revealed that it contained a part of LMW-GS promoter gene and coding region of LMW-GS. Promoter sequence analysis showed that there have the conservative endosperm box, E-box, F-box, CAAT box, and TATA box. Phylogenetic analysis suggested that these four P. huashanica LMW-GS genes have a relatively closer relationship with the E. ciliaris LMW-GS genes.
     5) The fourα-type and aω-type gliadin gene sequences were isolated from P. huashanica genomes. Sequences structural analysis on fourα-gliadins revealed that these sequences contain signal peptide, N-terminal repetitive domain, polyglutamine domain I, unique domain I, polyglutamine domain II, and unique II, successively. Sequence Gli-Ns-2 (FJ713595) may be a pseudogene because of two premature stop codons appeared in unique domain I. There 8 or 9 cysteine residues in the four sequences. Sequence structure analysis on aω-gliadin gene Gli-Ns-1 (FJ600500) showed that it have signal peptide, N-terminal region and part of repetitive domain of typical structure ofω-gliadin, and it may be a pseudogene because of a premature stop codons appeared in repetitive domain. Phylogenetic analysis suggested that FJ713595 have closer kinship withα-gliadin genes of leymus mollis and E. ciliaris. Sequence Gli-Ns-4 (GQ139525), Gli-Ns-4 (GQ139526), Gli-Ns-5 (GQ139527), and FJ600500 may be a new type of prolamin gene family.
     These reseach are of important significance for enriching and improving wheat resources of storage proteins genes, and for continuing to exploit the advantageous genes of the endangered species P. huashanica.
引文
安学丽. 2006.小麦近缘种谷蛋白新亚基鉴定与编码基因克隆及其分子进化分析. [博士毕业论文].北京:首都师范大学
    陈华锋,钱保俐,庄丽芳,陈全战,冯高,裴自友,亓增军,陈佩度,刘大钧. 2007.普通小麦中国春-百萨偃麦草异染色体系的分子标记分析.作物学报, 33 (8): 1232 - 1239
    陈佩度. 2001.作物育种生物技术.北京:中国农业出版社.
    陈漱阳,侯文胜,张安静,傅杰,杨群慧. 1996.普通小麦-华山新麦草异附加系的选育及细胞遗传学研究.遗传学报, 23(6): 447~452
    陈漱阳,张安静,傅杰. 1991.普通小麦与华山新麦草的杂交.遗传学报, 18(6): 508~512
    丁春邦,周永红. 1997.小麦与华山新麦草远缘杂交的受精和胚胎发育.四川农业大学学报, 15(1): 18~20
    凡星,张颖,周永红. 2006. Psathyrostachys huashanica和Pseudoroegneria strigosa细胞色素c成熟蛋白亚基ccmFN基因的序列分析.四川农业大学学报, 24(3): 252~255
    傅杰,王美南,赵继新,陈漱阳,侯文胜,杨群惠. 2003.抗全蚀病小麦-华山新麦草中间材料H8911的细胞遗传学研究与利用.西北植物学报, 23 (12): 2157~2162
    傅杰,赵继新,陈漱阳,侯文胜,杨群惠. 2003.小麦-华山新麦草抗全蚀病新种质的分子细胞遗传学研究.西北植物学报, 23 (11) : 1905~1909
    高明君,郝水,何孟元,卜秀玲. 1993. TAI系列Ⅱ天兰冰草染色体上的酯酶同工酶基因定位.遗传学报, 20(2):174~179
    高向阳,冉慧慧,宋莲军,张小军. 2005.微波消解快速测定特殊粒色小麦中10种金属元素.麦类作物学报, 25 (5) : 140~142
    郭光艳,李瑞芬,张敬原,葛荣朝,赵茂林. 2004.利用SSR鉴定普通小麦-多枝赖草二体异附加系Line24中外源染色体同源群的归属.华北农学报, 19 (4): 14~17
    郭志富. 2008.类大麦属物种种子贮藏蛋白基因的分子克隆. [博士学位论文].雅安:四川农业大学
    杭焱,金燕,卢宝荣. 2004.濒危植物华山新麦草( Psathyrostachys huashanica)的遗传多样性及其保护.复旦学报(自然科学版), 43(2): 260~266
    侯文胜,张安静,杨群慧,傅杰,陈漱阳. 1997.普通小麦-华山新麦草异代换系的选育及细胞遗传学研究.西北植物学报, 17(3):368~373
    胡英考,辛志勇,陈孝. 2002.抗条锈病小麦-中间偃麦草异附加系的生化与分子标记.西北植物学报, 22 (1) : 136~140
    黄朝峰,张文俊,余波澜,周文娟,李鸣,李安生. 2000.大麦6H染色体特异性标记的筛选和鉴定,遗传学报, 27, (8):713~718
    姜程曦. 2007.普通小麦及其近缘种LMW-GS的鉴定、编码基因克隆与序列分析. [博士毕业论文].合肥:安徽农业大学
    解超杰,杨作民,孙其信. 2003.小麦抗白粉病基因的分子标记.中国农业大学学报, 8(1): 1~6
    井金学,傅杰,袁红旭. 1999.三个小麦野生近缘种抗条锈性传递的初步研究.植物病理学报, 29(2): 147~150.
