REGγ在人乳腺癌中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分REGγ在人乳腺癌细胞及乳腺上皮细胞中的表达及意义
     目的:探讨在人乳腺癌细胞和乳腺上皮细胞中REGγ的表达情况。
     方法:采用免疫细胞化学和western blotting等方法检测REGγ在乳腺癌细胞株MCF-7、MDA-MB-231与乳腺上皮细胞株HBL-100中的表达情况。
     结果:①REGγ在乳腺癌细胞株与乳腺上皮细胞株的表达水平上有明显差异,2株乳腺癌细胞的REGγ表达明显高于乳腺上皮细胞株(P<0.05)。②在2株乳腺癌细胞株中,MDA-MB-231的REGγ高于MCF-7(P<0.05)。
     结论:在乳腺癌细胞株中REGγ的表达明显高于乳腺上皮细胞株;乳腺癌细胞株中,恶性潜能高的细胞株REGγ的表达强于恶性潜能低的细胞株。
     第二部分REGγ在乳腺癌组织、良性肿瘤组织及癌旁乳腺组织中的表达及意义
     目的研究REGγ在乳腺癌组织、良性肿瘤组织及癌旁乳腺组织的表达及意义,以及人乳腺癌组织中REGγ的表达与临床病理特征的关系。
     方法应用免疫组织化学方法测定REGγ在乳腺癌组织、良性肿瘤组织及癌旁乳腺组织的表达情况。
     结果①REGγ在乳腺癌组织,良性肿瘤(纤维腺瘤)及癌旁乳腺组织的表达水平上结果差别有明显差异,乳腺癌组织的REGγ表达明显高于良性肿瘤及癌旁乳腺组织(P<0.05)。②REGγ在乳腺癌组织的表达在T≤2cm组中明显低于T>2cm组(P<0.05)。③REGγ在淋巴结转移阳性的乳腺癌中表达明显高于淋巴结转移阴性的乳腺癌(P<0.05)。④乳腺癌c-erBb-2(+)组的表达高于c-erBb-2(-)组(P<0.05)。⑤ER(-)组的REGγ表达明显高于ER(+)组的(P<0.05)。⑥在乳腺癌中,组织学Ⅲ级组的REGγ表达与Ⅰ和Ⅱ级组的差别无统计学意义(P>0.05)。
     结论REGγ在乳腺癌组织中表达明显增强。REGγ的表达在T>2cm、有淋巴结转移、c-erBb-2(+)及ER(-)乳腺癌组织中表达增高,与肿瘤分级无关。
     第三部分REGγ蛋白shRNA表达载体的构建和鉴定
     目的在人乳腺癌细胞中构建及鉴定REGγ蛋白shRNA表达载体。
     方法按照Elbashir等及Reynolds的设计原则设计并合成针对REGγ蛋白编码基因REGγ的shRNA,并克隆入转录载体pGenesil-1,构建重组质粒pshRNAREGγ-1,pshRNAREGγ-2和pshRNAREGγ-HK(阴性对照质粒);大量提取重组质粒,采用Lipofectamine~(TM) 2000转染人乳腺癌细胞MDA-MB-23 1和MCF-7,并用G418筛选出稳定转染细胞,应用real-time-quantitative RT-PCR和Western Blot法分别在mRNA和蛋白水平检测REGγ基因的干扰效果。
     结果成功构建三个重组质粒,分别为pshRNAREGγ-1,pshRNAREGγ-2和阴性对照质粒pshRNAREGγ-HK。Real-timequantitative RT-PCR检测显示REGγ基因在mRNA转录水平被显著抑制,pshRNAREGγ-1,pshRNAREGγ-2在两株细胞中分别抑制到未转染细胞细胞的36%,48%和38%,46%。Western Blot检测结果与realtime-RT-PCR相似,pshRNAREGγ-1,pshRNAREGγ-2在两株细胞中分别将REGγ蛋白抑制到未转染细胞细胞的38.23%,45.12%和36.43%,48.46%。pshRNAREGγ-2干扰效果较好。
     结论重组质粒pshRNAREGγ-1,pshRNAREGγ-2均能有效抑制人乳腺癌细胞REGγ蛋白的表达,以pshRNAREGγ-2干扰效果最好。
     第四部分REGγ蛋白shRNA作用乳腺癌细胞株后其相关蛋白的变化及意义
     目的研究REGγ蛋白shRNA作用于不同人乳腺癌细胞后其相关基因在mRNA和蛋白水平的变化以及对细胞生长、细胞周期及凋亡等的影响。
     方法采用Lipofectamine~(TM) 2000转染pshRNAREGγ-2质粒到人乳腺癌细胞MDA-MB-231和MCF-7中,并用G418筛选出稳定转染细胞。采用Western blotting、real-time quantitative PCR、免疫细胞化学检测转染前后不同乳腺癌细胞后相关蛋白SRC-3、PCNA和p21在蛋白水平和mRNA水平的变化;电镜和Tunel法检测转染前后细胞凋亡的改变;流式细胞仪检测细胞周期的变化;MTT法检测细胞生长曲线的变化。
     结果pshRNAREGγ-2转染乳腺癌细胞后,real-time-quantitativeRT-PCR结果显示两株细胞的REGγ的mRNA水平均下降,但SRC-3、PCNA和p21的mRNA水平无明显变化;Western blot和免疫细胞化学则显示REGγ蛋白水平明显下降,PCNA表达下降,SRC-3有不同程度增加(P<0.05),在MDA-MB-231细胞中p21蛋白水平有明显增加(P<0.05),但在MCF-7细胞中无明显改变(P>0.05)。电镜和TUNEL结果显示MDA-MB-231凋亡小体明显增多,但MCF-7的凋亡小体无明显变化。流式细胞仪检测细胞周期显示,在MDA-MB-231细胞中,S期细胞比例明显减少,G1期细胞比例明显增加(P<0.05);而在MCF-7细胞中则是S期细胞比例明显增加,而G1期细胞比例明显减少(P<0.05)。MTT显示MDA-MB-231细胞生长减慢而MCF-7细胞的生长速度增加。
     结论REGγ在不同的乳腺癌细胞株中的作用不同,在MDA-MB-231细胞中,REGγ主要通过降解p21促进细胞生长,而在MCF-7细胞中,REGγ通过降解SRC-3抑制细胞生长。
PART ONE EXPRESSION AND SIGNIFICANCE OF REGγIN HUMAN BREAST CANCER CELLS AND BREAST EPITHELIAL CELL
     Objective:To study the expression and significance of REGγin human breast cancer cells and breast epithelial cell.
     Methods:Western blotting and immunocytochemistry were applied to detect the expression of REGγin human breast cancer cells(MCF-7、MDA-MB-231) and breast epithelial cell(HBL-100).
     Results:①REGγlevels of the breast cancer cells were obviously higher than those of breast epithelial cell(P<0.05).②REGγlevels of MDA-MB-231 were obviously higher than that of MCF-7.
     Conclusion:The expression level of REGγis increased obviously in breast cancer cell lines,and is more important in the cell line with higher potency of malignancy.
     PART TWO EXPRESSION AND SIGNIFICANCE OF REGγIN HUMAN BREAST CANCER,BENIGN TUMOR AND TUMOR-ADJACENT TISSUES
     Objective:To study the expression and significance of REGγin human breast cancer,benign tumor and tumor-adjacent tissues.
     Methods:Immunohistochemistry was applied to detect the expression of REGγin human breast cancer,benign tumor and tumor-adjacent tissues.
     Results:①REGγlevel of human breast cancer were obviously higher than that of tumor-adjacent tissues(P<0.05).②REGγlevel in T≤2cm were obviously lower than those in T>2cm group the pathological gradeⅢgradeⅠandⅡ(P<0.05).③REGγlevel in axillary lymph node negative were obviously lower than those in axillary lymph node positive.④REGγlevel of CerBb-2(+) group were obviously higher than those of c-erBb-2(-) group(P<0.05).⑤REGγlevel of ER(-) group were obviously higher than those of ER(+) group and(P<0.05).⑥There were no significant differences of REGγlevels between with gradeⅢgroup and gradeⅠandⅡgroup(P>0.05).
     Conclusion:REGγlevel increased in T>2cm,axillary lymph node positive,c-erBb-2(+) and ER(-) tumors,but the expression level had no relation with pathlogical grade
     PART THREE CONSTRUCTION AND IDENDIFICATION OF RECOMBINED REGγshRNA PLASMID IN BREAST CARCINOMA CELLS
