水稻抗白叶枯病基因Xa26和Xa4的遗传和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白叶枯病是水稻中重要的病害之一,农业生产中对于白叶枯病的防治主要利用抗病基因,水稻中鉴定了大量的抗白叶枯病基因,抗病基因的克隆将为农业生产提供抗源,同时对抗病基因功能的研究以及应用这些抗病基因有着重要的指导意义。
     水稻抗白叶枯病基因Xa26和Xa4都定位于水稻11染色体长臂的末端,Xa4是在中国水稻抗白叶枯病育种中应用较广的基因,Xa26是在三系杂交水稻恢复系明恢63中鉴定的广谱抗病基因。采用图位克隆的策略分离克隆这两个基因具有重大的理论和应用价值。
     利用农杆菌介导的转化方法对Xa4和Xa26的候选基因进行稳定的遗传转化,对转化植株进行接种鉴定,确定基因。首先将Xa26的两个候选基因MRKa,MRKb,利用其自身启动子转化到粳稻感病品种牡丹江8中,接种发现所有携带MRKb的转基因植株都获得了对白叶枯病的抗性,对其T1代植株接种表明所有抗性和转基因的表型共分离,说明MRKb即为Xa26基因。牡丹江8背景的转基因植株抗性相对于供体品种明恢63抗性显著提高,为了进一步研究粳稻背景对Xa26抗性的影响,将Xa26导入到另外两个感病的粳稻品种中花11和02428中,结果发现这两个背景下Xa26抗性也有明显增强,并且由成株期抗性变为全生育期抗性。以上结果表明粳稻背景有利于Xa26发挥功能。为了更深入地了解Xa26的功能,利用玉米泛素启动子在中花11和牡丹江8背景中超量表达Xa26,接种结果表明超量表达可以进一步提高抗性,并可以在一定程度上拓宽抗谱,而对于水稻生长发育并无明显影响,预示Xa26有着广阔的应用前景。同时我们还利用一个病原诱导的启动子在相同背景下表达Xa26,转基因植株的抗性明显减弱。这表明Xa26介导的抗性受到遗传背景和表达强度的影响。
     利用定量PCR的方法分析不同背景下不同启动子驱动的转基因植株中Xa26的表达量,发现自身启动子调控Xa26的所有转基因植株表达量都明显高于两个籼稻品种明恢63和IRBB3,这说明Xa26在粳稻背景中的表达量明显高于籼稻背景,表达量的升高可能是Xa26抗性增强最直接的原因。为了进一步证明Xa26表达量与抗性的相关性,又在明恢63背景下超量表达Xa26,转基因植株的抗性明显增强。这些结果表明Xa26发挥作用具有明显的剂量效应。
     Xa26在不同背景下在接种后的表达模式不同,在牡丹江背景转基因植株中Xa26的表达有明显的上升,而明恢63和IRBB3中却有一个显著的下降后再上升的趋势,但中花11背景的植株没有明显的变化。同时分析了Xa26在不同生育期的表达量的变化,发现Xa26在苗期表达量较低,而随着生长发育的进行表达量逐步升高,在转基因植株中也有相同的发现,这个结果表明不同时期的表达量差异决定了不同时期的抗性差异。我们还发现Xa26的表达量的提高可以加快抗病反应下游基因OsWRKY13和NH1对白叶枯病菌的应答。这些结果说明了Xa26基因的表达受到生长发育的影响,并且Xa26表达量的提高可以影响下游基因的表达。
     采用超量表达的方法研究了Xa26家族成员MRKa和MRKc的功能,在中花11中超量表达MRKa,转基因植株表现为中等抗性;而MRKc的转基因植株却没有获得抗性,表明在抗病基因家族中一些成员会有抗性的残留。构建了一个MRKa和Xa26的嵌合基因:Xa26LRR-TM-MRKaK,可以介导对白叶枯病的部分抗性,这说明通过人为的方法可以获得新的抗病基因。同时对MRKa,Xa26,MRKc的表达模式研究发现三个基因的表达模式类似,并且基因表达部位都集中在维管组织周围,说明抗病基因家族的表达模式在进化上有一定的保守性。并且白叶枯病是一个维管病害,抗病基因在维管周围的大量表达有利于其更好的发挥作用。
     利用RNAi技术抑制明恢63中Xa26的表达后植株抗性下降,而转基因植株的生长发育并没有受到明显影响,表明抗病可能是Xa26基因的主要功能。
     此外在Xa4的研究中,将候选基因B4-RKa,TQ-RKa,TQ-RKb,TQ-RKd转化到几个水稻品种中都没有获得抗性,表明这几个基因都不是Xa4,进一步分析发现还有一个基因可能是Xa4的候选基因:B4-WAK,这个基因在叶鞘中表达较高,接种后有微弱的上升。测序发现IRBB4和带有Xa4的另外两个品种特青及93-11中WAK基因序列一致,超量表达B4-WAK发现转基因植株对白叶枯病有一定的抗性。B4-WAK是否为Xa4基因还有待进一步确定。
Rice bacterial blight is a devasting disease trigged by Xanthomonas oryza sative pv oryza, causing tremendous yield loss each year. Therefore, disease control is of great importance. A very effective way among such control is the utilization of host resistance genes. Till now, many genes were identified in rice, some of which were cloned. It will help us prompting our knowledge of molecular basis of disease resistance; facilitate genetic improving of rice disease resistance.
