干涉合成孔径声纳系统设计和成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干涉合成孔径声纳(Interferometric Synthetic Aperture Sonar,INSAS)是一种用于水下三维成像的声纳系统,其具有二维成像分辨率高且分辨率与距离无关,能够进行干涉测高的特点。本论文研究主要针对INSAS的系统设计、成像算法及仿真、运动补偿等方面的问题展开研究。
     本文在分析INSAS系统成像原理的基础上,对INSAS系统设计中的各个主要参数进行了分析,推导出了各参数误差对于系统性能的影响,对于某些参数如基线长度、基阵倾斜角度等给出了最优的取值。并根据实际设计了INSAS系统参数,并对其性能和误差做了理论分析,为未来的实验提供了理论依据。
     在INSAS算法的研究中,仿真方法是一个非常重要的部分,更有效的仿真方法可以为实验的进行打下良好的基础。本文对传统的回波仿真算法进行了改进,给出了一种基于延时表的仿真算法,能够有效的减少仿真算法的计算量,提高计算效率。另外介绍了直接进行INSAS图像仿真的方法,可以直接根据目标高度模型生成INSAS干涉图像对,相对于原始回波信号的仿真方法,本算法更有效率。从仿真结果上看,可以较为真实地显示目标场景特性,为实际实验提供理论参考。最后,在图像仿真的基础上,给出了通过逆向法由仿真的SAS复图像解算原始回波信号的方法,相对传统的信号仿真算法,这种方法可以在损失图像精度的条件下,达到较快的速度,可以作为图像仿真算法的一个补充。
     由于声纳基阵安装于拖体上,其运动误差对成像结果影响较大。本文分析拖体运动误差对于成像结果的影响,对于传统的SAS系统的运动补偿方法,DPC方法和DPIA方法进行了综述,并在此基础上提出了一种新的适用于强点目标的运动补偿方法,通过湖上实验的数据对本方法进行了验证,结果表明,这一方法可以较好的提高点目标的成像结果,并且有着较高的计算效率,适合实时系统的实现。另外,INSAS系统不同于普通的SAS系统,其在运动补偿方面的要求更高,本文针对INSAS系统的主要误差Roll,给出了一种基于DPC的估计方法,并通过仿真数据进行了验证。
     INSAS系统的主要算法包括图像配准、去除平地效应、干涉相位图滤波和二维相位展开等部分,本文使用MATLAB软件建立一个完整的INSAS信号仿真和成像处理平台。在此平台基础上,对INSAS各部分算法进行了深入研究和改进。对于图像配准方法,分析了常用的配准算法,并通过INSAR数据进行了验证。介绍了去水平地形效应的原理及方法。分析了干涉相位图噪声对于最终成像结果的影响,提出了一种新的自适应干涉相位图滤波方法,并用仿真数据和干涉合成孔径雷达数据进行了验证,结果表面本方法可以在去除残余点的基础上较好的保持图像细节,有利于下一步相位展开的进行。对于相位展开算法,通过实际数据的处理,分析比较了路径跟随算法和基于全局最优模型算法两大类方法的异同,比较了各种相位展开算法的优缺点和适用范围。最后通过实际的SAS实验成像结果进行了双过次的INSAS成像的尝试。
Interferometric Synthetic Aperture Sonar(INSAS) is a kind of sonar system which provides three dimensional images of underwater scene. INSAS has high resolution independent of the target distance. In this thesis the key aspects of INSAS are discussed, such as system design, INSAS imaging algorithms, simulation and motion compensation.
     The thesis firstly introduces the basic principle of INSAS and analyzes the parameters effect on the system error. Then the optimal baseline length and angle was provided. The author also gives the performance analysis of an INSAS system with probable parameters. It can be used to prompt the future experiment.