    李光蓉,杨足君,畅志坚. 2006.小麦-茸毛偃麦草异附加系Y176-3的分子细胞遗传学鉴定.麦类作物学报, 26 (5) :20~23
    李光蓉,任正隆,刘成周,周建平,杨足君. 2008.多年生簇毛麦α-醇溶蛋白基因的分离与序列分析.作物学报,34(6):1097~1103
    李光蓉,杨足君,张勇,周建平,任正隆. 2007.澳冰草中一个新型α-gliadin基因的克隆与序列分析.安徽农业科学, 35(27):8457~8458
    李国珍. 1985.染色体及其研究方法.北京:科学出版社
    李辉,李义文,陈豫,贾旭. 2006.百萨偃麦草高分子量麦谷蛋白亚基的鉴定及其染色体定位.河北农业科学, 10(3):1~5
    李硕碧,高翔,单明珠,李必运. 2001.小麦高分子量谷蛋白亚基与加工品质.北京:中国农业出版社
    李伟光,王志国,纪军,王静,李俊明. 2006.一个八倍体小偃麦染色体组成的分子细胞学分析及品质特性鉴定.麦类作物学报, 26 (2) : 5~10
    李杏普,侯红军,刘玉平,兰素缺,祝玉英. 2002.蓝、紫粒小麦的营养品质研究.华北农学报, 17 (1): 21~24
    李跃建,朱华忠,刘世贵. 2002.小麦抗条锈病分子生物学和转基因育种研究进展.西南农业学报, 15(4):96~100
    李志新,曹双河,张相岐,张怀刚. 2007.伪鹅观草高分子量麦谷蛋白基因启动子的克隆.长江大学学报(自科版)农学卷, 4(2):57~61
    李志新,曹双河,张相岐,张怀刚. 2007.小麦及其近缘植物高分子量麦谷蛋白亚基(HMW-GS)基因的研究进展.长江大学学报(自科版)农学卷, 4(3):91~95
    廖进秋,康厚扬,杨瑞武,汤加勇,周永红. 2007.中国春ph2b突变体×华山新麦草F1自交和回交一代细胞遗传学研究.西北植物学报, 27 (3) :0442 ~ 0448
    林娜,颜泽洪,魏育明,郑有良. 2006.钩刺山羊草(Aegilops triuncialis)低分子量谷蛋白基因序列分析.农业生物技术学报,14 (4):569~573
    林小虎,王黎明,李兴锋,陆文辉,赵逢涛,李文才,高居荣,王洪刚. 2005.抗白粉病八倍体小偃麦和双体异附加系的鉴定.作物学报, 31(8): 1035~1040
    刘爱峰,王洪刚,郝元峰,段友臣,王玉海,吴新儒,李岩. 2007.抗条锈病小偃麦双体异附加系山农87074-519的鉴定.分子细胞生物学报, 40(3):217~223
    刘成,杨足君,冯娟,周建平,任正隆. 2007.黑麦6R染色体特异性PCR标记的建立.麦类作物学报, 27 (1) :35~40
    刘芳,孙根楼,颜济,杨俊良. 1992.普通小麦和华山新麦草及其属间杂种F1同功酶分析.作物学报,(3):169~175
    刘光欣,陈佩度,王苏玲,周波,王秀娥. 2006. 8个大赖草材料的C-分带和RAPD分析.草业学报, 15(2):107~112
    刘建军,何中虎,R J Pena,赵振东. 2004. 1BL/1RS易位对小麦加工品质的影响.作物学报,30(2):149~153
    刘佩,杨敏娜,周新力,吴会杰,井金学. 2008.普通小麦-华山新麦草易位系H9020-1-6-8-3抗条锈病基因的遗传分析和SSR标记.植物病理学报, 38 (1): 104~107
    刘守斌,唐朝晖,尤明山,李保云,宋建民,刘广田. 2004.簇毛麦1V染色体SSR标记的筛选.作物学报, 30(2):138~142
    刘文献,李立会,刘伟华,张正茂,吴振海,王成社. 2006.华山新麦草居群取样策略的SSR分析.麦类作物学报,26 (2) : 16~20
    刘艳,钱幼亭,赵茂林,梁影屏,孙晓平. 2002.多枝赖草及其转育后代对大麦黄矮病毒PAV和GAV株系的抗性研究.植物病理学报, 32(3):247~251
    刘占林,李珊,阎桂琴,宋颐,赵桂仿. 2001.华山新麦草自然居群的遗传结构和种内遗传多态性研究.遗传学报. 28(8):769~777
    骆蒙,贾继增. 2000.国际麦类基因组EST计划研究进展.中国农业科学,33 (6) :110-112
    马昭才. 2006.一粒系小麦种质资源分子生物学研究. [博士毕业论文].雅安:四川农业大学
    庞玉辉,陈新宏,赵继新,武军,程雪妮,刘淑会,杨群慧,杜万里,陈林刚.簇毛麦HMW-GS及其启动子基因的克隆与序列分析.西北植物学报, 2009,29 (5): 0859~0866
    庞玉辉. 2009.簇毛麦和纤毛鹅观草种子贮藏蛋白基因的分子克隆与序列分析. [硕士毕业论文].杨凌:西北农林科技大学
    蒲至恩,龙海,魏育明,颜泽洪,郑有良. 2008.斯卑尔脱小麦α-醇溶蛋白基因克隆与序列分析.中国农业科学,41(6):1845~1850
    任晓琴,孙文献. 1996.普通小麦-大赖草6N二体异附加系的选育与鉴定.南京农业大学学报, 19(3):1~5
    石丁溧,傅体华,任正隆. 2008.抗条锈病小麦中间偃麦草二体异附加系的选育和鉴定.西南农业学报, 21(5):8031~8035
    孙根楼,颜济,杨俊良. 1994.华山新麦草属间杂种细胞间遗传物质的转移及其在物种演化中的意义.四川农业大学学报, 12(3):333~337
    孙根楼,颜济,杨俊良. 1992.普通小麦和华山新麦草属间杂种的产生及细胞遗传学研究.遗传学报, 19(4):322~326
    孙根楼,颜济. 1995.华山新麦草同高加索鹅观草和糙毛仲彬草间物种生物学研究.草业学报, 4(4): 39~45
    孙根楼,杨俊良. 1993.华山新麦草和鹅观草属两个种间物种生物学研究.植物分类学报, 31(5): 393~398
    唐朝晖,刘守斌,尤明山,李保云,毛善锋,宋建民,刘广田. 2003.普通小麦背景中长穗偃麦草高分子量麦谷蛋白基因的表达、染色体定位与分子标记.生物技术学报, 11(1):34~39
    唐珍,舒焕麟,陈建业. 2006. 1个抗条锈病小麦新种质的遗传学研究.西南农业大学学报(自然科学版), 28(1): 54~57
    唐宗祥,符书兰,任正隆. 2007.黑麦KingⅡ中白粉病抗性基因的染色体定位.西华师范大学学报(自然科学版), 28(4): 267~269
    唐祖强,杨足君,李光蓉,刘成,刘朝辉,任正隆. 2007.簇毛麦5V染色体特异性ISSR标记的建立及其对亲缘物种的检测.农业生物技术学报, 15 (5): 799~804
    万永芳,颜济,杨俊良,刘法圈. 1997.小麦近缘野生植物的赤霉病抗性研究.植物病理学报, 27(2): 107~111