     Xa26 and Xa4 are two rice major resistance genes against bacterial blight. They are located on the terminal long arm of Chromosome 11. Xα4 was once widely used in rice breeding. Xα26 derived from Minghui 63 with wide-spectrum resistance. Based on that, cloning of those two genes makes sense.
     Candidate genes transformation method was used to identify genes. Previous study showed that MRKαand MRKb might be candidates of Xα26. Thereby those two genes with complete ORFs and promoters were introduced into susceptible japonica cultivar Mudanjiang 8 by agrobacteria-mediated transformation. After inoculation with Xoo, all TO transgeneic plants carrying MRKb exhibited resistance against bacterial blight. Further T1 analysis showed that such phenotype were cosegaregated with the ingressed MRKb, powerfully proving MRKb was Xα26. Intriguingly, transgenic plants diplayed a higher level of resistance after inoculation than its donor line Minghui 63. The same results were observed when Xα26 were introdued into other two susceptible japonica cultivar, Zhonghua 11 and 02428. This might suggest a vital rloe genetic background played in the resistance reaction. Further oversepressing Xα26 under ubiquitin promoter in Zhonghua 11 and Mudanjiang 8 endowed the transgenic plants with higher level of resistance, also exhibiting wide resistance-spectrum. Howerer, reducing its expression level using a pathogen induced promoter in the same genetic background caused a decresed resistance level in transgenic plants.
     The above results were confirmed by real-time quantitative PCR: expression level of Xα26 under origin pomotor in japonica bacgroud is markedly higher than that in the indica background. This might interpret why transgenic plants of japonica background immuned from more bacterial than those of indica background, probablely duing to greater amounts of Xα26 mRNA. When overexpressing Xα26 in its donor cultivar Minghui 63, higher resistance level was speculated in transgenic plants. Concluding from above results implies a potential mechanism Xα26 might act in the resistance reaction: the effect of Xα26 in disease resistance was directly correlated with its mRNA level, functioning with a dosage effect way.
     Another appealing result rose up when checking Xα26 expression profile in two genetic backgrounds after inoculation with Xoo. Xα26 transcribed remarkedly rise after being infected by incompatible bacterial strain in Mudanjiang 8. Such trend was not so evident when Xα26 expressed in another elite japonica cultivar-Zhonghua 11. However, analysis of gene expression in indica cultivar (Minghui 63 & IRBB3) showed a typical on and off pattern. Expression analysis revealed that OsWRKY13 and NH1, downstream members of resistance signal pathway, were positively regulated once there was an increased expression of Xα26.
     As Xα26 belongs to a gene family, therefore we checked whether other members of this RLK family were able to confer resistance. It was achieved by overexpressing MRKαand MRKc. Transgenic plants of MRKαexhibited moderate resistance to pathogen, while those of MRKc were susceptible. It seems that members of the resistance gene family were yet with residual effect against pathogen. We introduced a chimeric gene, Xα3/Xα26LT-MRKαK which could partialy enhance resistance to Xoo. MRKαand MRKc showed similar expression pattern as Xα26, which expressed only in the vascular systems of different tissues. The expressional characteristic of MRKαand MRKc perfectly fits the function of genes conferring resistance to Xoo, a vascular pathogen.
     RNAi method used to study the function of Xα26, all transgenic plants showed the enhanced susceptible phenotype after inoculated with Xoo, and showed no influence to the growth of plants indicated that Xα26 may had the unique function: disease resistance.