     Objective:To construct and idendify the recombined small hairpin RNAs(shRNA) plasmid targeted to REGγgene,which can knock down the REGγgene of breast carcinoma cells.
     Methods:Small hairpin RNAs(shRNA) targeted to REGγcoding gene were designed and synthesized according to the principle mentioned by Elbashir and Reynolds.It was cloned into pGenesil-1 which worked as a transcription vector to construct recombined plasmid named pshRNAREGγ-1,pshRNAREGγ-2 and pshRNAREGγ-HK(negative control plasmid).The recombined plasmid was extracted in middle quantity and transferred into breast carcinoma cells by Lipofectamine~(TM) 2000.Realtime-quantitive-RT-PCT and western blotting were used to detect REGγmRNA and protein respectively.
     Results:Three recombined plasmids:pshRNAREGγ-1, pshRNAREGγ-2 and pshRNAREGγ-HK were constructed successfully. Stable transfected cell lines were gained by G418 screen after transfection by Lipofetamine~(TM) 2000.REGγmRNA was suppressed to 36%,48%和38%,46%and in contrast to untransfected cell lines detected by realtime-quantitive-RT-PCR,and REGγprotein was knocked down to 38.23%,45.12%and 36.43%,48.46%measured by western blotting in cells transfected by pshRNA REGγ-1 and pshRNAREGγ-2 plasmid in MDA-MB-231 cell and MCF-7 cell respectively,pshRNAREGγ-2 is better than pshRNA REGγ-1.
     Conclusions:REGγprotein in breast carcinoma cells can be knocked down effectively by recombined plasmid pshRNAREGγ-1 and pshRNA REGγ-2.The effect of pshRNAREGγ-2 is better than that of pshRNA REGγ-1.
     PART FOUR STUDY OF THE SIGNIFICANCE AND ALTERATION OF RELATIVE PROTEINS IN pshRNAREGγPLASMID TRANSFECTED BREAST CANCER CELL LINES
     Objective:To investigate the influence on the cell growth,cell cycle, apoptosis and the change of levels for relative proteins by treated with shRNAREGγ-2 in different breast cancer cell lines.
     Methods:The variations of mRNA and protein level of REGγ、SRC-3、PCNA and p21 in different pshRNAREGγ-2 plasmid transfected breast cancer cell lines were tested by real-time-quantitative-RT-PCR and western blotting as well as immunocytochemistry respectively;The cell proliferation rate and apoptosis were measured by MTT、flow cytometer and transmission electron microscope、dTdT mediated dUTP nick end labeling(TUNEL) method.
     Results:The REGγmRNA and protein levels were significantly decreased in both transfected groups,but there were no change of the other three proteins' mRNA levels:SRC-3、PCNA and p21,and the variations of these proteins levels were:PCNA level was significantly decreased,and SRC-3 level was significantly increased in both cell lines (P<0.05);p21 level was increased in MDA-MB-231cell(P<0.05) but was no significant change in MCF-7cell.There were more apoptotic bodies were detected in MDA-MB-231 cell(P<0.05) than those in MCF-7cell;the G1 phase cells percentage was increased with the decrease of S phase cells in MDA-MB-231 cell(P<0.05) and the transfected cell growth was stepped down,but on the contrary,the S phase cells was increased in MCF-7cell(P<0.05) with an accelarated cell growth.
     Conclusions:REGγhas different roles in MDA-MB-231cell and MCF-7cell.REGγstimulates cell proliferation by degradation of p21 and increases the PCNA in MDA-MB-231cell,and inhibits the proliferation of MCF-7 cell by degradation of SRC-3.
引文
[1]Romond EH,Perez EA,Bryant J,et al.Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer[J].N Engl J Med.2005,353:1673-84
    [2]Piccart-Gebhart MJ,Procter M,Leyland-Jones B,et al.Trastuzumab after adjuvant chemotherapy in HER2-Positive breast cancer[J].N Engl J Med.2005,353:1659-72
    [3]M Lohrisch C and Piccart M.HER2/neu as a predictive factor in breast cancer [J].Clin Breast Cancer.2001,2:129-135
    [4]Hung MC,Lau YK.Basic sciene of HER-2/neu:a review[J].Semin Oncol.1999,26:51-59
    [5]Spano JP,Bay JO,Blay JY et al.Proteasome inhibiton:a new approch for the treatment of malignancies[J].Bull Cancer.2005,92:E61-6,945-52
    [6]Nalepa G and Wade Harper J.Therapeutic anti-cancer targets upstreamof the proteasome[J].Cancer Treat Rew.2003,29 suppl 1:49-57
    [7]Kirschner,M.Intracellular proteolysis[J].Trends Cell Biol.1999,9:M42-5
    [8]Lee DH and Goldberg AL.Proteasome inhibitors:valuable tools for cellbiologists[J].Trends Cell Biol.1998,8:397-403
    [9]Coux O,Tanaka K,Goldberg AL.Structure and functions of the 20S and 26S proteasomes[J].Annu Rev Biochem.1996,65:801-847
    [10]Tanaka K.Proteasomes:structure and biology[J].J Biochem.1998,123:195-204
    [11]Luscher B,Eisenman RN.C-myc and c-myb protein degradation:effect of metabolic inhibitors and heat shock[J].Mol Cell Biol.1988,8:2504-12