    王长有,吉万全,张改生,王秋英,薛秀庄. 2006.普通小麦-Elymus rectisetus异附加系的分子细胞遗传学鉴定.作物学报, 32(12):1898~1901
    王聪艳. 2007.小麦及其近缘种α-醇溶蛋白的鉴定与编码基因的分子克隆. [硕士毕业论文].北京:首都师范大学
    王敬昌,刘伟华,程雪佼,郭勇,宿俊吉,杨欣明,高爱农,柴守诚,李立会. 2008.中国春-柱穗山羊草杀配子染色体2C附加系与小麦-冰草附加系杂交F2的细胞学特性.中国农业科学,41(7):1894~1899
    王丽,杨娟,郭晶,赵桂仿. 2005.用RAPD检测华山新麦草自然居群的遗传结构和居群分化.生态学报,25(4):720~727
    王丽,赵桂仿. 2002.华山新麦草胚和胚乳的发育研究.西北植物学报,22(6): 786~790
    王美南,商鸿生. 2000.华山新麦草对小麦全蚀病菌的抗病性研究.西北农业大学学报,28(6):69~71
    王睿辉,李立会. 2005.小麦-冰草二体附加系的细胞学稳定性.麦类作物学报, 25 (3) : 11~15
    王秀娥,李万隆,刘大钧. 1998.新麦草属两物种的C-分带研究.南京农业大学学报, 21(1):10~13
    王秀娥,赵彦,张清平,王苏玲,周波,陈佩度,刘大钧. 2004.利用PCR技术初步鉴定小麦加州野大麦异染色体系,南京农业大学学报, 27 (4) : 1~5
    王益,康厚扬,原红军,蒋云,张海琴,周永红. 2008.普通小麦与华山新麦草衍生后代的农艺性状和细胞遗传学研究.四川农业大学学报, 26(4):405~410
    魏芳勤,武军,赵继新,陈新宏,刘淑会,庞玉辉. 2009.普通小麦和华山新麦草衍生系H9021对全蚀病抗性的遗传分析.麦类作物学报, 29 (1) :153~156
    吴金华,王长有,王秋英,吉万全. 2008.小麦-黑麦二体异附加系分子细胞遗传学鉴定.西北植物学报, 28 (1) :0059~0064
    吴金华,张西平,吉万全,王长有,王秋英. 2007.奥地利黑麦染色体核型和C-分带带型.西北农林科技大学学报(自然科学版) , 35(1):73~76
    伍碧华,孙根楼. 1995.赖草的种间和属间杂种胚胎培养研究.云南植物研究, 17(4): 445~451
    武军. 2006.小麦—冰草特异种质的遗传分析. [博士学位论文].杨凌:西北农林科技大学
    武军,王辉,刘伟华,李立会,杨欣明,李秀权. 2006.小麦新种质4844中外源P染色质的GISH与SSR分析.西北植物学报, 26 (6) : 1093~1097
    武军,赵继新,陈新宏,刘淑会,杨群慧,刘文献,魏芳琴,董剑,朱建楚. 2007a.普通小麦-华山新麦草二体附加植株减数分裂中期染色体行为及形态学分析.西北农林科技大学学报(自然科学版), 35(9):45~48
    武军,赵继新,陈新宏,刘淑会,杨群慧,刘文献,魏芳琴,董剑,朱建楚. 2007b.普通小麦-华山新麦草衍生后代的细胞学特点及GISH分析.麦类作物学报, 27(5):772~775
    武军,赵继新,陈新宏,刘淑会,杨群慧,魏芳琴. 2007c.普通小麦-华山新麦草异附加系的SSR分析.河北农业大学学报, 30(5):9~13
    辛志勇, Brettle PIS. 1991.抗大麦黄矮病毒的一个小麦抗源特点.国外农学-麦类作物, 2:29~33
    薛秀庄,吉万全,许喜堂. 1993.小麦染色体工程与育种.石家庄:河北科学技术出版社
    杨文杰,舒焕麟,颜泽洪,刘登才,周永红. 2005.表达7个高分子量谷蛋白亚基的小麦新种质创制、鉴定及分子细胞学分析.遗传学报, 32 (11 ) : 1184~1190
    英加,陈佩度. 2000.利用八倍体培育小麦-簇毛麦二体附加系的研究.遗传学报, 27(6):506~510
    岳明,张林静,马凯,赵桂仿. 2001.华山新麦草濒危原因及种群繁殖对策.生态学报, 21(8): 1314~1320
    曾节,代寿芬,郑有良,刘登才,魏育明,颜泽洪. 2008.带芒草属低分子量谷蛋白基因的克隆及序列分析.遗传, 30(5) : 633~641
    张翠茹,刘大群. 2001.小麦抗叶锈病基因定位及分子标记研究进展.河北农业大学学报, 24(1): 108~112
    张林静,王丽,李智选,赵桂仿. 2002.华山新麦草小孢子发生及雄配子体的形成.西北大学学报(自然科学版), 32(2): 77~80
    张胜雯,王二明. 1997.抗白粉病小麦染色体组型的分子标记与生化标记分析.遗传学报, 24 (6):524~530
    张艳,原亚萍,陈孝,李韬,张勇,何中虎. 2007.大麦2H染色体对小麦农艺和品质特性的影响.麦类作物学报, 27 (3) :402~406
    张延明,曲敏,徐香玲,李集临. 2007.表达序列标签(EST)分析及其在小麦研究中的应用.黑龙江农业科学,2007 , (1) :82~85
    张勇,王德森,张艳,何中虎. 2007.北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析.中国农业科学, 40(9):1871~1876
    张正斌,徐萍. 2002.小麦基因组研究进展.遗传, 24(3):389~394
    张正斌. 2001.小麦遗传学.北京:中国农业出版社
    赵惠贤,郭蔼光,胡胜武,范三红,张大鹏,任思霖,王瑞娟. 2004.小麦Glu-D3和Glu-B3位点LMW-GS基因特异引物设计与PCR扩增.作物学报, 30(2): 126~130
    赵继新,陈新宏,王小利,武军,傅杰,何蓓如,宋亚珍,孙志刚. 2003.普通小麦-华山新麦草异代换系和附加系的C-分带鉴定.西北农林科技大学学报, 31(6):1~4
    赵继新,陈新宏,王小利,武军,傅杰,何蓓如,孙晓娟. 2004a.普通小麦-华山新麦草异代换系的分子细胞遗传学研究.西北植物学报, 24(12):2277~2281
    赵继新,陈新宏,王小利,武军,傅杰,何蓓如,孙志刚. 2004b.普通小麦-华山新麦草异附加系的分子细胞遗传学研究.西北农林科技大学学报, 32(11):105~108
    赵继新,武军,陈新宏,程雪妮,刘淑会,杨群慧,董剑,朱建楚. 2008.几种小麦族亲缘植物麦谷蛋白和醇溶蛋白研究.河北农业大学学报, 2008,31(6):1-6
    赵利锋,李珊,潘莹,阎桂琴,赵桂仿.2001.华山新麦草自然居群沿海拔梯度的的遗传分化.西北植物学报, 21(3):391~400
    中国科学院西北植物研究所. 1976.秦岭植物志(第一卷第一册).北京:科学出版社:99.