     Xα4 is currently under cloning. Several candidate genes such as B4-RKα, TQ-RKα, TQ-RKb, TQ-RKd were already excluded. Another possible candidate gene was believed to be Xα4, as transgenic plants overexpressing this gene showed moderate resistance. This gene weakly expressed in plants, with a slight rise exposing to pathogen. Comparing its sequence among IRBB4, Teqing, 93-11 indicated there was no diversity among these three cultivars which contain Xα4. Further analysis should be done to confirm its role as Xα4.
引文
1.储昭晖.水稻白叶枯病隐性抗病基因xal3的分离与鉴定.[博士学位论文],武汉:华中农业大学图书馆,2005
    2.孙新立.水稻抗白叶枯Xa4基因及其等位基因的克隆以及相关基因家族的分析.[博士学位论文],武汉:华中农业大学图书馆,2003
    3.杨之芬.一个水稻抗白叶枯病新基因的鉴定精细定位及候选基因的确定与分析.[硕士学位论文],武汉:华中农业大学图书馆,2002
    4.张端品,谢岳峰,Wew Twng-Wah.水稻品种对白叶枯病成株抗性研究,中国农业科学,1984,1:40-50
    5.赵新平,张端品,谢岳峰.水稻对白叶枯病成株抗性基因显性反转的研究,遗传,1986.8:5-9
    6. Abramovitch RB, Anderson JC, Martin GB. Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol, 2006, 7:601-611
    7. Abramovitch RB, Kim YJ, Chen S, Dickman MB, Martin GB. Pseudomonas type Ⅲ effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J, 2003, 22:60-69
    8. Abramovitch RB, Martin GB. Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol, 2004, 7:356-64
    9. Alfano JR, Collmer A. Type Ⅲ secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol, 2004, 42:385-414
    10. Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon, JL. Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science, 2004, 306:1957-1960.
    11. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boiler T, Ausubel FM, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415:977-983
    12. Ausubel FM. Are innate immune signaling pathways in plants and animals conserved? Nat Immunol, 2005, 6:973-9
    13. Axtell MJ, Staskawicz BJ. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell, 2003, 112:369-377
    14. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science, 2002,295: 2073-2076
    15. Belkhadir Y, Subramaniam R, Dangl JL. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol, 2004, 7:391-399
    16. Bendahmane A, Kohm BA, Dedi C. The coat protein of potato virus X is a strain-specific elicitor or Rx1 mediated virus resistance in potato. Plant J, 1995, 8:933-941
    17. Bernal AJ, Pan Q, Pollack J, Rose L, Kozik A, Willits N, Luo Y, Guittet M, Kochetkova E, Michelmore RW. Functional analysis of the plant disease resistance gene Pto using DNA shuffling. J Biol Chem, 2005, 280:23073-23083
    18. Beth Mudgett M. New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol, 2005, 56: 509-531
    19. Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiss HH, Shirasu K, Schulze-Lefert P. RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell, 2004,16:3480-3495
    20. Blocker A, Komoriya K, Aizawa S. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc Natl Acad Sci U S A, 2003,100:3027-3030
    21. Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschape H, Hacker J. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun, 1994, 62:606-614
    22. Bouchez D, Hofte H. Functional genomics in plants. Plant Physiol, 1998,118:725-32
    23. Boyes DC, Nam J, Dangl JL. The Arabidopsis thaliana RPMl disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA, 1998,95:15849-15854
    24. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 2000, 289:617-619
    25. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A. The barley stem rust-resistance gene Rpgl is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A, 2002, 99:9328-9333
    26. Cao H, Bowling SA, Gordon S, Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 1994, 6:1583-1592
    27. Cao H, Glazebrook J, Clark JD, Volko S, Dong X, The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88:57-63
    28. Century KS, Lagman RA, Adkisson M, Morlan J, Tobias R, Schwartz K, Smith A, Love J, Ronald PC, Whalen MC. Developmental control of Xa21 -mediated disease resistance in rice. Plant J, 1999, 20:231-236
    29. Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46:794-804
    30. Chern MS, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response hypersensitivity to light. Mol Plant-Microbe Interact, 2005, 18:511-520
    31. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q, Wang, S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev, 2006,20: 1250-1255
    32. Clark SE, Running MP, Meyerowitz EM. CLAVATA3 is a specific regula of shoot and floral meristem development affecting the same processes as CLAVATA1. Development, 1995, 121:2057-2067
    33. Clark SE, Williams RW, Meyerowitz EM. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 1997, 89:575-585
    34. Collins N, Drake J, Ayliffe M. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell, 1999, 11:1365-1376
    35. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P. SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 2003, 425:973-7