     The simulation algorithm is an important part of INSAS research. Efficient simulation algorithm is the fundament of the experiment. The thesis improves the traditional algorithm instead of a delay-table based algorithm. It can reduce the without accuracy loss. And a complex images simulation algorithm is also provided. It can directly simulate the SAS images instead of the raw signal data. The results show that it can reflect the actual scene well. Last the author gives an additional reverse algorithm. It calculates the raw signal data from the simulated images with loss of accuracy.
     The sonar array is placed on the towfish so that the motion error can affect the image quality. After the introduction of traditional motion compensation algorithms, DPC and DPIA, a more efficient algorithm used for the powerful point target condition is proposed. Last, the roll error estimation is discussed.
     INSAS imaging algorithms contain image registration, flat terrain phase effect removal, phase filter and phase unwrapping. In this thesis an INSAS signal simulation and processing platform based MATLAB is established. Based on this platform INSAS imaging algorithms are discussed. The common image registration and flat terrain phase effect removal algorithms are analyzed with radar data. A new adaptive phase filter is proposed. It can suppress noise and keep the image details. The main phase unwrapping algorithms performance is compared. Last the SAS image experiment data is used to computer interferometry images with 2-pass mode algorithm.
引文
[1] 张 春 华 , 刘 纪 元 . 合 成 孔 径 声 纳 成 像 及 其 研 究 进 展 , 物 理 , 2006, vol.35(5):107-123.
    [2] 中国科学院声学研究所合成孔径声纳课题组, 合成孔径声纳海试样机技术报告, 2005 年 12 月.
    [3] 中国科学院声学研究所合成孔径声纳课题组, 合成孔径声纳湖试样机技术报告, 2002 年 3 月.
    [4] 刘纪元, 合成孔径声纳实时成像及自聚焦算法研究, 中国科学院声学研究所博士学位论文, 2003 年 5 月.
    [5] 刘纪元, 唐劲松, 孙宝申, 张春华, 李启虎, 基于回波信号的一种合成孔径声纳运动补偿方法, 电子学报, 2003 年第 1 期, 75~77.
    [6] 刘奇勇, 合成孔声纳算法及实时实现研究, 中国科学院声学研究所硕士学位论文, 2004 年 5 月.
    [7] Banks, M. and Griffiths, H. D.. The use of fast factorised back projection for synthetic aperture sonar imaging. In 6’th European Conf. on Underwater Acoustics, ECUA 2002, pages 529-534, Gdansk, Poland.
    [8] Banks, S.. Studies in High Resolution Synthetic Aperture Sonar. PhD thesis, Department of Electrical and Electronic Engineering, University College London. 2002.
    [9] Banks, S., Sutton, T., and Griffiths, H.. Noise susceptibility of phase unwrapping algorithms for interferometric synthetic aperture sonar. In Proceedings of the Fifth European Conference on Underwater Acoustics, 2000, volume 1,pages 451-456.
    [10] Barber, B. C.. Theory of digital imaging from orbital synthetic aperture data. International Journal of Remote Sensing, 1985, vol.6(7):1009-1057.
    [11] Bellec, R., Legris, M., Khenchaf, A., Amate, M., and Hetet, A. Repeat-track SAS interferometry: feasibility study. In Proceedings of MTS/IEEE Oceans 2005, volume 1, pages 748-754. MTS/IEEE.
    [12] Bellettini, A. and Pinto, M. A. (2002). Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna. IEEE J. Oceanic Eng.,2002, vol.27(4):780-789.
    [13] Berizzi, F., Corsini, G., Diani, M., Lombardini, F., and Pinelli,G.. Simulation model and performance analysis of a three-antenna InSAR system. In IEEE Radar 97, number 449, pages 119-123. IEE.
    [14] Blanc-Benon, P. and Jau?ret, C. (1997). TMA from bearings and multipath time delays. IEEE Trans. Aerosp. Electron. Syst., 1997, vol.33(3):813-824.