    钟冠昌,穆素梅,张正斌. 2002.麦类远缘杂交.北京:科学出版社
    Ahmad M. 2000. Molecular-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor Appl Genet 101:892~896
    Aldrich C. 1993. CTAB DNA extraction from plant tissues. Plant Molecular Biology Reporter, 11:128~141
    Aldrich Sharma HC, Gill BS. 1983. Current status of wide hybridization in wheat. Euphytica 32:17~31.
    Alkhimova AG, Heslop-Harrison JS, Shchapova AI, Vershinin AV. 1999. Rye chromosome variability in wheat-rye addition and substitution lines. Chromosome Research 7:205~212
    Amiour N, Jahier J, Tanguy AM, Chiron H, Branlard G. 2002. Effect of 1R (1A), 1R (1B) and 1R (1D) substitution on technological value of bread wheat. Journal of Cereal Science 35: 149~160
    Anderson OD, Hisa C C, Torres V. 2001. The wheatγ-gliadin genes: characterization of ten new sequences and further understanding ofγ-gliadin gene family structure. Theor Appl Genet, 103:323~330
    Anderson OD, Litts JC, Greene FC. 1997. Theα-gliadin gene family. I characterization of ten new wheatα-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA,and southern analysis of the gene family. Theor Appl Genet, 95: 50~58
    Anderson OD, Gu Yong, Xiuying Kong, Gerard R. Lazo, Jiajie Wu. 2009. The wheatω-gliadin genes:structure and EST analysis. Funct Integr Genomics, 9:397~410
    Annamária S, Gabriella Linc, István Molnár, Márta Molnár-Láng. 2005. Molecular cytogenetic characterization of Aegilops biuncialis and its use for identification of 5 derived wheat-Ae. biuncialis disomic addition lines. Genome, 48(6):1070~1082
    Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J. 2001. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica 119:59~67
    Brett GM, Mills ENC, Tatham AS, Fido RJ, Shewry PR, Morgan MRA. 1993. Immunchemical identification of LMW subunits of glutenin associated with bread-making quality of wheat flours. Theoretical and Applied Genetics, 86: 442~448
    Buonocore F, Caporale C, Lafiandra D. 1996. Purification and characterization of high molecular glutenin subunit 20 and its linked y-type subunit from durum wheat. J Cereal Sci, 23:195~201
    Cakmak I, Derici R, Torun B, Tolay I, Braun HJ, Schlegel R. 1997. Role of rye chromosomes in improvement of zinc efficiency in wheat and triticale. Plant and Soil, 196: 249 ~253.
    Cakmak I, Ekiz H, Yilmaz A, Torun B, Koleli N, Gultekin I, Alkan A, Eker S. 1997. Differential response of rye, triticale, bread and durum wheat to zinc deficiency in calcareous soils. Plant and Soil, 188: 1~10
    Cakmak I, Inci Tolay, Hakan ?zkan, Aytül ?zdemir, Hans J. Braun. 1999. Variation in zinc efficiency among and within Aegilops species. Journal of Plant Nutrition and Soil Science, 162(3): 257~262
    Cao Z, Deng Z, Wang M, Wang X, Jing J, Zhang X, Shang H, Li Z. 2008. Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line. Plant Science, 174:544~549
    Cassidy BG, Dvorak J, Anderson OD. 1998. The wheat low-molecular-weight glutenin genes: characterizeation of six new genes and progress in understanding gene family structure. Theoretical and Applied Genetics, 96:743~750
    Chen Fanguo, Xu Chunhui, Chen Mengzhu, Wang Yanhui, Xia Guangmin. 2008. A newα-gliadin gene family for wheat breeding: Somatic introgression line II-12 derived from Triticum aestivum and Agropyron elongatum. Mol Breeding, 22:675~685
    Chen Q, Amstrong KC. 1994. Genomic in situ hybridization in Avena sativa. Genome, 37:607~612
    Chen Q, Corner RL, Laroche A. 1996. Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite colonization. Theor. Appl. Genet., 93:697~684
    Chen HM, Li LZ, Wei XY, Li S, Lei T, Hu H, Wang H, Zhang X. 2005. Development chromosome location and genetic mapping of EST-SSR marker in wheat. Chinese Science Bulletin, 50(20): 2328~2336
    Chhuneja P, Dhaliwal HS, Bains NS, Singh K. 2006. Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breeding, 125: 529~531
    Cho Seungho, David F. Garvin, Gary J. Muehlbauer. 2006. Transcriptome Analysis and Physical Mapping of Barley Genes in Wheat–Barley Chromosome Addition Lines. Genetics, 172: 1277~1285
    Ciaffi M, Lee YK, Tamas L, Gupta R, Skerritt J, Appels R. 1999. The low-molecular-weight glutenin subunit proteins of primitive wheats III. The genes from D-genome species. Theor Appl Genet, 98:135~148
    Cloutier S, Christof Rampitsch, Greg A.Penner, Odean M.Lukow. 2001. Cloning and expression of a LMW-i glutenin gene. J Cereal Sci, 33:143~154
    Colot V, Robert LS, Kavanagh TA, Bevan MW, Thompson RD. 1987. Localization of sequences inwheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO J, 6:3559–3564
    Cuadrado A, Rubio P, Ferrer E, Jouve N. 1996. Sequential combinations of C-banding and in situ hybridization and their use in the detection of interspecific. Euphytica, 39:107~112
    De Pace C, Snidaro D, Ciaffi M, Vittori D, Ciofo A, Cenci A, Tanzarella OA, Qualset CO, Mugnozza GTS. 2001. Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica, 117:67~75
    Dekova T. 2005. THE GLUTEN-A BIG NATURAL BIOPOLYMER GENETIC DETERMINATION AND FUNCTION. General & Applied Genetics, Supplement 11 Biotechnol. & Biotechnol. Eq.19-2005-3
    Dewey DR. 1984. The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene Manipulation in Plant Improvement. Plenum, New York, pp 209~279
    D'Ovidio R, Masci. 2004. The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci, 39:321~339
    D'Ovidio R, Oronzo A, Tanzarella E. 1992. Nucleiotide sequence of a low-molecular-weight glutenin from Triticum duru. Plant Mol Biol, 18:781~784
    Draper SR. 1987. ISTA Variety Committee Report of theWorking Group for Biochemical Tests for Cultivar Identification 1983–1986. Seed Sci Technol 15: 431~434
    Driscoll CS, Sears ER. 1971. Individual addition of the chromosomes of Imperial rye to wheat. Agron Abstr 6
    Endo TR. 1986. Complete identification of common wheat chromosomes by means of the C-banding technique. Jpn. J. Genet, 61:89~93
    Feng Deshun, Guangmin Xia, Shuangyi Zhao, Fanguo Chen. 2004. Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum. Theor Appl Genet, 110: 136~144
    Fido RJ, Bekest F, Grast PW, Tatham AS. 1997. Effects ofα-,β-,γ- andω-gliadins on the dough mixing properties of wheat flour. J Cereal Sci, 26: 271~277