    36. Collmer A, Badel JL, Charkowski AO, Deng WL, Fouts DE, Ramos AR, Rehm AH, Anderson DM, Schneewind O, van Dijk K, Alfano JR. Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci U S A, 2000, 97:8770-7
    37. Collmer A, Lindeberg M, Petnicki-Ocwieja T, Schneider DJ, Alfano JR: Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol, 2002,10:462-469
    38. Cornelis GR, Van Gijsegem F. Assembly and function of type III secretory systems. Annu Rev Microbiol, 2000, 54:735-74
    39. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411:826-833
    40. De Ilarduya OM, Kaloshian I. Mi-1.2 transcripts accumulate ubiquitously in resistant Lycopersicon esculentum. J Nematol, 2001, 33:116-120
    41. de Torres M, Mansfield JW, Grabov N, Brown, IR, Ammouneh H, Tsiamis G. Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J, 2006,47: 368-382
    42. de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBOJ, 2007,26:1434-1443
    43. de Vries JS, Andriotis VM, Wu AJ, Rathjen JP. Tomato Pto encodes a functional N-myristoylation motif that is required for signal transduction in Nicotiana benthamiana. Plant J, 2006,45:31-45
    44. Deeken R, Kaldenhoff R. Light-repressible receptor protein kinase: a novel photo-regulated gene from Arabidopsis thaliana. Planta, 1997, 202:479-86
    45. Deslandes L, Olivier J, Peeters N, Feng DX, Khouniotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A, 2003, 100:8024-9
    46. Dinesh-Kumar SP, Baker BJ. Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci U S A, 2000, 97:1908-13
    47. Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JDG. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell, 1998,10:1915-1925
    48. Dodds PN, Lawrence GJ, Catanzariti AM, Ayliffe MA, Ellis JG. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell, 2004, 16:755-68
    49. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl AcadSci USA, 2006, 103:8888-8893
    50. Dong X. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol, 1998,1:316-323
    51. Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J, 2002, ,32,:927-34
    52. Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol, 2004, 42:185-209
    53. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss G. A receptor kinase gene regulating symbiotic nodule development. Nature, 2002, 417:962-966
    54. Espinosa A, Alfano JR. Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity. Cell Microbiol, 2004, 6:1027-1040
    55. Felix G, Duran JD, Volko S, Boiler T. Plants recognise bacteria through the most conserved domain of flagellin. Plant J, 1999, 18:265-276
    56. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci U S A, 2003, 100:15253-8
    57. Feys BJ, Moisan LJ, Newman MA, Parker JE. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J, 2001, 20:5400-11
    58. Flor HH. Current status of the gene-for-gene concept. Ann Rev Phytopathol, 1971, 9: 275-296
    59. Foultier B, Troisfontaines P, Muller S, Opperdoes FR, Cornells GR. Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogeny analysis of type III secretion systems. J Mol Evol, 2002, 55:37-51
    60. Frey C A, Tang D, Innes R W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA, 2000, 98: 373-378
    61. Galan JE, Collmer A. Type III secretion machines: Bacterial devices for protein delivery into host cells. Science, 1999, 284:1322-1328
    62. Gomez-Gomez L, Bauer Z, Boiler T. Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell, 2001, 13:1155-63
    63. Gomez-Gomez L, Boiler T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell, 2000, 5:1003-1011
    64. Gomez-Gomez L, Felix G, Boiler T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J, 1999, 18:277-284
    65. Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol, 2006, 60: 425-449
    66. Hacker J, Bender L, Ott M, Wingender J, Lund B, Marre R, Goebel W. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog, 1990, 8:213-225
    67. Hammond-Kosack K, Parker J E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotech, 2003, 14:177-193
    68. Hauck P, Thilmony R, He SY: A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci USA, 2003,100:8577-8582
    69. He P, Shan L, Sheen J. Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell Microbiol, 2007 9:1385-96
    70. He SY, Jin Q. The Hrp pilus: learning from flagella. Curr Opin Microbiol, 2003, 6:15-19
    71. He SY. Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol, 1998, 36:363-392
    72. He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science, 2000, 288:2360-2363
    73. Hecht V, Vielle-Calzada JP, Hartog MV, Shmidt EDL, Boutilier K, Grossniklaus U, de Vries SC. The Arabidopsis Somatic Embryogenesis Recep Matrin Kinase 1 gene is expressed in developing ovules and embryos. Plant Physiol, 2001, 127:803-816
    74. Huang S, van der Vossen EA, Kuang H, Vleeshouwers VG, Zhang N, Borm TJ, van Eck HJ, Baker B, Jacobsen E and Visser RG Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J, 2005,42: 251-261