    [12] Salvat C, Aquaviva C, Jariel-Encontre I, et al. Are there multiple proteolytic pathways contributing to c-Fos, c-Jun and p53 protein degradation in vivo [J]? Mol Biol Rep. 1999,26:45-51
    [13] He H, Qi XM, Grossmann J, et al. c-Fos degradation by the proteasome. An early, Bcl-2-regulated step in apoptosis [J]. J Biol Chem. 1998,273:25015-19
    [14] Glotzer M, Murray AW and Kirschner MW. Cyclin is degraded by the ubiquitin pathway [J]. Nature. 1991,349:132-138
    [15] Moro A, Perea SE, Pantoja C, et al. IFN[alpha] 2b induces apoptosis and proteasome-mediated degradation of p27Kipl in a human lung cancer cell line [J]. Oncol Rep. 2001,8:425-429
    [16] Fan XM, Wong BC, Wang WP, et al. Inhibition of proteasome function induced apoptosis in gastric cancer [J]. Int J Cancer. 2001,93:481-488
    [17] Bold RJ, Virudachalam S, McConkey DJ. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome [J]. J Surg Res. 2001,100:11-17
    [18] Kumatori A, Tanaka K, Inamura N, et al. Abnormally high expression of proteasomes in human leukemic cells [J]. Proc Natl Acad Sci USA. 1990,87:7071-75
    [19] Kanayama H, Tanaka K, Aki M, et al. Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells [J]. Cancer Res. 1991,51:6677-85
    [20] Monaco JJ and Nandi D. The genetics of proteasomes and antigenprocessing [J]. Annu Rev Genet. 1995,29:729-54
    [21] Lowe J, Stock D, Jap B, et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4A resolution [J]. Science. 1995,268:533-39
    [22] Rechsteiner M, Realini C and Ustrell V. The proteasome activator 11S REG (PA28) and class I antigen presentation [J]. Biochem J. 2000,345:1-15
    [23] Unno MT, Mizushima Y, Morimoto Y, et al. The structure of the mammalian 20S proteasome at 2.75A resolution [J]. Structure.2002,10:609-618
    [24] Yao Y, Huang L, Krutchinsky A, et al. Structural and functional characterizationsof the proteasome-activating protein PA26 from Trypanosoma brucei [J]. J Biol Chem. 1999,274:33921-30
    [25] Groll M, Ditzel L, Lowe J, et al. Structure of 20S proteasome from yeast at 2.4 A resolution [J]. Nature 1997,386:463-71
    [26] Tanaka K and Chiba T. The proteasome: a protein-destroying machine [J]. Genes Cells. 1998,3:499-510
    [27] Jiang H and Monaco JJ. Sequence and expression of mouse proteasome activator PA28 and the related autoantigen Ki [J]. Immunogenetics 1997,46:93-98
    [28] Fruh K and Yan Y. Antigen presentation by MHC class I and its regulation by interferon-Y[J]. Curr Opin Immunol. 1999,11:76-81
    [29] Nikaido T, Shimada K, Shibata M, et al. Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus [J]. Clin Exp Immunol. 1990,79:209-21
    [30] Masson P, Andersson O, Petersen UM, et al. Identification and characterization of a Drosophila nuclear proteasome regulator. A homolog of human 11 S REGγ(PA28y) [J]. J Biol Chem. 2001,276:1383-90
    [31] Dubiel W, Pratt G, Ferrell K, et al. Purification of an 11 S regulator of the multicatalytic protease [J]. J Biol Chem. 1992,267:22369-77
    [32] Ma CP, Slaughter CA and DeMartino GN. Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome(macropain) [J]. J Biol Chem. 1992,267:10515-23
    [33] Ann K, Erlander M, Leturcq D, et al. In vivo characterization of the proteasome regulator PA28 [J]. J Biol Chem. 1996, 271:18237-42
    [34] Soza A, Knuehl C, Groettrup M et al. Expression and subcellular localization of mouse 20S proteasome activator complex PA28 [J]. FEBS Lett. 1997,413:27-34
    [35] Wojcik C, Tanaka K, Paweletz N, et al. Proteasome activator (PA28) subunits a, β and γ (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells [J]. Eur J Cell Biol. 1998,77:151-60
    [36] Li J and Rechsteiner M. Molecular dissection of the US REG (PA28) proteasome activators [J]. Biochimie. 2001, 83:373-83
    [37] Murata, S. Kawahara H, Tohma S, et al. Growth retardation in mice lacking the proteasome activator PA28γ [J]. J Biol Chem. 1999,274:38211-15
    [38] Barton LF, Runnels HA, Schell TD, et al. Immune defects in 28-kDa proteasome activator γ-deficient mice [J]. J Immunol. 2004,172:3948-54
    [39] Masson P. Lundgren J, Young P. et al. Drosophila proteasome regulator REGy: transcriptional activation by DNA replication-related factor DREF andevidence for a role in cell cycle progression [J]. J Mol Biol. 2003,327:1001-12
    [40] Li XT, Lonard DW, Jung SY, et al.The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGy proteasome [J] . Cell. 2006,124:381-92
    [1] Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes [J]. Annu Rev Biochem. 1996,65:801-847
    
