跳频压缩采样中定频抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自跳频技术问世以来,以其抗干扰、低截获率、高频谱利用率等优点广泛应用于军事通信领域。随着跳频信号的跳宽越来越大,由于受限于奈奎斯特采样理论,在超高频段通信系统应用中,现有的硬件技术水平在跳频信号的侦察、检测方面遇到了众多困难。
     近年来出现的压缩采样理论突破了奈奎斯特采样定理的限制。该理论指出,如果信号在某些变换域表现出稀疏性,可以采用少量的、非相关的测量完成对信号的低速高效采集。针对目前在超宽带跳频信号的检测过程中遇到的众多困难,将压缩采样技术应用到跳频信号的采集过程中,研究跳频压缩采样的AIC技术。但是,跳频信号的大宽带必然导致众多定频干扰信号的混入,使得跳频信号的稀疏度大为增加,严重影响跳频压缩采样的效率。由于直接压缩采样法“先重建后抑制”导致硬件和算法上的困难,论文提出了后验压缩采样法、堙灭滤波法和最小均方误差法三种“先抑制后重建”的定频抑制技术。并根据这三种定频抑制方法,构建了一种基于精简测量矩阵的跳频压缩采样结构模型,给出了解决超宽带跳频信号采集的新思路。
     论文主要内容包括四部分。第一部分介绍了跳频技术的基本原理以及传统检测方法中实现定频抑制的功率谱对消法;第二部分从信号的稀疏表示、测量矩阵的设计和信号的重建这三大问题对压缩采样理论展开论述,并仿真验证了该理论的可行性;第三部分介绍了直接型和预调制型两种主要的AIC实现结构,基于超宽带跳频信号的特点,仿真结果表明直接型AIC实现结构更适合跳频信号的高效采集;第四部分提出了三种跳频压缩采样中的定频抑制技术,并构建了基于精简测量矩阵的跳频压缩采样结构模型,通过仿真验证了该结构不仅可以实现定频抑制,又能高概率的完成跳频信号的重建。
Since the frequency hopping technology was invented, it has been widely used in militarycommunications because of the advantages of anti-jamming, low probability, high spectralefficiency and so on. Howerver, the frequency hopping bandwidth becomes wider and wider.Because of the limitation of the Nyquist sampling theory, we have encountered many difficulties onaccount of the level of existing hardware technology in the applications of ultra high frequencyhopping communication system.
     The compressive sampling theory appeared these years breaks through the limitation of theNyquist sampling theory. The compressive sampling theory points out that we can efficientlysample signals by using few of the incoherence measurements with low speed if the signals aresparse in some transform domain. Corresponding to the difficulties encountered in the ultrawideband frequency hopping signal detection recently, we do research into the AIC technology offrequency hopping using compressive sampling when we apply compressive sampling to thefrequency hopping signal acquisition. However, the large wideband of the frequency hoppingsignals will definitely lead to the mix of numerous of fixed-frequency interference signals, whichincrease the sparsity of the frequency hopping signal and influence the efficiency of thecompressive sampling of frequency hopping signal. In order to solve the hardware and algorithmproblems caused by the direct compressive sampling which obeys the rule“Reconstruction first,then inhibition”, we proposed three fixed-frequency inhibition methods which obey the rule“Inhibition first, then reconstruction”. The first one is posteriori compressive sampling. The secondone is annihilation filter. The third one is the method of using minimum mean square error. Andaccording to these three methods of fixed-frequency inhibition, we constructed a model based thesimplified measurement matrix of the compressive sampling of frequency hopping signal, whichgave us a new idea to solve the acquisition of ultra wideband frequency hopping signal.
     There are four main parts in this paper. The first part introduces the basic principles offrequency hopping technology as well as the method of the power spectrum elimination applied tofixed-frequency inhibition in traditional detection. The second part introduces compressivesampling theory including sparsity expression of signal, design of measurement matrix andreconstruction, then we verify the feasibility of the theory by simulation. The third part introducestwo typical implementation structures of AIC: direct type and pre-modulation. According to thecharacteristics of ultra wideband frequency hopping signal characteristics, the simulation resultsshow that direct type is more suitable for the frequency hopping signal efficiently acquisition. The fourth part proposed three methods of fixed-frequency inhibition in the compressive sampling offrequency hopping signal and constructed the fixed-frequency inhibition model of the compressivesampling of frequency hopping signal. Through the simulation resultes, we proved that the structurenot only can realize fixed-frequency inhibition, but also can finish the reconstruction of frequencyhopping signal with high probability.
引文
[1]魏晨曦.通信抗干扰的技术与发展方向[J].军事通信技术,2001,6,22(2):29-34.