    75. Huitema E, Vleeshouwers VGAA, Francis DM, Kamoun S. Active defense responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Mol Plant Pathol, 2003,4:487-500
    76. Hwang CF, Williamson VM. Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. Plant J, 2003, 34:585-93
    77. Jakobek JL, Smith JA, Lindgren PB. Suppression of bean defense responses by Pseudomonas syringae. Plant Cell, 1993, 5:57-63
    78. Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase.Science, 2006, 31:222-226
    79. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000, 19:4004-4014
    80. Jie Zhang, Feng Shao, Yan Li, Haitao Cui, Linjie Chen, Hongtao Li, Yan Zou, Lefu Lan, Jijie Chai, Xiaoyan Tang, and Jian-Min Zhou. A Pseudomonas syringae Effector Inactivates MAPKs to Suppress PAMP-Induced Immunity in Plants. Cell Host and Microbe, 2007, in press
    81. Jinn TL, Stone JM, Walker JC. HAESA, an Arabidopsis leucine-rich repeat recep Matrin kinase, controls floral organ abscission. Genes Dev, 2000, 11:108-117
    82. Johal GS, Briggs SP. Reductase activity encoded by the Hm1 disease resistance gene in maize. Science, 1992, 258:985-987
    83. Jones AM, Thomas V, Bennett MH, Mansfield J, Grant M. Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol, 2006, 142:1603-1620
    84. Jones DA, Thomas CM, Hammond-Kosack KE. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994, 266:789-793
    85. Jones JD, Dangl JL. The plant immune system. Nature, 2006, 444:323-9
    86. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A, 2006, 103:11086-91
    87. Kauffman H E, Reddy A P K, Hsieh S P Y, Merca S D. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep, 1973, 57:537-541
    88. Kayes, JM, Clark SE. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development, 1998, 125:3843-3851
    89. Kearsey SE, Edwards J. Mutations that increase the mitotic stability of minichromosomes in yeast: characterization of RAR1. Mol Gen Genet, 1987, 210:509-17
    90. Kim HS, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proc Natl Acad Sci U S A, 2005, 102:496-501
    91. Kim YJ, Lin NC, Martin GB. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell, 2002, 109:589-98
    92. Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 2005, 433:167-171
    93. Knapp S, Hacker J, Jarchau T, Goebel W. Large, unstable inserts in the chromosome affect virulence properties of uropathogenic Escherichia coli O6 strain 536. J Bacteriol. 1986,168:22-30
    94. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara T M, Sukhan A,. Galan JE, Aizawa SI. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science, 1998, 280:602-605
    95. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boiler T, Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 2004, 6: 496-507
    96. Kwak SH, Shen R, Schiefelbein J. Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science, 2005, 307:1111-3
    97. Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell, 1995, 7:1195-1206
    98. Lee SW, Han SW, Bartley LE, Ronald PC. From the Academy: Colloquium review. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA, 2006,103:18395-18400
    99. Levy M, Edelbaum O, Sela H. Tobacco mosaic virus regulates the expression of its own resistance gene N. Plant Physiol, 2004,135: 2392-2397
    100.Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997,90:929-938
    101.Li J, Nam KH. Regulation of brassinosteroid signaling by a GSK3/SHAGGY like kinase. Science, 2002, 295:1299-1301
    102.Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 2002, 110:213-222
    103.Li X, Lin H, Zhang W, Zou Y, Zhang J, Tang X, Zhou JM. Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci USA, 2005,102:12990-12995
    104.Li ZK, Luo LJ, Mei HW, Paterson AH, Zhao XH, Zhong DB, Wang YP, Yu XQ, Zhu L, Tabien R, Stansel JW, Ying CS. A "defeated" rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Gen Genet, 1999, 261:58-63
    105.Lin YJ, Zhang Q. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23:540-547
    106.Lindeberg M. Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. Mol Plant Microbe Interact, 2006, 19:1151-1158
    107.Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science, 2005, 310:1180-3
    108.Liu GZ, Pi LY, Walker JC, Ronald PC, Song WY. Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. J Biol Chem, 2002, 277:20264-9
    109.Liu X, Lin F, Wang L, Pan Q.The in silico map-based cloning of Pi36, a rice CC-NBS-LRR gene which confers race-specific resistance to the blast fungu. Genetics, 2007, May 16 [Epub ahead of print]
    110.Lu M, Tang X, Zhou JM. Arabidopsis NH01 is required for general resistance against Pseudomonas bacteria.Plant Cell, 2001, 13:437-447
    111 .Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell, 2003, 112:379-89
    