    [2] Tanaka K. Proteasomes: structure and biology [J]. J Biochem. 1998,123:195-204
    [3] Kumatori A, Tanaka K, Inamura N, et al. Abnormally high expression of proteasomes in human leukemic cells [J]. Proc Natl Acad Sci USA. 1990,87:7071-75
    [4] Kanayama H, Tanaka K, Aki M, et al. Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells [J]. Cancer Res. 1991,51:6677-85
    [5] Li J and Rechsteiner M. Molecular dissection of the US REG (PA28) proteasome activators [J]. Biochimie. 2001, 83:373-83
    [6] Murata S, Kawahara H, Tohma S, et al. Growth retardation in mice lacking the proteasome activator PA28γ [J]. J Biol Chem. 1999,274:38211-15
    [7] Barton LF, Runnels HA, Schell TD, et al. Immune defects in 28-kDa proteasome activator γ-deficient mice [J]. J Immunol. 2004,172:3948-54
    [8] Hershko A and Ciechanover A. The ubiquitin system [J]. Annu Rev Biochem. 1998,67:425-79
    [9] Rechsteiner M, Hoffman L, Dubiel W. The multicatalytic and 26 S proteases [J]. J Biol Chem. 1993,268:6065-68
    [10] Adams GM, Falke S, Goldberg AL, et al. Structural and functional effects of PA700 and modulator protein on proteasomes [J]. J Mol Biol. 1997,273:646-57
    