    [2]赵岩.跳频通信系统抗干扰性能研究[D].哈尔滨:哈尔滨工业大学电子与信息工程学院,2010.
    [3]张辉,曹丽娜.现代通信原理与技术[M].西安:西安电子科技大学出版社,2002.
    [4]李承怒,赵宋黎.扩展频谱通信[M].北京:人民邮电出版社,1993.
    [5]梅文华,王淑波,邱永红,杜兴民.跳频通信[M].北京:国防工业出版社,2005.
    [6] Simon M K, Omura J K, Scholtz R A, et al.扩频通信技术教程Spread spectrum communications handbook [M].北京:人民邮电出版社,2002.
    [7] Sklar B. Digital communication: fundamental and application, second edition [M]. Prentice-Hall, Inc. ,2001.
    [8] C.E Shannon. Communication in the presence of noise [J]. Proc. Institute of Radio Engineers, vol.37, no.1, pp.10-21, January 1949.
    [9] D L Donoho. Compressed sensing [J]. IEEE Trans. On Information Theory. 2006, 52(4): 1289-1306.
    [10] Kirolos S, Ragheb T, Laska J. Practical Issues in Implementing Analog-to-Information Converters [C]. The 6th International Workshop on System-on-Chip for Real-Time Applications, Cairo, Egypt 2006:141-146.
    [11] Laska J. N, Kirolos S, Duarte M. F et al. Theory and Implementation of an Analog-to-Information Converter using Random Demodulation [C]. IEEE International Symposium on Circuits and Systems, Houston, 2007, 27(30): 1959-1962.
    [12] Jun-Jie Chen, Guu-Chang Yang, Chia-Ming Yang. A new construction of frequency-hopping codes [J]. Communications Letters, IEEE. 2002, 6(5): 181-183.
    [13]张正文,陈卓,马成前.跳频扩频技术在蓝牙中的应用[J].电脑与信息技术,2001,4:53-55.
    [14]马成清.家庭射频技术(HomeRF)简介[J].解放军信息工程大学,2001,31(5):44-45.
    [15] Herrick D L, Lee P K. Correlated frequency hopping: an Improved approach to HF spread spectrum communications [C]. IEEE Proc. of the Tactical Communications Conference 1996, 1996: 319-324.
    [16] Dr. Herrick D L, Dr. Lee P K. CHESS: A New Reliable High Speed HF Radio [C]. Military Communications Conference, 1996, Vol. 3: 21 24.
    [17] E Candès, J Romberg, Terence Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans. On Information Theory, 2006, 52(2) :489-509.
    [18] J. Emamnuel, Candès. Compressive Sampling [C]. Proceedings of the International Congress of Mathematicians, Madrid, 2006, 3: 1433-1452.
    [19] Candès E.J, Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory,2005: 4203-4215.
    [20] Candès E, Tao T. Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies [J]. IEEE Transactions On Information Theory, 2006, 52(12): 5406-5425.
    [21] Peyre G. Best Basis compressed sensing [J]. IEEE Transactions on Signal Processing, 2010, 58(5):2613-2622.
    [22] Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.
    [23]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633.
    [24] Temlyakov V. Nonlinear methods of approximation [R]. IMI Research Reports, Dept of Mathematics, University of South Carolina. 2001. 01-09.
    [25] Donoho D L, Huo X. Uncertainty principles and ideal atomic decompositions [J]. IEEE Transactions on Information Theory. 2001, 47(7): 2845-2862.
    [26] Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases [J]. IEEE Transactions on Information Theory. 2002, 48(9): 2558-2567.
    [27] Feuer A, Nemirovsky A. On sparse representation in pairs of bases [J]. IEEE Transactions on Information Theory. 2003, 49(6): 1579-1581.
    [28] Tropp J A. Greed is good: algorithmic results for sparse approximation [J]. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242.
    [29] Gribonval R, Nielsen M. Sparse decompositions in unions of bases [J]. IEEE Transactions on Information Theory, 2003, 49(12): 3320-3325.
    [30]刘丹华,石光明,周佳社.一种冗余字典下的信号稀疏分解新方法[J].西安电子科技大学学报(自然科学版),2008,35(2):228-232.
    [31] Donoho D L, Tsaig Y. Extensions of compressed sensing [J]. Signal Processing. 2006, 86(3): 533-548.
    [32] S Sarvotham, D Baron, R G Baraniuk. Measurements vs. bits: Compressed sensing meets information theory [A]. In Proc. Allerton Conference on Communication, Control and Computing [C]. Monticello, IL, 2006: 1419-1423.
    [33] E J Candes, J Romberg. Sparsity incoherence in compressive sampling [J]. Inverse Problems. 2007,23(3): 969-985.