    [15] Bonifant, W. W. J.. Interferometric synthetic aperture sonar processing. Master’s thesis, Georgia Institute of Technology, 1999.
    [16] Bonifant, W. W. J., Richards, M. A., and McClellan, J. H.. An analysis of the e?ect of motion and phase errors on the implementation of interferometric processing by synthetic aperture sonar. In Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Conference on, volume 1, pages 269-273.
    [17] Born, M. and Wolf, E.. Principles of Optics. Cambridge University Press, 6’th edition.
    [18] C.Cafforio, C,Prati and F.Rocca, “SAR Data Focusing Using Seismic Migration Techniques”, IEEE Transactions on Aerospace and Electronic Systems, vol.27, no.2, March,1991.
    [19] C.Prati and F.Rocca, “Limits to the Resolution of Elevation Maps from Stereo Images”, Int. J. Remote Sensing, vol.11, no.12, 2215-2235, 1990.
    [20] Charette P. G, Hunter I. W. Robust phase-unwrapping method for phase images with high noise content. Applied optics, 1996, 35(19):3506-3513.
    [21] Collaro A, et al. Phase unwrapping by means of genic algorithms. Journal of the optical Society of America A, 1998, 15(2): 407-418.
    [22] Currie A, Baker C J. High Resolution 3-D radar imaging. IEEE international Radar Conference’95, 1995.
    [23] Christy A. Snarski, “Rank One Phase Error Estimation for Range-Doppler Imaging”, IEEE Transactions on aerospace and electronic systems, Vol. 32, No. 2, April, 1996, pp676-688.
    [24] Ca?orio, C., Prati, C., and Rocca, E.. SAR data focusing using seismic migration techniques. IEEE Trans. Aerosp. Electron. Syst., vol.27(2):194-207.
    [25] Callow, H. J.. Signal Processing for Synthetic Aperture Sonar Image Enhancement. PhD thesis, Department of Electrical and Electronic Engineering, University of Canterbury, New Zealand, 2003.
    [26] Carrara, W. G., Goodman, R. S., and Majewski, R. M..Spotlight synthetic aperture radar: signal processing algorithms. Artech House, 1995.
    [27] Carter, G. C., Knapp, C. H., and Nuttall, A. H.. Estimation of the magnitude-squared coherence function via overlapped fast fourier transform processing. IEEE Trans. Audio Electroacoust., 1973, vol.21(4):337-389.
    [28] Chang, C. Y., Jin, M. Y., and Curlander, J. C.. SAR processing based on the exact two-dimensional transfer function. In Geoscience and Remote Sensing Symposium, 1992, pages 355-359.
    [29] Chatillon, J., Adams, A. E., Lawlor, M. A., and Zakharia, M. E.. SAMI: A low-frequency prototype for mapping and imaging of the seabed by means of synthetic aperture. IEEE J. Oceanic Eng., 1999, vol.24(1):4-15.
    [30] Chen, C. W. and Zebker, H. A.. Two-dimensional phase unwrapping with statistical models for nonlinear optimization. In Geoscience and Remote Sensing Symposium Proceesings, 2000, Proceedings IGARSS 2000, volume 7, pages 3213-3215. IEEE International.
    [31] Chen, C. W. and Zebker, H. A.. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models.IEEE Trans. Geosci. Remote Sensing, 2002, vol.40(8):1709-1719.
    [32] Colesanti, C., Ferretti, A., Novali, F., Prati, C., and Rocca, F.. SAR monitoring of progressive and seasonal ground deformation using the permanent scatters technique. IEEE Trans. Geosci. Remote Sensing, 2003, vol.41(7):1685-1701.
    [33] Corsini, G., Diani, M., Lombardini, F., and Pinelli, G.. Reduction of the phase-unwrapping drawbacks by the three-antenna interferometric SAR system. In Geoscience and Remote Sensing, 1997. IGARSS ’97, 1997, volume 4,pages 1536-1538. IEEE International.