    [11] Nikaido T, Shimada K, Shibata M, et al. Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus [J]. Clin Exp Immunol. 1990,79:209-14
    
    [12] Moro A, Perea SE, Pantoja C, et al. IFN[alpha] 2b induces apoptosis and proteasome-mediated degradation of p27Kipl in a human lung cancer cell line [J]. Oncol Rep. 2001,8:425-29
    
    [13] Fan XM, Wong BC, Wang WP, et al. Inhibition of proteasome function induced apoptosis in gastric cancer [J]. Int J Cancer. 2001,93:481-88
    [14] Tenev T, Marani M, McNeish I, et al. Pro-caspase-3 overexpression sensitises ovarian cancer cells to proteasome inhibitors [J]. Cell Death Differ. 2001,8:256-64
    [15] Murata S, Kawahara H, Tohma S, et al. Growth retardation in mice lacking the proteasome activator PA28[gamma] [J]. J Biol Chem. 1999,274:38211-15
    [16] Dubiel W, Pratt G, Ferrell K, et al. Purification of an 11 S regulator of the multicatalytic protease [J]. J Biol Chem. 1992,267:22369-77
    [17] Sherr CJ and Robert JM. CDK inhibitors: positive and negative regulators of G1-phase progression [J]. Genes Dev. 1999,13:1501-12
    [18] Wilk S, Chen WE and Magnusson RP. Properties of the nuclear proteasome activator PA28[gamma] (REG[gamma]) [J]. Arch Biochem Biophys. 2000,383:265-71
    [1] Lee DH and Goldberg, AL. Proteasome inhibitors: valuable tools for cellbiologists. Trends Cell Biol. 1998,8:397-403
    [2] Lowe J, Stock D, Jap B, et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4A resolution [J]. Science. 1995,268:533-39
    
    [3] Li XT, Lonard DW, Jung SY, et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGy proteasome [J]. Cell. 2006,124:381-92
    [4] Li X, Amazit L, Long W, et al. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasom pathway [J]. Mol Cell. 2007,26:831-42
    [5] Li J and Rechsteiner M. Molecular dissection of the US REG (PA28) proteasome activators [J]. Biochimie. 2001, 83:373-83
    [6] Murata S, Kawahara H, Tohma S, et al. Growth retardation in mice lacking the proteasome activator PA28y [J]. J Biol Chem. 1999,274:38211-15
    
    [7] Barton LF, Runnels HA, Schell TD, et al. Immune defects in 28-kDa proteasome activator γ-deficient mice [J]. J Immunol. 2004,172:3948-54
    
    [8] Okamura T, Taniguchi S, Ohkura T, et al. Abnormally high expression of proteasome activator-[gamma] in thyroid neoplasm [J]. J Clin Endocrinol Metab. 2003,88:1374-83
    