    Friebe BR, Jiang J, Raupp WJ, McIntosh RA, Gill BS. 1996. Characterization of wheat-alien translations conferring resistance to diseases and pets: current status. Euphytica, 91:59~87
    Friebe BR, Tuleen NA, Gill BS. 1999. Development and identification of a complete set of Triticum aestivum-Aegilops geniculate chromosome addition lines. Genome, 42 (3): 374~380
    Friebe BR, Tuleen N, Jiang J, Gill BS. 1993. Standard karyotype of Triticum longissimum and its cytogenetic relationship with T.aestivum. Genome, 36:731~742
    Friebe BR, Zeller FJ, Mukai Y. Forster BP, Bartos P, McIntosh RA. 1992. Characterization of rust-resistant wheat-Agropyron intermedum derivatives by C-banding, in situ hybridization and isozyme analysis. Theor. Appl. Genet, 83:775~782
    Ghandilyan A, Vreugdenhil D, Aartsa MGM. 2006. Progress in the genetic understanding of plant iron and zinc nutrition. Physiologia Plantarum, 126: 407 ~ 417
    Gianibelli MC, Larroque OR, MacRitchie F, Wrigley CW. 2002. Biochemical, Genetic, and Molecular Characterization of Wheat Endosperm Proteins-online review. Cereal Chem, aaccnet.org
    Gianibelli MC, Larroque OR, MacRitchie F, Wrigley CW. 2001. Biochemical, Genetic, and Molecular Characterization of Wheat Glutenin and Its Component Subunits. Cereal Chem, 78, 6: 635~646
    Gill BS, Friebe B, Endo T.R. 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum).Genome, 34(5):830~839
    Goicoechea PG, Roca A, Linde AR, Naranjo T, Giraldez R. 1991. Independent arrangement of bivalents and (or) quadrivalents in liner meiotic metaphase plates of rye. Genome, 34:421~429
    Gupta RB, Macritchie F. 1994. Allelic variation at glutenin subunit and gliadin loci, Glu-l, Glu-3 and Gli-1 of common wheats II. Biochemical basis of the allelic effeets on dough properties. Journal of cereal seienee, 19:19~29
    Gupta RB, Singh NK, Shepherd KW. 1989. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor Appl Genet, 77:57~64.
    Gupta RB, Batey IL. Maeritehie. 1992. Relationship between Protein composition and functional properties of wheat flour. Cereal Chemistry, 69(2):125~131
    Gupta RB, Shepherd KW. 1990. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin. Theor Appl Genet, 80:65~74
    Halford NG, Field JM, Blair H, Urwin P, Moore K, Robert L, Thompson R, Flavell RB, Tatham AS, Shewry PR. 1992. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum) indicates quantitative effects on grain quality. Theor Appl Genet, 83:373~378.
    Halford NG, Forde J, Anderson OD, Greene FC, Shewry PR. 1987. The nucleotide and deduced amino acid sequences of an HMW glutenin subunit gene from chromosome 1B of bread wheat (Triticum aestivumL.) and comparison with those of genes from chromosomes 1A and 1D. Theor Appl Genet, 75:117~126.
    Han Fangpu. Liu Bao. Fedak George. Liu Zhaohui. 2004. Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 109: 1070~1076
    Hard GE. 1983. Genetics and evolution of multilocus isozymes in hexaploid wheat. In Isozymes Current Topics in Biological and Medical Research. Alan, R. Liss, Inc., New York. 10:365~380
    Hassani ME, Shariflou MR, Gianibelli MC, Sharp PJ. 2008. Characterisation of aω-gliadin gene in Triticum tauschii. Journal of Cereal Science, 47: 59~67
    He MY, Xu ZY, Zou MQ, Zhang H, Chen DW, Piao ZS, Hao S. 1988. The establishment of two sets of alien addition lines of wheat-wheatgrass. Sci China (Ser B) 11:1161~1168
    Hernández P, Laurie DA, Martín A, Snape JW. 2002. Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum. Theor Appl Genet, 104(4): 735~739
    Hou Y-C, Liu Q, Long H, Wei YM, Zheng YL. 2006. Characterization of Low-Molecular-Weight Glutenin Subunit Genes from Hordeum brevisubulatum ssp. Turkestanicum. Biology Bulletin, 33(1):35~42
    Hsia CC, Anderson OD. 2001. Isolation and characterization of wheatω-gliadin genes. Theor Appl Genet, 103:37~44
    Hsiao C, Richard R. Wang C, Dewey DR. 1986. Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Can J Genet Cytol, 28:109~120
    Ikeda TM, Nagamine T, Fukuoka H, Yano H. 2002. Identification of new low-molecular-weight glutenin subunit genes in wheat. Theoretical and Applied Genetics, 104: 680~687
    Jia Jizeng, Zhou Ronghua. 2002. Identifying the alien chromosomes in wheat–Leymus multicaulis derivatives using GISH and RFLP techniques. Euphytica.127(2):201~207
    Jiang Shu-Mei, Hu Jun, Yin Wei-Bo, Chen Yu-Hong, Richard R.-C. Wang, Hu Zan-Min. 2005. Cloning of resistance gene analogs located on the alien chromosome in an addition line of wheat-Thinopyrum intermedium. Theor Appl Genet, 111: 923~931
    Johal J, Gianibelli MC, Rahman S, Morell MK, Gale KR. 2004. Characterization of low-molecular- weight glutenin genes in Aegilops tauschii. Theor Appl Genet, 109: 1028~1040
    Johnson CM, Ulrich A. 1959. Analytical methods for use in plant analysis. Bulletin766. University of California, Agricultural Experiment Station, Berkeley, 26~28
    Kang HY, Qian Chen, Yi Wang, Mei-Yu Zhong, Hai-Qin Zhang, Yong-Hong Zhou. 2009a. Molecular cytogenetic characterization of the amphiploid between bread wheat and Psathyrostachys huashanica. Genet Resour Crop Evol, 2009-6-30 (online), DIO: 10.1007/s10722-009-9455-x
    Kang HY, Zhang Hai-Qin, Fan Xing, Zhou Yong-Hong. 2008. Morphological and cytogenetic studies on the hybrid between bread wheat and Psathyrostachys huashanica Keng ex Kuo. Euphytica, 162:441~448
    Kang HY, Wang Y, Sun GL, Zhang HQ, Fan X, Zhou YH. 2009b. Production and characterization of an amphiploid between common wheat and Psathyrostachys huashanica Keng ex Kuo. Plant breeding, 128:36~40
    Kasarda DD, Okita TW, Bernardin JE, Baecker PA, Nimmo CC, Lew EJ, Dietler MD, Greene FC. 1984. Nucleicacid (cDNA) and amino acid sequences ofα-type gliadins from wheat (Triticum aestivum) . Proceedings of the National Academy of Sciences of the USA, 81:4712~4716
    Kasarda DD, Tao H. P, Evans P. K, Adalsteins A. E. Yuen S. W. 1988. Sequencing of protein from a single spot of a 2-D gel pattern: N-terminal sequence of a major wheat LMW-glutenin subunit. J Exper Bot, 39:899~906
    Kasarda DD. 1989. Glutenin structure in relation to wheat quality. Cereal Chem, 277~302
    Knott DR. 1987. Transferring alien genes to wheat. In Wheat and Wheat Improvement, Second Edition, Heyne, E.G. (ed.) Medison. Wisonsin, USA.462~471
    Kong Fang, Wang Haiyan, Cao Aizhong, Qin Bi, Ji Jianhui, Wang Suling, Wang Xiu-E. 2008.