    112.Mackey D, Holt III B, Wiig A, Dangl J L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1 mediated resistance in Aribidopsis. Cell, 2002, 108:743-754
    113.Mackey D, McFall AJ. MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Mol Microbiol, 2006,61:1365-1371
    114.Makino S, Tobe T, Asakura H, Watarai M, Ikeda T, Takeshi K, Sasakawa C. Distribution of the secondary type III secretion system locus found in enterohemorrhagic Escherichia coli O157:H7 isolates among Shiga toxin-producing E. coli strains. J Clin Microbiol, 2003,41:2341-2347
    115.Martin GB, Bogdanove AJ, Sessa G. Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol, 2003, 54:23-61
    116.Massague J. TGFb signaling: Receptors, transducers and Mad proteins. Cell, 1996, 85:947-950
    117.Matsubayashi Y, Ogawa M, Morita A, Sakagami Y. An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science, 2002, 296:1470-1472
    118.Matsubayashi Y, Sakagami Y. 120- and 160-kDa receptors for endogenous mitogenic peptide, phytosulfokine-a in rice plasma membranes. J Biol Chem, 2000, 275:15520-15525
    119.Menezes H, Jared C. Immunity in plants and animals: common ends through different means using similar tools. Comp Biochem Physiol C Toxicol Pharmacol, 2002, 132:1-7
    120.Meyers BC, Chin DB, Shen KA. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell, 1998a, 10:1817-1832
    121.Meyers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell, 1998,10: 1833-1846
    122.Moissiard G, Voinnet O: Viral suppression of RNA silencing in plants. Mol Plant Pathol, 2004, 5:71-82
    123.Mou Z, Fan W H, Dong X N. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 2003,113:935-944
    124.Nam KH, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 2002, 110:203-212
    125.Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F, Dangl JL. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell, 2000, 101:353—363
    126.Nirmala J, Brueggeman R, Maier C, Clay C, Rostoks N, Kannangara CG, von Wettstein D, Steffenson BJ, Kleinhofs A. Subcellular localization and functions of the barley stem rust resistance receptor-like serine/threonine-specific protein kinase Rpgl. Proc Natl Acad Sci USA, 2006, 103:7518-23
    127.Nomura K, DebRoy S, Lee YH, Pumplin N, Jones J, He SY. A bacterial virulence protein suppresses host immunity to cause plant disease. Science, 2006, 313:220-223
    128.Nomura K, Melotto M, He SY. Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr Opin Plant Biol, 2005, 8:361-368
    129.Nurnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev, 2004, 198:249-66
    130.Nurnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev, 2004, 198:249-66
    131.Nurnberger T, Brunner F. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol, 2002, 5:318-24
    132.Oelschlaeger TA, Hacker J.Impact of pathogenicity islands in bacterial diagnostics. APMIS, 2004,112:930-6
    133.Ogawa T, Tabien RE, Busto GA, Khush GS, Mew TW. The relationships between Xa-3, Xa-4, and Xa-4b for resistances to rice bacterial blight. Rice Genet Newsl, 1986a, 3:83-84
    134.Ogawa T, Yamamoto T, Khush GS, Mew TW, Kaku H. Near-isogenic lines as international diVerentials for resistance to bacterial blight or rice. Rice Genet Newsl, 1988b, 5:106-107
    135.Ogawa T, Yamamoto T, Khush GS, Mew TW. Inheritance of resistance to bacterial blight in Sateng-A reinvestigation. Rice Genet Newsl, 1986b, 3:80-82
    136.Ogawa T, Yamamoto T, Khush GS, Mew TW. The Xa-3 gene for resistance to Philippine races of bacterial blight of rice. Rice Genet Newsl, 1986c, 3:77-78
    137.Oldroyd GE, Staskawicz BJ. Genetically engineered broad-spectrum disease resistance in tomato. Proc Natl Acad Sci USA, 1998, 95:10300-10305
    138.Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12:2019-32
    139.Paal J, Henselewski H, Muth J, Meksem K, Menendez CM, Salamini F, Ballvora A Gebhardt C Molecular cloning of the potato Grol-A gene conferring resistance to pathotype Rol of the root cyst nematode Globodera rostochiensis. Plant J, 2004, 38:285-297
    140.Pauli S, Rothnie HM, Chen G, He X, Hohn T. The cauliflower mosaic virus 35S promoter extends into the transcribed region. J Virol, 2004, 78:12120-12128
    141.Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JD. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with n and L6. Plant Cell, 19979:879-94
    142.Peng KM, Zhang HB, Zhang QF. A BAC library constructed to the rice cultivar "Minghui63" for cloning genes of agronomic importance. Acta Bot Sinica, 1998, 40:1108-1114
    143.Petpisit V, Khush GS, Kauffman HE. Inheritance of resistance of bacterial blight in rice. Crop Sci, 1977, 17: 551-554
    144.Pieterse C M, van Wees S C, van Pelt J A, Knoester M, Laan R, Gerrits H, Weisbeek P J, van Loon L C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 1998,10: 1571-1580
    145.Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol, 2002, 129:1076-85