    [9] Wilk S, Chen WE and Magnusson RP. Properties of the nuclear proteasome activator PA28[gamma] (REG[gamma]) [J]. Arch Biochem Biophys. 2000,383:265-71
    [1]Hannon GJ.RNA interference[J].Nature.2002,418:244-51
    [2]Brenda LB.RNA interference:The short answer[J].Nature.2001,411:428-29
    [3]Matzke M,Matzke A J and Kooter JM.RNA:guiding gene silencing[J].Science.2001,293:1080-83
    [4]Nykanen A,Haley B and Zamore P D.ATP requirements and small interfer-ing RNA structure in the RNA interference pathway[J].Cell.2001,107:309-21
    [5]Song J J,Smith SK,Harmon G J,et al.Crystal structure of argonaute and its implications for RISC slicer activity ATP requirements and small interfering RNA structure in the RNA interference pathway[J].Science.2004,305:1434-37
    [6]Brummelkamp TR,Bernards R and Agami R.A system for stable expression of short interfering RNA in mammalian cells[J].Science.2002,296:550-53
    [7]Lee NS,Dohjima T,Bauer G,et al.Expreesion of small interfering RNAs targeted against HIV-1rev transcripts in human cells[J].Nature Biotechnol.2002,20:500-05
    [8]Ute Schepers原著,王俊,宋而卫主译[M]。实用RNAi技术—线虫、果蝇和哺乳动物细胞基因沉默的基本原则与方法。人民卫生出版社。2006,p148.
    [9]Ilves H,Barske C,Bohnlein E,et al.Retroviral vectors designed for targeted expression of RNA polymerase Ⅲ-driven transcripts:a comparative study[J].Gene.1996,171:203-8
    [10] Ojwang JO, Hampel A, Looney DJ, et al. Inhibition of human immunodeficiency virus type 1 expression by a harpin ribozyme [J]. Proc Natl Acad Sci USA. 1992,89:10802-6
    [11] Diallo M, Arenz C, Schmitz K, et al. Long endogenous dsRNAs can induce complete gene silencing in mammalian cells and primary cultures [J]. Oligonucleotides. 2003,13:381-92
    [12] Xia XG, Zhou H, Ding H, et al. An enhanced U6 promoter for synthesis of short hairpin RNA [J]. Nucleic Acids Res. 2003, 31:el00
    [13] Dykxhoorn DM, Novina CD and Sharp PA. Killing the Messenger: Short RNAs that Silence Gene Expression [J]. Nature Revs Mol Cell Biol. 2003,4:457-67
    [1]Lee DH and Goldberg,AL.Proteasome inhibitors:valuable tools for cellbiologists.Trends Cell Biol.1998,8:397-403
    [2]Kumatori A,Tanaka K,Inamura N,et al.Abnormally high expression of proteasomes in human leukemic cells[J].Proc Natl Acad Sci USA.1990,87:7071-75
    [3]Kanayama H,Tanaka K,Aki M,et al.Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells[J].Cancer Res.1991,51:6677-85
    [4]Li XT,Lonard DW,Jung SY et al.The SRC-3/AIB1 coactivator is degraded in a ubiquitin-and ATP-independent manner by the REGγ proteasome[J].Cell.2006,124:381-92
    [5]Li X,Amazit L,Long W,et al.Ubiquitin-and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasom pathway[J].Mol Cell.2007,26:831-42.
    [6]Okamura T,Taniguchi S,Ohkura T,et al.Abnormally high expression of proteasome activator-[gamma]in thyroid neoplasm[J].J Clin Endocrinol Metab.2003,88:1374-83
    [7]Anzick SL,Kononen J,Walker RL,et al.AIB1,a steroid receptor coactivator amplified in breast and ovarian cancer[J].Science.1997,277:965-68
    [8]Chen H,Lin R J,Schiltz RL,et al.Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimericactivation complex with P/CAF and CBP/p300[J].Cell 1997,90:569-80
    [9]Takeshita A,Cardona GR,Koibuchi N,et al.TRAM-1,A novel 160-kDa thyroid hormonereceptor activator molecule,exhibits distinct properties from steroid receptor coactivator-1 [J]. J Biol Chem . 1997,272:27629-34
    [10] Torchia J, Rose DW, Inostroza J, et al. The transcriptional coactivatorp/CIP binds CBP and mediates nuclear-receptor function [J]. Nature 1997,387:677-84
    [11] Torres-Arzayus MI, De Mora JF, Yuan J, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene [J]. Cancer Cell. 2004,6:263-74
    
    [12] Kirschner M. Intracellular proteolysis [J]. Trends Cell Biol. 1999,9: M42-M45.
    [13] Murata S. Kawahara H, Tohma S, et al. Growth retardation in mice lacking the proteasome activator PA28γ [J]. J Biol Chem. 1999,274:38211-15
    [14] Li H, Gomes PJ and Chen JD. RAC3 a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2 [J]. Proc Natl Acad Sci USA. 1997,94:8479-84
    [15] McKenna Nj and O'Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators [J]. Cell. 2002,108:465-74
    [16] Liao L, Kuang SQ, Yuan Y, et al. Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1 [J]. J Steroid Biochem Mol Biol. 2002,83:3-14
    [17] Xu J, Liao L, Ning G, et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIBl/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development [J]. Proc Natl Acad Sci USA. 2000,97:6379-84
    [18] Han SJ, Demayo FJ, Xu J, et al. Steroid receptor coactivators SRC-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor [J]. Mol Endocrinol. 2006,20:45-55
    [19] Ying H, Furuya F, Willingham MC, et al. Dual functions of the steroid hormone receptor coactivator 3 in modulating resistance to thyroid hormone [J]. Mol Cell Biol. 2005,25:7687-95.
    [20] List HJ, Reiter R, Singh B, et al. Expression of the nuclear coactivator AIB1 in normal and malignant breast tissue [J]. Breast Cancer Res Treat. 2001,68:21-8
    [21] Gnanapragasam VJ, Leung HY, Pulimood AS, et al. Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer [J]. Br J Cancer. 2001,85:1928-36
    [22] Tanner MM, Grenman S, Koul A, et al. Frequent amplification of chromosomal region 20ql 2-13 in ovarian cancer [J]. Clin Cancer Res. 2000,6:1833-39
    [23] Kuang SQ, Liao L, Zhang H, et al. AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-rasinduced breast cancer initiation and progression in mice [J]. Cancer Res. 2004,64:1875-85
    [24] Kuang SQ, Liao L, Wang S, et al. Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis [J]. Cancer Res. 2005,65:7993-8002
    [25] Wang Z, Rose DW, Hermanson O, et al. Regulation of somatic growth by the p160 coactivatorp/CIP [J]. Proc Natl Acad Sci USA. 2000,97:13549-54
    [26] Louie MC, Revenko AS, Zou JX, et al. Direct control of cell cycle gene expression by proto-oncogene product ACTR, and its autoregulation underlies its transforming activity [J]. Mol Cell Biol. 2006,26:3810-23
    [27] Deng C, Zhang P, Harper JW, et al. Mice lacking p21~(CIP1/WAF1) undergo normal development, but are defective in G1 checkpoint control [J]. Cell. 1995,82:675-84
    [28] Finlan LE, Hupp TR. 2005. The life cycle of p53: a key target in drug development. In: Los M, Gibson SB. (Eds.) Apoptotic Pathways as Target for Novel Therapies in Cancer and Other Diseases [M]. New York: Springer Academic Press,2005
    [29] Gartel AL and Tyner AL. The role of the cyclin-dependent kinaseinhibitor p21 in apoptosis [J]. Mol Cancer Ther. 2002,1:639-49.
    [30] Liu CW, Corboy MJ, DeMartino GN, et al. Endoproteolytic activity of proteasome. [J]. Science. 2003,299:408-11
    [31] Li Y, Upadhyay S, Bhuiyan M, et al. Induction ofapoptosis in breast cancer cells MDA-MB-231 by genistein [J]. Oncogene. 1999,18: 3166-72
    