    [34] Corsini, G., Diani, M., Lombardini, F., and Pinelli, G.. Simulated analysis and optimization of a three-antenna airborne InSAR system for topographic mapping. IEEE Trans. Geosci. Remote Sensing, 1999, vol.37(5):2518-2529.
    [35] Cumming, I., Wong, F., and Raney, K.. A SAR processing algorithm with no interpolation. In Geoscience and Remote Sensing Symposium, 1992, pages 376-379.
    [36] Curlander, J. C. and McDonough, R. N.. Synthetic Aperture Radar: systems and signal processing. John Wiley & Sons, Inc, 1991.
    [37] Daniel A. Cook, James T. Christoff, and Jose E. Fernandez, “Motion Compensat -ion of AUV-Based Synthetic Aperture Sonar”, MTS/IEEE Conference andExhibition (Oceans 2003), 2003, Page(s): 2143-2148.
    [38] Davenport, W. B. J. and Root, W. L.. An introduction to the theory of random signals and noise. IEEE Press, 1987.
    [39] Dix, J. F. and Palmer, R. F.. Study of the relative sonar performance of incoherent and coherent processing against echo fading in shallow water. Proc. IEE, 1984, 131, Part F:308-314. Dybdal, R. B.. Monopulse resolution of interferometric ambiguities. IEEE Trans. Aerosp. Electron. Syst., 1986, AES-22(2):177-183.
    [40] Eichel P.H, Ghiglia D.C, et al. Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection. Sandia National Labs Tech. Report, SAND93, December 1993, 20(3): 2539-2546.
    [41] Eineder M, et al. Unwrapping large interferograms using the minimum cost flow algorithm. Proceeding of the 1998 International Geoscience and Remote Sensing Symposium, 1998.
    [42] E. N. Pilbrow, P.T.Gough, M. P. Hayes, “Inertial Navigation System for a Synthetic Aperture Sonar Towfish”, Proceedings of Electronics New Zealand Conference, Dunedin, New Zealand, 14-15 November, 2002.
    [43] Fernandez, J. E, Matthews, A.D, Cook, D. A, Stroud, J. S, “Synthetic Aperture Sonar Development for Autonomous Underwater Vehicles”, Oceans’04, MTS/IEEE TechNo-Ocean’04, Vol .4, 2004, Page(s): 1927-1933.
    [44] Fortune, S. A.. Phase error estimation for synthetic aperture imagery. PhD thesis, Department of Electrical and Electronic Engineering, University of Canterbury, New Zealand, 2005.
    [45] Gabriel, A. and Goldstein, R. M.. Crossed orbit interferometry: theory and experimental results from SIR-B. Int. J. Remote Sens., 1988, vol.9(5):857-872.
    [46] Gatelli, F., Guarnieri, A. M., Parizzi, F., Pasquali, P., Prati, C.,and Rocca, F.. The wavenumber shift in SAR interferometry. IEEE Trans. Geosci. Remote Sensing, 1994, vol.32(7):855-865.
    [47] Gini, F., Lombardini, F., and Montanari, M.. Layover solution in multibaseline SAR interferometry. IEEE Trans. Aerosp. Electron. Syst., 2002, vol.38(4):1344-1356.
    [48] Goldstein, R. M., Zebker, H. A., and Werner, C. L..Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 1988, vol.23(4):713-720.
    [49] Goodman, J. W.. Statistical properties of laser speckle patterns. In Dainty, J. C., editor, Laser speckle and related phenomena, 1985, pages 9-75.Springer-Verlag,Berlin.
    [50] Gough, P. T. and Miller, M. A.. Displaced ping imaging autofocus for a multi-hydrophone SAS. IEE Proc.-Radar Sonar Navig., 2004, vol.151(3):163-170.
    [51] Graham, L. C.. Synthetic interferometer radar for topographic mapping. Proc. IEEE, 1974, vol.62:763-768.