    146.Pontier D, Privat I, Trifa Y, Zhou J M, Klessig D F, Lam E. Differential regulation of TGA transcription factors by post-transcriptional control. Plant J, 2002, 32:151-163
    147.Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant-Microbe Interact, 2007, DOI: 10.1094/MPMI-20-0-0000
    148.Scheer JM, Ryan CA. The systemin receptor SR160 from Lycospersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci, 2002, 99:9585-9590
    149.Schmidt H, Hensel M. Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev, 2004, 17:14-56
    150.Schoof H, Lenhard M, Haecker A, Mayer KFX, Jurgens G, Laux T. The stem cell population of Arabidopsis shoot meristem is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100:635-644
    151.Schornack S, Ballvora A, Gurlebeck D, Peart J, Baulcombe D, Ganal M, Baker B, Bonas U, Lahaye T. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J, 2004, 37:46-60
    152.Schornack S, Meyer A, Romer P, Jordan T, Lahaye T. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J Plant Physiol, 2006, 163:256-72
    153.Shah K, Gadella TWJ, Jr van Erp H, Hecht V, de Vries, SC.. Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein. J Mol Biol, 2001a, 309:641-655
    154.Shah K, Vervoort J, de Vries SC. Role of threonines in the Arabidopsis receptor kinase AtSERK1 activation loop in phosphorylation. J Biol Chem, 2001b, 276:41263-41269
    155.Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science, 2003, 301:1230-3
    156.Shen KA, Chin DB, Arroyo-Garcia R, Ochoa OE, Lavelle DO, Wroblewski T, Meyers BC Michelmore RW. Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes. Mol Plant Microbe Interact, 2002, 15: 251-261
    157.Shen QH, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P. Recognition Specificity and RAR1/SGT1 Dependence in Barley Mla Disease Resistance Genes to the Powdery Mildew Fungus. Plant Cell, 2003,47:3732-3744
    158.Shiraishi T, Yamada T, Ichinose Y, Kiba A, Toyoda K: The role of suppressors in determining host-parasite specificities in susceptibility by inhibition of host programmed cell death. EMBO J, 2003, 22:60-69
    159.Shiu SH, Bleecker AB. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol, 2003,132:530-543
    160.Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001b, 98:10763-10768
    161.Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell, 2004, 16:1220-1234
    162.Shirano Y, Kachroo P, Shah J, Klessig DF. A gain-of-function mutation in an Arabidopsis Toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell, 2002, 14: 3149-3162
    163.Sidhu GS, Khush GS. Dominance reversal of a bacterial blight resistance gene in some rice cultivars. Phytopathology, 1978, 68:461-463
    164.Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T E, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P C. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa27. Science, 1995, 270: 1804-1806
    165.Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell, 2006,18:731-46
    166.Stemmer WPC. Rapid evolution of a protein in vitro by DNA shuffling. Nature, 1994, 370:389-391
    167.Sticher L, Mauch-Mani B, Metraux JP. Systemic acquired resistance. Annu Rev Phytopathol, 1997, 35:235-270
    168.Stone JM, Trotochaud AE, Walker JC, Clark SE. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol, 1998, 117:1217-1225
    169.Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 2002,417:959-962
    170. Strain E, Muse SV. Positively selected sites in the Arabidopsis receptor-like kinase gene family. JMol Evol, 2005, 61: 325-332
    171.Sun X, Cao Y, Wang S. Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiol, 2006,140:998-1008
    172.Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37:517-527
    
    173.Sun X, Yang Z, Wang S, Zhang Q. Identification of a 47 kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet, 2003, 106:683-687
    174.Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science, 1996, 274: 2060-2063
    175.Tang X, Xie M, Kim YJ, Zhou J, Klessig DF, Martin GB. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell, 1999, 11:15-29
    176.Tao Y, Yuan F, Leister RT, Ausubel FM, Katagiri F Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant Cell,2000, 12:2541-2554
    177.Thatcher L F, Anderson J P, Singh K B. Plant defence responses: what have we learnt from Arabidopsis? Functional Plant Biology, 2006, 32:1-19
    178.Thilmony R, Underwood W, He SY. Genomewide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli 0157: H7. Plant J, 2006, 46:34-53
    179.Thurau T, Kifle S, Jung C, Cai D. The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Mol Biol, 2003, 52:643-60
    180.Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 2003,423: 74-77
    181.Tor M, Brown D, Cooper A, Woods-Tor A, Sjolander K, Jones JD, Holub EB. Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiol, 2004, 135:1100-12