    Characterization of T. aestivum-H. californicum chromosome addition lines DA2H and MA5H. J. Genet. Genomics, 35: 673~678
    Kovacs MI, Howes N K, Leisle D, Zawistowski J. 1995. Effect of two different low molecular weight pasta quality parameters. Cereal Chem, 72(1):5~87
    K?hler P, Belitz HD, Wieser H. 1993. Disulphide bonds in wheat gluten. Further cystine peptides from high molecular weight (HMW) and low molecular weight (LMW) subunits of glutenin and from ggliadins. Zeitschrift für Lebensmittel-Untersuchung und–Forschung,196:239~247
    Kreis M, Shewry PR, Forde BG, Forde J, Miflin BJ. 1985. Structure and evolution of seed storage proteins and their genes, with particular reference to those of wheat, barley and rye. Oxford Surveys of Plant Cell and Molecular Biology, 2:253~317
    Lamacchia C, Shewry PR, Fonzo DN, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P. 2001. Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot, 52(355): 243– 2501
    Lee YK, Bekes F, Gras P, Ciaffi M, Morell MK, Appels R. 1999. The low molecular weight glutenin subunit protenins of primitive wheats.Ⅳ. Functional properties of products from individual genes. Theor Appl Genet, 98:149~155
    Lew EJL, Kuzmicky DD, Kasarda DD. 1992. Characterization of low molecular weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chemstiy, 69: 508~515
    Li WJ, Liu JH, Li YP, Liu F. 1996. Production and cytogenetic analysis of intergeneric hybrids between Elymus anthosachnoides and Psathyrostachys huashanica (Poaceae: Triticeae). Pl Syst Evol 202:265~269
    Li Xiaohui, Wang Aili, Xiao Yinghua, Yan Yueming, He Zhonghu, Appels Rudi, Ma Wujun, Hsam SLK, Zeller FJ. 2008. Cloning and characterization of a novel low molecular weight glutenin subunit gene at the Glu-A3 locus from wild emmer wheat (Triticum turgidum L. var. dicoccoides), Euphytica, 159:181~190
    Linde-Laursen I, von Bothmer R. 1986. Comparison of the karyotype of Psathyrostachys juncea and P. huashanica (Poaceae) studied by banding techniques. Plant System Evolve, 151:203~213
    Liu Shubing, WANG Honggang. 2002. Breeding and molecular cytogenetic identification of wheat- Thinopyrum intermedium addition lines resistant to powdery mildew. Chinese Science Bulletin, 47(22):1892~1897
    Liu Z, Yan Z, Wan Y, Liu K, Zheng Y, Wang D. 2003. Analysis of HMW glutenin subunits and their coding sequences in two dipliod Aegilops species. Theor Appl Genet, 106:1368~1378
    
    Luo C, Griffin WB, Branlard G., McNeil DL. 2001. Comparison of low- and high molecular-weight wheat glutenin allele effects on flour quality. Theor Appl Genet, 102:1088~1098
    Luo Zhen, Chen Fanguo, Feng Deshun, Xia Guangmin. 2005. LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding. Theor Appl Genet, 111: 272~280
    María Jesús Montes, Isidoro López-Bra?a, Angeles Delibes. 2004. Root enzyme activities associated with resistance to Heterodera avenae conferred by gene Cre7 in a wheat/Aegilops triuncialis introgression line. J. Plant Physiol, 161: 493~495
    Masahiro Kishii, Toyomi Yamada. Tetsuo Sasakuma. Hisashi Tsujimoto. 2004. Production of wheat- Leymus racemosus chromosome addition lines. Theor Appl Genet, 109:255~260
    Masci S, D′Ovidio R, Lafiandra D, Kasarda DD. 2000. A 1B-coded low-molecular-weight glutenin subunit associated with quality in durum wheats shows strong similarity to a subunit present in some bread wheat cultivars. Theor App Genet, 100:396~400
    Masci S, D'Ovidio R, Lafiandra D, Kasarda DD. 1998. Characterization of a low-molecular -weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plain Physioh, 118:1147~1158
    McIntosh RA, Silk J, The TT. 1996. Cytogenetic studies in wheat XVII. Monosomic analysis and linkage relationships of gene Yr15 for resistance to stripe rust. Euphytica, 89:395~399
    Metakovsky EV, Branlard G, Chernakov VM, Upelniek VP, Redaelli R, Pogna NE. 1997.