    [52] Griffiths, H. D., Rafik, T. A., Meng, Z., Cowan, C. F. N., Shafeeu, H., and Anthony, D. K.. Interferometric synthetic aperture sonar for high resolution 3-D mapping of the seabed. IEE Proc. Radar, Sonar and Navig., 1997, vol.144(2):96-103.
    [53] Guarnieri, A. M. and Prati, C.. SAR interferometry: A “Quick and Dirty” coherence estimator for data browsing. IEEE Trans. Geosci. Remote Sensing, 1997, Vol.35(3):660-669.
    [54] Gustavsson, A., Frolind, P. O., Hellsten, H., Jonsson, T., Larsson, B., and Stenstrom, G.. The airborne VHF SAR system CARABAS. In Proceedings of IGARSS’93, volume 2, 1993, pages 558-562, Tokyo, Japan.
    [55] Hanssen, R. and Bamler, R.. Evaluation of interpolation kernels for SAR interferometry. IEEE Trans. Geoscience and Remote Sensing, 1999, Vol.37(1):318-321.
    [56] Hawkins, D. W.. Synthetic aperture imaging algorithms: With application to wide bandwidth sonar. PhD thesis, Department of Electrical and Electronic Engineering, University of Canterbury, New Zealand, 1996.
    [57] Hawkins, D. W. and Gough, P. T.. Multi-resonance design of a Tonpilz transducer using the finite element method. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 1996, Vol.43(5):231-239.
    [58] Hawkins, D. W. and Gough, P. T.. An accelerated chirp scaling algorithm for synthetic aperture imaging. In Geoscience and Remote Sensing Symposium, 1997, volume 1, pages 471-473.
    [59] Hunter, A. J.. Underwater acoustic modelling for synthetic aperture sonar. PhD thesis, Department of Electrical and Computer Engineering, University of Canterbury, New Zealand, 2006.
    [60] Hunter, A. J. and Hayes, M. P.. Towards more accurate shadow modelling for simulated SAS imagery. In Oceans 2005 Europe, Brest, France. IEEE.
    [61] Hunter, A. J., Hayes, M. P., and Gough, P. T.. Simulation of wideband interferometric SAS imagery. In Oceans 2003.
    [62] Institute of Electrical and Electronic Engineers. ANSI/IEEE standard 754-1955,IEEE Standard for binary ?oating-point arithmetic, 1985.
    [63] Jenkins, G. M. and Watts, D. G.. Spectral analysis and its applications. Holden Day series in time series analysis. Holden-Day, San Francisco, 1968.
    [64] Jin, G. and Tang, D.. Uncertainties of di?erential phase estimation associated with interferometric sonars. IEEE J. Oceanic Engineering, 1996, Vol.21(1):53-63.
    [65] Jin, M. Y. and Wu, C.. A SAR correlation algorithm wich accommodates large-range migration. IEEE Trans. Geosci. Remote Sensing, 1984, Vol.22(6):592-597.
    [66] Just, D. and Bamler, R.. Phase statistics of interferograms with applications to synthetic aperture radar. Applied Optics, 1994, Vol.33(20):4361-4368.
    [67] J.R.Bennett, I.G.Cumming and R.A.Deane, “The Digital Processing of Seasat Synthetic Aperture Radar Data”, IEEE International Radar Conference,1980.
    [68] Kim, M. G. and Gri?ths, H. D.. Phase unwrapping of multibaseline interferometry using Kalman filtering. In Image Processing and Its Applications, 1999. Seventh International Conference on, volume 2, pages 813-817.
    [69] Kliger, I. E. and Olenberger, C. F.. Multiple target e?ects on monopulse signal processing. IEEE Trans. Aerosp. Electron. Syst., 1975, AES-11(5):795-803.
    [70] Knab, J. J.. The sampling window. IEEE Trans. Inform. Theory, 1983, pages 157-159.