    [34] J A Tropp, M B Wakin, M F Duarte, etc. Random filters for compressive sampling and reconstruction[A]. Proceedings of the IEEE International Conference on Acoustics, Speech an Signal Processing(ICASSP) [C]. Piscataway of Electrical and Electronics Engineers Inc. 2006.3: 872-875.
    [35] R DeVore. Deterministic constructions of compressed sensing matrices [J]. Journal of Complexity,2007, 23(4-6): 918-925.
    [36] Haupt J, Bajwa W.U, Raz G et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation [J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875.
    [37] Do T.T, Tran T.D, Lu Gan. Fast compressive sampling with structurally random matrices [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Baltimore, 2008, 1: 3369-3372.
    [38] Wei Wang, Wainwright, M.J, Ramchandran K. Information-Theoretic Limits on Sparse Signal Recovery: Dense versus Sparse Measurement Matrices [J]. IEEE Transactions on Information Theory,2010, 56(6): 2967-2979.
    [39] Sebert F, Yi Ming Zou, Ying L. Toeplitz block matrices in compressed sensing and their applications in imaging [C]. International Conference on Information Technology and Applications in Biomedicine, Milwaukee, 2008, 1: 47-50.
    [40] Bajwa, Waheed U, Haupt, Jarvis D. et al. Toeplitz-Structured Compressed Sensing Matrices [J]. Statistical Signal Processing, 2007, 26(9): 294-298.
    [41] Mallat Stephane G, Zhang Zhifeng. Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
    [42] Tropp Joel A, Gilbert Anna. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
    [43] T Do Thong, Lu Gan, Nam Nguyen and Trac D Tran. Sparsity adaptive matching pursuit algorithm for practical compressed sensing [C]. Asilomar Conference on Signal, Systems, and Computer, Pacific Grove, Califor- nia, 2008.
    [44] L Rebollo-Neira and D Lowe. Optimized orthogonal matching pursuit approach [J]. IEEE Signal Processing Letter, 2002, 9: 137-140.
    [45] D Needell and R Vershynin. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J]. Selected Topics in Signal Processing, 2010, 4(2): 310-316.
    [46] La C, M N Do. Signal reconstruction using sparse tree representation. Proceedings of SPIE [C]. San Diego, CA, United States: International Society for Optical Engineering. 2005, 5914: 1-11.
    [47] D L Donoho, Y Tsaig, I Drori etc. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit [R]. Technical Report, 2006.
    [48] Dai W and Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction [C]. 2008 5th International Symposium on Turbo Codes and Related Topics, 2008: 402-407.
    [49] Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. ACM Technical Report 2008-01, California Institute of Technology, Pasadena, July 2008.
    [50] Romberg, J. Imaging via Compressive Sampling [J]. Signal Processing Magazine, IEEE, 2008, 25(2):14-20.
    [51] Duarte M.F, Sarvotham, S, Baron, D et al. Distributed Compressed Sensing of Jointly Sparse Signals[C]. 39th Asilomar Conference on Signals, Systems and Computers ,Pacific Grove, 2005, 1:1537-1541.
    [52] Wainwright, M.J. Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using l1 Constrained Quadratic Programming [J]. IEEE Transactions on Information Theory, 2009, 55(5):2183-2202.
    [53] M Duarte, M Davenport, D Takhar, J Laska, T Sun, K Kelly and R Baraniuk. Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
    [54] A Zelinski, L L Wald, K Setsompop. Et al. Sparsity-enforced slice-selective MRI RF excitation pulse design [J]. IEEE Trans. Medical Imaging, 2008, 27(9): 1213-1229.
    [55] A Levin, R Fergus, F Durand and W.T. Frennman. Image and depth from a conventional camera with a coded aperture [C]. Proc. of Intl. Conf. Comp. Graphics. And Inter. Tech. , 2007.
    [56] M Sheikh, O Milenkovic and R Baraniuk. Designing compressive sensing DNA microarrays [C]. IEEE Workshop on Computational Advances in Multi-Sensor Adaptive Processing(CAMSAP), St. Thomas, U.S. Virgin Islands, 2007.
    [57]叶蕾,杨震.基于压缩感知的语音压缩与重构[J].南京邮电大学学报(自然科学版),2010,30(4):57-60.
    [58]张锐.基于压缩感知理论的图像压缩初步研究[J].电脑知识与技术,2010,6(4):958-959.
    [59]谢晓春,赖昭胜,杨汉祥.基于压缩感知理论的视频编解码器[J].电视技术,2010,34(5):14-17.
    [60]刘兆霆,何劲,刘中.基于压缩感知的高分辨频率估计[J].信号处理,2009,25(8):1252-1526.