    Recombination mapping of some chromosome 1A-, 1B-, 1D- and 6B-controlled gliadins and low-molecular-weight glutenin subunits in common wheat. Theor Appl Genet, 94: 788~795
    Metakovsky EV, Annicchiarico P, Boggini G, Pogna NE. 1997. Relationship Between Gliadin Alleles and Dough Strength in Italian Bread Wheat Cultivars. Journal of Cereal Science, 25(3): 229~236
    Miller TE, Reader SM., Purdie KA, King IP. 1996. Fluorescent in situ hybridization - a useful aid to the introduction of alien genetic variation into wheat. Euphytica, 89: 113~119
    Monika Garg, Hiroyuki Tanaka, Naoyuki Ishikawa, Kanenori Takata, Mikiko Yanaka, Hisashi Tsujimoto. 2009. A Novel Pair of HMW Glutenin Subunits from Aegilops searsii Improves Quality of Hexaploid Wheat. Cereal Chemistry,86(1): 26~32
    Montebove L, De Pace C, Jan CC, Qualset CO, Mugnozza GTS. 1987. Chromosomal location of isozyme and seed storage protein genes in Dasypyrum villosum Candargy. Theor Appl Genet, 73:836~845
    Montebove L, De Pace C, Jan CC, Mugnozza GTS, Qualset CO. Chromosomal location of isozyme and seed storage protein genes in Dasypyrum villosum (L1) Candargy. Theor App Genet, 1987, 73: 836~845.
    Muller SW, Wieser H. 1995. The location of disulphide bonds inα-type gliadins. J Cereal Sci, 22:21~27
    Nidhi Rawat, Vijay K. Tiwari, Kumari Neelam, Gursharn S. Randhawa, Parveen Chhuneja, Kuldeep Singh. Harcharan S. Dhaliwal. 2009. Development and characterization of Triticum aestivum-Aegilops kotschyi amphiploids with high grain iron and zinc contents. Plant Genetic Resources, Published online 01 May 2009 doi: 10.1017/S1479262109356592
    Norre F, Peyrot C, Garcia C, RancéI, Drevet J, Theisen M, Gruber V. 2002. Powerful effect of an atypical bifactorial endosperm box from wheat HMWG-Dx5 promoter in maize endosperm. Plant Molecular Biology, 50:699~712
    Obukhova LV, Generalova GV, Agafonov AV, Kumarev VP, Popova NA, Gulevich VV. 1997. A Comparative Molecular Genetic Study of Glutelins in Wheat and Elymus. Genetica, 33:1174~1178
    Payne PI, Corfield K. G. 1979. Subunit composition of wheat glutenin proteins isolated by gel filtration in a dissociating medium. Planta, 145:83~88
    Payne PI, Holt L.M, Law CN. 1981. Structural and geneticalstudiea on high molecular weight subunits of wheat glutenin in part1, Allelic variation in subunits amongst varieties of wheat (Triticum aestivum) . Theoretical and Applied Genetics, 60:229~236
    Payne PI, Jackson EA, Holt LM, Law CN. 1984. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes 1A and 1B in wheat. Theor Appl Genet, 67:235~243
    Payne PI. 1987. Genetics of wheat storage proteins and the effeet of allelie variation on bread making quality. Annu Rev Plant Physiol, 38:141~153
    Payne PI, Holt LM, Reader SM, Miller TE. 1987. Chromosomal location of genes coding for endosperm proteins of Hordeum chilense, determined by two-dimensional electrophoresis of wheat-H. chilense chromosome addition lines. Biochemical Genetics, 25:53~65
    Peil A, Korzun V, Schubert V, Schumann E, Weber WE, R?der MS. 1998. The application of wheat microstellites to identify disomic Triticum aestivum - Aegilops markgrafii addition lines. Theo Appl Genet, 96: 138 ~146
    Pestsova E, Ganal MW, R?der MS. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 43(4): 689~697
    Petersen G., Seberg O, Baden C. 2004. A phylogenetic analysis of the genus Psathyrostachys (Poaceae)based on one nuclear gene, three plastid genes, and morphology. Plant Syst. Evol, 249: 99~110
    Pitts EG., Rafalski JA, Hedgcoth C. 1988. Nucleotide sequence and encoded amino acid sequence of a genomic gene region for a low molecular weight glutenin. Nucleic Acids Res, 16:11376
    Pogna NE. 1993. Recombination mapping of Gli-1 a new gliadin-coding locus on ctomosomes 1A and 1B in common wheat. Theor Appl Genet, 87:113~121
    Pogna NE, Autran JC, Mellini F, Lafiandra D, Feillet P. 1990. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. Cereal Sci, 11:15~34
    Rafiqul AKM Islam, Kenneth W. Shepherd. 2000. Isolation of a fertile wheat-barley addition line carrying the entire barley chromosome 1H. Euphytica, 111: 145~149
    Redelli R. 1994. Two-dimensional mapping of gliadins using biotypes and null mutants of common wheat Cultivar Saratovskaya, Hereditas, 121:131~137
    R?der Marion S., Victor Korzun, Katja Wendehake, Jens Plaschke, Marie-Hélène Tixier, Philippe Leroy, Martin W. Ganal. 1998. A Microsatellite Map of Wheat. Genetics, 149: 2007~2023
    Rubiales D, Moral A, Mart′?n A. 2001. Chromosome location of resistance to septoria leaf blotch and common bunt in wheat-barley addition lines. Euphytica, 122: 369~372
    Rubiales D, Reader SM., Mart′?n A. 2000. Chromosomal location of resistance to Septoria tritici in Hordeum chilense determined by the study of chromosomal addition and substitution lines in‘Chinese Spring’wheat. Euphytica, 115: 221~224
    Shang HY, Wei Y-M, Long H, Yan Z-H, Zheng Y-L. 2005. Identification of LMW Glutenin-Like Genes from Secale sylvestre Host. Russian Journal of Genetics, 41 (12):1372~1380
    Shewry PR and Tatham AS. 1997. Disulphide bonds in wheat gluten proteins. J Cereal Sci, 25:207~227.
    Shewry PR, Halford NG, Belton PS, Tatham AS. 2002. The structure and properties of glutenin elastic protein from wheat grain. Phil Trans R Soc Lond B, 357:133~142.
    Shewry PR, Halford NG, Tatham AS. 1992. The high molecular weight subunits of wheat glutenin. J Cereal Sci, 15:105~120.