    182.Torii K U, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell, 1996, 8:735-746
    183.Torii KU. Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol, 2004,234:1-46
    184.Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL. RAR1 and NDRl contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell, 2002, 14:1005-1015
    185.Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell, 1999, 11:393-406
    186. Truman W, de Zabala MT, Grant M. Type Ⅲ effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J, 2006, 46:14-33
    187. Turner JG, Ellis C, Devoto A. The jasmonate signal pathway. Plant Cell, 2002, 14Suppl:S153-164
    188. Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J. Acquired resistance in Arabidopsis. Plant Cell, 1992, 4:645-656
    189. Walker, JC. Receptor-like protein kinase genes of Arabidopsis thaliana. Plant J, 1993, 3:451-456
    190. Wang G-L, Ruan D-L, Song W-Y, Sideris S, Chen L, Pi L-Y, Zhang S, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell, 1998, 10:765-779
    191. Wang ZX, Yamanouchi U, Katayose Y, Sasaki T, Yano M. Expression of the Pib flee-blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defences. Plant Mol Biol, 2001, 47:653-61
    192. Wen N, Chu Z, Wang S. Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Gen Genomics, 2003, 269:331-339
    193. Whitham S, Dinesh-Kumar S P, Choi D. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell, 1994, 78:1101-1115
    194. Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou DX, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. Plant J, 2003, 35:418-27
    195. Wulff BB, Kruijt M, Collins PL, Thomas CM, Ludwig AA, De Wit PJ, Jones JD. Gene shuffling-generated and natural variants of the tomato resistance gene Cf-9 exhibit different auto-necrosis-inducing activities in Nicotiana species. Plant J, 2004, 40:942-56
    196. Xiang Y, Cao Y, Xu C, Li X, Wang S. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet, 2006, 113:1347-1355
    197. Yalpani N, Silverman P, Wilson T M, Kleier D A, Raskin I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 1991, 3:809-818
    198. Yang B, Sugio A, White FF. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl A cad Sci U S A, 2006, 103:10503-8
    199. Yang Z, Sun X, Wang S, Zhang Q. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet, 2003, 106:1467-1472
    200. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kuruta N, Yano M, Iwata N, Sasaki T. Expression of Xal, a bacterial blight resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95:1663-1668
    201. Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92
    202. Yuan B, Shen X, Li X, Xu C, Wang S. Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta, 2007, (in press, DOI 10.1007/s00425-007-0541-z)
    203. Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D He Z Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotech J, 2007, 5:313-324
    204. Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol, 2005, 139:1107-24
    205. Zhang XC, Gassmann W. RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell, 2003, 15:2333-2342
    206. Zhang YL, Tessaro MJ, Lassner M, Li X. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5 and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell, 2003, 15:2647-2653
    207. Zhang Z, Feechan A, Pedersen C, Newman MA, Qiu JL, Olesen KL, Thordal-Christensen H. A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant J, 2007, 49:302-12
    208. Zhao D-Z, Wang G-F, Speal B, Ma H. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002a, 16, 2021-2031
    209.Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between PH and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact, 2006, 19:1216-1228
    210.Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR1 gene required for induction by salicylic acid. Mol Plant Microbe Interact, 2000,13:191-202
    211.Zhou J, Tang X, Martin GB. The Pto kinase conferring resistance to tomato bacterial apeck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBOJ, 1997,16:3207-3218
    212.Zhu M, Shao F, Innes RW, Dixon JE, Xu Z. The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proc Natl Acad Sci U S A, 2004, 101:302-7
    213.Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J, 2004, 40:633-646
    214.Zipfel C, Felix G. Plants and animals: a different taste for microbes? Curr Opin Plant Biol, 2005, 8:353-360
    215.Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J D, Boiler T, Felix G. Perception of the bacterial PAMP EF-Tu by the Arabidopsis receptor kinase EFR restricts Agrobacterium-mediated transformation. Cell, 2006, 125: 749-760
    216.Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boiler T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 2004, 428: 764-767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700