    [61]黄琼,屈乐乐,吴秉横等.压缩感知在超宽带雷达成像中的应用[J].电波科学学报,2010,25(1):77-82.
    [62] Shannon C E. A mathematical theory of communication [J]. Bell system technical journal, 1948.4.
    [63]董占奇,胡捍英.基于ρ判决的跳频信号多跳自相关检测[J].现代电子技术,2007(7):25-27.
    [64]张丹,吴瑛.STFT在跳频信号分析中的应用[J].计算机应用,2005(10):60-61.
    [65]高宪军,李德鑫,李娜,陈超.基于功率谱对消的跳频信号检测算法[J].吉林大学学报(信息科版),2008,26(3):238-243.
    [66] Dixon R C. Spread spectrum systems(2nd Edition) [M]. John Wiley&Sons,1984.
    [67]姚富强.跳频处理增益有关概念分析与修正[J].电子学报,2003,31(7):996-969.
    [68]程佩青.数字信号处理教程[M].北京:清华大学出版社,2001.
    [69] E.J Candes, M.B Wakin. An Introduction To Compressive Sampling [J]. Signal Processing Magazine, IEEE, 2008, 25(2): 21-30.
    [70] R Baraniuk. Compressive sensing [C]. 42nd Annual Conference on Information Sciences and Systems, Houston, 2008, 29: 19-21.
    [71] Do, Minh N, Vetterli, Martin. Contourlets: A new directional multiresolution image representation [A]. Conference Record of the Asilomar Conference on Signals, Systems and Computers [C]. Pacific Groove, CA, United States: IEEE Computer Society. 2002.1: 497-501.
    [72] E L Pennec, S Mallat. Image compression with geometrical wavelets [A]. Proc. of IEEE Intermational Conference on Image Processing, ICIP’2000 [C]. Vancouver, BC: IEEE Computer Society, 2000.1:661-664.
    [73] E Candès, D L Donoho. Curvelets [R]. USA: Department of Statistics, Stanford University. 1999.
    [74] Cand, S E J. Ridgelets: theory and applications [D]. Stanford: Stanford University. 1998.
    [75] Mallat S. A Wavelet Tour of Signal Processing. San Diego:Academic Press, 1996.
    [76]孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成份字典的图像稀疏表示算法研究.自动化学报,2008,34(11):1379-1387.
    [77] M Aharon, M Elad, A Bruckstein. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations [J]. IEEE Transactions on Image Processing, 2006, 54(11):4311-4322.
    [78] Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries [J]. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.
    [79] R Baraniuk. A lecture on compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4):118-121.
    [80] E Candès. The restricted isometry property and its implications for compressed sensing [J]. Acadèmie des sciences, 2006, 346(I): 598-592.
    [81] S S Chen, D L Donoho, M A Saunders. Atomic decomposition by basis pursuit [J]. SIAM Review,2001, 43(1): 129-159.
    [82] Chen Shaobing, Donoho David L. Examples of basis pursuit [C]. Proceedings of SPIE–the International Society for Optical Engineering, San Diego, 1995, 2569(2): 564-574.
    [83] Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition [C]. In 27th Asilomar Conf. on signals, Systems and Comput. November, 1993.
    [84]安钢,张传清,武东民.DFT信号处理中的时、频测不准关系分析[J].测试技术学报,2002,16(5):1013-1018.
    [85]孙娟,唐慧强.一种基于小波的奇异信号检测方法[J].武汉理工大学学报,2004,26(8):84-89.
    [86]陈海花,曲天书,王树勋.基于小波变换的语音信号基音频率检测法[J].吉林大学学报:工学版,2002,32(2):17-20.
    [87]赵宏伟,李勇.基于时频分布的跳频信号盲检测的研究[J].通信技术,2006(7):98-102.
    [88] C.S. Maclnne. Source localization using subspace estimation and spatial filtering [J]. IEEE J. Oceanic Eng. (S0371-0025). 2004, 29(2): 488-497.
    [89] Kashan A H, Karimi B. A discrete particle swarm optimization algorithm for scheduling parallel machines [J]. Computer and Industrial Engineering, 2009, 56(2): 216-223.
    [90] J.N.D Gupta, A.J. Ruiz-Torres. A LISTFIT heuristic for minimizing makespan on identical parallelmachines [J]. Production Planning and Control, 2001, 12(1): 28-36.
    [91] Taylor, Francis. Exponential curve fitting with least squares [J]. International Journal of Mathematical Education in Science and Technology, 2007, 38(3): 422-427.
    [92] S. M. Kay. Fundamentals of statistical signal processing, volume 1: estimation theory. Prentice Hall PTR, April, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700