    Shewry PR and Tatham AS. 1990. The prolamin storage proteins of cereal seeds: Structure and evolution. Biochem. J. 267:1~12
    Singh B, Natesan SKA, Singh BK, Usha K. 2005. Improving zinc efficiency of cereals under zinc deficiency. Current Science, 88: 36 ~ 44
    Singh NK, Shepherd KW. 1984. A new approach to studying the variation and genetic control of disulphide-linked endosperm proteins in wheat and rye. In: Graveland A and Moonen J H E. Proc. 2nd International Workshop of Gluten Proteins. TNO: Wageningen, The Netherlands, 129~136
    Singh NK, Shepherd KW, Cornish GB. 1991. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. Journal of Cereal Science, 14:203~208
    Sun Genlou, Yen chi, Yang Junliang, Bihua W. 1995. Production and cytogenetics of inergeneric hybris bewtween Triticum durum-Dasypyrum villosum amphidiloid and Psathyrostachys huashanica. Euphytica, 81:7~11
    Sun X, Hu S, Liu X, Qian Weiqiang, Hao Shanting, Zhang Aimin, Wang Daowen. 2006. Characterization of the HMW glutenin subunits from Aegilops searsii and identification of a novel variant HMW glutenin subunit. Theor Appl Genet, 113:631~641.
    Szakácsé, M Molnár-Láng. 2007. Development and molecular cytogenetic identification of new winter wheat - winter barley (Martonvásári 9kr1-Igri) disomic addition lines. Genome, 50(1):43~50
    Szarka B, Gontér I, Molnár-Láng M, Mórocz S, Dudits D. 2002. Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants. Theor.Appl.Genet, 105(1):1~7
    Tatham AS and Shewry PR. 1985. The conformation of wheat glutenproteins. The secondary structures and thermal stabilities of alpha-, beta-, gamma- and omega- gliadins. J. Cereal Sci. 3:103~113.
    Tatham AS and Shewry PR. 1995. The S-poor prolamins of wheat, barley and rye. J. Cereal Sci. 22:1~16
    Tav HP, Kasarda DD. 1989. Two-dimensional gel mapping and N-terminal sequencing of LMW-glutenin subunits. Exp Bot, 40:1015~1020
    Thomas MS, Flavell RB. 1990. Identification of an enhancer element for the endosperm specific expression of high molecular weight glutenin. The Plant Cell, 2 :1171 ~ 1180.
    Tracy MI, Moller G. 1990. Continuous flow vapor generation for inductively coupled argon plasma spectrometric analysis Part 1. Selenium Journal Association of Analytical Chemistry, 73:404~410
    Uthayakuraaran S, T?m?sk?zi S, Tatham AS, Savage AWJ, Gianibelli MC, Stoddard FL, Bekes F. 2001. Effect of Gliadin Fractions on Functional Properties of Wheat Dough Depending on Molecular Size and Hydrophobity. Cereal Chem, 78(2):138~141
    Wan Y, Wang D, Shewry PR, Halford N. 2002. Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrical. Theor Appl Genet, 104:828~839
    Wang JR, Yan ZH, Wei YM, Zheng YL. 2004. A novel HMW glutenin subunit gene Ee1.5 from Elytrigia elongata (Host) Nevski. J Cereal Sci, 40:289~294
    Wang JR, Yan ZH, Wei YM, Zheng YL. 2006. Characterization of high-molecular-weight glutenin subunit genes from Elytrigia elongate. Plant Breeding, 125, 89~95
    Wang L, Guo J, Zhao GF. 2006. Genetic diversity of the endangered and endemic species Psathyrostachys huashanica natural populations using simple sequence repeats (SSRs) markers. Biochemical Systematics and Ecology, 34:310~318
    Wang RC, von Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M. 1994. Genome symbols in the Triticeae (Poaceae). In: Wang RRC, Jensen KB, Jaussi C (ed) Proceedings of the 2nd International Triticeae Symposium, Logan, pp 29~34
    Wang RC. 1987. Synthetic and natural hybrids of Psathyrostachys huashanica. Genome, 29: 811~816
    Weegles PL, Grootet AM, Verhoek JA, Hamer RJ. 1994. Large-Scale Separation of Gliadins and Their Bread-Making Quality. J Cereal Sci, 20:253~264
    Wim S. Veraverbeke, Jan A Pelcour. 2002. Wheat protein compsition and properties of wheat glutenin in relation to breadmaking functionality. Critical Reviews in Food Science and Nutrition, 42(3):179~208
    Wu Jun, Yang Xinmin, Wang Hui, Li Hongjie, Li Lihui, Li Xiuquan, Liu Weihua. 2006. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor.Appl.Genet. 114(1):13~20
    Xu H, Zhang XQ, Wang XP, Guo AG. 2004. Molecular cloning of Agropyron intermedium Low-Molecular-Weight-Glutenin subunit genes from a Triticum aestivum-Ag. Intermedium addition line TAI-13. Acta Botanica Sinica 46:595~602
    Xu Jie, Conner RL. 1993. Intravarietal variation in satellites and C-banded chromosomes of Agropyron intermedium ssp. Trichophorum cv. Greenleaf. Genome, 37:305~310
    Yan YM, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ. 2003. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica, 130: 377~385
    Yan Zehong, Wan Yongfang, Liu Kunfan, Zheng YL, Wang DW. 2002. Identification of a novel HMW gultenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chinese Science Bulletin, 47(3):220~225
    Yan ZeHong, Yu-Ming Wei, Ji-Rui Wang, Deng-Cai Liu, Shou-Fen Dai, You-Liang Zheng. 2006. Characterization of two HMW glutenin subunit genes from Taenitherum Nevski. Genetica, 127:267~276
    Yang ZJ, Li GR, Ren ZL. 2001. Identification of a Triticum durum-Secale africanum amphiploid and its cross ability with common wheat. Journal of Genetics & Breeding, 55(1):45~50
    Zhang HQ, Zhou YH. 2006a. Meiotic pairing behaviour reveals differences in genomic constitution between Hystrix patula and other species of the genus Hystrix Moench (Poaceae, Triticeae). Pl. Syst. Evol., 258: 129~136
    Zhang HQ, Yang Rui-wu., Dou Quan-wen, Hisashi Tsujimoto, Zhou Yong-hong. 2006b. Genome constitutions of Hystrix patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata (Poaceae: Triticeae) revealed by meiotic pairing behavior and genomic in-situ hybridization. Chromosome Research, 14:595~604
    Zhang HB, Dvo?ák J. 1991. The genome origin of tetraploid species of Leymus (Poaceae: Triticeae) inferred from variation in repeated nucleotide sequences. Am J Bot, 78:871~884
    Zheng Q, Li B, Zhang XY, Mu SM, Zhou HP, Li ZS. 2006. Molecular cytogenetic characterization of wheat-Thinopyrum ponticum translocations bearing blue-grained gene(s) induced by r-ray. Euphytica, 152: 51~60
    ZUZANA ?RAMKOVá, EDITA GREGOVá, ERNEST ?TURDíK. 2009. GENETIC IMPROVEMENT OF WHEAT- A REVIEW. Nova Biotechnologica, 9(1):27~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700