    [32] Kokuni T, Izawa I and Tamaki N. Overexpression of P21 induces cell diferentiation and growth inhibition in a humanglioma cel line[J]. Int J Cancer. 1998,75:643-48
    [33] Azrin MA, Mitchel JF, Bow LM, et al. Local delivery of c-myb antisense oligonucleotides during balloon angioplasty [J]. Cathet Cardiovasc Diagn. 1997,41:232-40
    [34] Ogata K, Kurki P, Celis JE, et al. Monoclonal antibodies to a nuclear protein (PCNA/cyclin) associated with DNA replication [J]. Exp Cell Res. 1987,168:475-86
    
    [35] Waga S, Hannon GJ, Beach D, et al. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA [J]. Nature. 1994,369:574-78
    [36] Chuang LS, Ian HI, Koh TW, et al. HumanDNA-(cytosine-5) methyltransferase-PCNA complex as a targetfor p21~(WAF1) [J]. Science. 1997,277:1996-2000
    [37] Delavaine L and La Thangue NB. Control of E2F activity by p21~(Wafl/Cip1) [J]. Oncogene. 1999,18:5381-92
    [1] Lee DH and Goldberg AL. Proteasome inhibitors: valuable tools for cellbiologists [J]. Trends Cell Biol. 1998,8:397-403
    
    [2] Arrigo AP, Tanaka K, Goldberg AL, et al. Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells (the proteasome) [J]. Nature. 1988,331:192-4
    [3] Hendil KB. The 19 S multicatalytic "prosome" proteinase is a constitutive enzyme in HeLa cells [J]. Biochem. Int. 1988,17:471-7
    [4] Rock KL, Gramm C, Rothstein L, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules [J]. Cell. 1994,78:761-71
    [5] Wilk S and Orlowski M. Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme [J]. J Neurochem. 1980,35:1172-82
    [6] Groll M and Clausen T. Molecular shredders: how proteasomes fulfill their role [J]. Curr Opin Stuct Biol. 2003,13:665-73
    [7] Lowe J, Stock D, Jap B, et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4A resolution [J]. Science. 1995,268:533-39
    [8] Rechsteiner M, Realini C and Ustrell V. The proteasome activator 11 SREG (PA28) and class I antigen presentation [J]. Biochem J. 2000,345:1-15
    [9] Unno M, Mizushima T, Morimoto Y, et al. The structure of the mammalian 20S proteasome at 2.75A resolution [J]. Structure. 2002,10:609-18
    [10] Yao Y, Huang L, Krutchinsky ML, et al. Structural and functional characterizations of the proteasome-activating protein PA26 from Trypanosoma brucei [J]. J Biol Chem. 1999,274:33921-30
    
    [11] Groll M, Ditzel L, Lowe Jet al. Structure of 20S proteasome from yeast at 2.4A° resolution [J]. Nature. 1997,386:463-71
    
    [12] Walz J, Erdmann A, Kania M, et al. 26S proteasome structure revealed by three-dimensional electron microscopy [J]. J Struct Biol. 1998,121:19-29
    [13] Glickman MH, Rubin DM, Coux O, et al. A subcomplex of the regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3 [J]. Cell. 1998,94:615-23
    
    [14] Tanaka K. Molecular biology of proteasomes [J]. Mol Biol Rep. 1995,21:21-6
    [15] Beyer A. Sequence analysis of the AAA protein family [J]. Protein Sci. 1997,6:2043-58
    [16] Hilt W and Wolf DH. Proteasomes: destruction as aprogramme [J]. Trends Biochem Sci. 1996,21:96-102
    [17] Hori T, Kato S, Saeki M, et al. cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits, of the 26S proteasome [J]. Gene. 1998,216:113-22
    [18] Lam YA, Xu W, DeMartino GN, et al. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome [J]. Nature. 1997,385:737-40
    [19] Wilkinson BCD. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes [J]. FASEB J. 1997,11:1245-56
    [20] Hershko A and Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998,67:425-80
    [21] Elsasser S and Finley D. Delivery of ubiquitinated substrates to proteinunfolding machines [J]. Nat Cell Biol. 2005,7:742-49
    [22] Hershko A, Ciechanover A.The ubiquitin system [J]. Annu Rev Biochem. 1998,67:425-79
    [23] Verma R, Oania R, Graumann J, et al. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome-system [J]. Cell. 2004,118:99-110
    [24] Guterman A and Glickman MH. Complementary roles for RPN11 and Ubp6 in deubiquitination and proteolysis by the proteasomes [J]. J Biol Chem. 2004,279:1729-38
    [25] Smith DM, Kafri G, Cheng Y et al. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasomes, gate opening, and translocation of unfolded proteins [J]. Mol Cell. 2005,20:687-98
    [26] Tanaka K and Chiba T. The proteasome: a protein-destroying machine [J]. Genes Cells. 1998,3:499-510
    [27] Ahn K, Erlander MD, Leturcq PA et al. Invivo characterization of the proteasome regulator PA28 [J]. J Biol Chem. 1996,271:18237-42
    [28] Soza A, Knuehl C, Groettrup MP, et al. Expression and subcellular localization of mouse 20S proteasome activator complex PA28 [J]. FEBS Lett. 1997,413:27-34
    [29] Jiang H and Monaco JJ. Sequence and expression of mouse proteasome activator PA28 and the related autoantigen Ki [J]. Immunogenetics. 1997,46:93-8
    [30] Yewdell JW, Reits E and Neefjes J. Making sense of mass destruction: quantitating MHC class I antigen presentation [J]. Nat Rev Immunol. 2003,3:952-61
    [31] Rechsteiner M, Realini C, Ustrell V. The proteasome activator 11 S REG (PA28) and class I antigen presentation [J]. Biochem J. 2000,345:1-15
    [32] Whitby FG, Masters EI, Kramer L et al. Structural basis for the activation of 20S proteasomes by 11S regulators [J]. Nature. 2000,408:15-20
    [33] Murata S, Udono H, Tanahashi N et al. Immunoproteasome assembly and antigen presentation in mice lacking both PA28a and PA28b [J]. EMBO J. 2001,20:5898-907
    [34] Tanahashi N, Murakami Y, Minami Y et al. Hybrid proteasomes. Induction by interferon-g and contribution to ATP-dependent proteolysis [J]. J Biol Chem. 2000,275: 14336-14
    [35] Minami Y, Kawasaki H, Minami M, et al. A critical role for the proteasome activator PA28 in the Hsp90-dependent protein refolding [J]. J Biol Chem. 2000,275:9055-61
    [36] Nikaido T, Shimada K, Shibata M et al. Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus [J]. Clin Exp Immunol. 1990,79:209-14
    [37] Masson P, Andersson O, Petersen UM et al. Identification and characterization of a Drosophila nuclear proteasome regulator. A homolog of human 11 S REGg (PA28g) [J]. J Biol Chem. 2001,276:1383-90
    [38] Tanahashi N, Yokota K, Ahn JY, et al. Molecular properties of the proteasome activator PA28 family proteins and c-interferom regulation [J]. Genes cells. 1997,2:195-211
    [39] Murata, S. Kawahara H, Tohma S,et al. Growth retardation in mice lacking the proteasome activator PA28γ[J]. J Biol Chem. 1999,274:38211-15
    [40] Barton LF, Runnels HA, Schell TD et al. Immune defects in 28-kDa proteasome activator g-deficient mice [J]. J Immunol. 2004,172:3948-54
    [41] Masson, P. Lundgren J, Young P et al. Drosophila proteasome regulator REGg: transcriptional activation by DNA replication-related factor DREF andevidence for a role in cell cycle progression [J]. J Mol Biol. 2003,327:1001-12
    [42] Okamura T, Taniguchi S, Ohkura T et al. Abnormally high expression of proteasome activator-[gamma] in thyroid neoplasm [J]. J Clin Endocrinol Metab. 2003,88:1374-83
    [43] Li XT, Lonard DW, Jung SY et al.The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGγ proteasome [J]. Cell. 2006,124:381-92
    [44] Li X, Amazit L, Long W et al. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasom pathway [J]. Mol Cell. 2007,26:831-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700