    [71] Knapp, C. H. and Carter, G. C.. The generalised correlation method for estiamtion of time delay. IEEE Trans. Acoust., Speech, Signal Processing, 1976, Vol.24(4):320-327.
    [72] Lee, J.-S., Hoppel, K. W., Mango, S. A., and Miller, A. R..Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sensing, 1993, Vol.32(5):1017-1027.
    [73] Lee, P. M., Jeon, B. H., Kim, S. M., Choi, H. T., Lee, C. M., Aoki, T., and Hyakudome, T. (2004). An integrated navigation system for autonomous underwater vehicles with two range sonars, inertial sensors and Doppler velocity log. In Proceedings of Techo-Oceans, 1993, volume 3, pages 1586-1593. MTS/IEEE.
    [74] Li, F. K. and Goldstein, R. M.. Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Trans. Geosci. Remote Sensing, 1990, Vol.28(1):88-97.
    [75] Lin Q, Vesecky J.F, Zeber H.A. New approaches in interferometric SAR data processing. IEEE Trans, Geo and Remote Sensing, 1992, 30(3): 560-567.
    [76] 李南松, 合成孔径声纳集中成像算法的实现, 硕士学位论文,1999年.
    [77] 李启虎, 数字式声纳设计原理, 安徽教育出版社, 2002.
    [78] 李文强, 李景文, 陈杰, 一种干涉SAR复图像数据的快速仿真方法, 北京航空航天大学学报, 2005, 31(1): 31-35.
    [79] Lombardini, F.. Absolute phase retrieval in a three-element synthetic aperture sonar interferometer. In Radar, 1996. Proceedings. CIE International Conference of, 1996, pages 309-312.
    [80] Lombardini, F.. Optimum absolute phase retrieval in threeelement SAR interferometer. IEE Electron. Lett., 1998, Vol.34(15):1522-1524.
    [81] Lombardini, F. and Lombardo, P.. Maximum likelihood array SAR interferometry. In Proc. 1996 IEEE Digital Signal Processing Workshop, 1996, pages 358-361.
    [82] Lombardo, P. and Lombardini, F.. Multi-baseline SAR interferometry for terrain slope adaptivity. In Radar Conference, 1997 IEEE National, pages 196-201. Lurton, X.. Swath bathymetry using phase di?erence: Theoretical analysis of acoustical measurement precision. IEEE J. Oceanic Engineering, 2000, Vol.25(3):351-363.
    [83] Maeland, E.. On the comparison of interpolation methods. IEEE Trans. Med. Imag., 1988, Vol.7(3):213-217.
    [84] Massonnet, D., Vadon, H., and Rossi, M.. Reduction of the need for phase unwrapping in radar interferometry. IEEE Trans. Geosci. Remote Sensing, 1996, Vol.34(2):489-497.
    [85] Migliaccio, M. and Bruno, F.. A new interpolation kernel for SAR interferometric registration. IEEE Trans. Geoscience and Remote Sensing, 2003, Vol.41(5):1105-1110.
    [86] Milne, P. H.. Underwater acoustic positioning systems. Spon, London, 1983. Minagawa, A., Uda, K., and Tagawa, N.. Region extraction based on belief propagation for gaussian model. In Pattern Recognition, 2002 Proceedings, 2002, volume 2, pages 507-510. IEEE.
    [87] Moreira, A.. An improved multi-look technique to produce SAR imagery. In Record of the IEEE 1990 International Radar Conference, pages 57-63.
    [88] Marx, D.; Nelson, M.; Chang, E.; Gillespie, W.; Putney, A.; Warman, K., An introduction to synthetic aperture sonar. Proceedings of the Tenth IEEE Workshopon Statistical Signal and Array Processing, 2000, Page(s): 717 –721.
    [89] M. A. Nelson, “DARPA Synthetic Aperture Sonar,” Proceedings of the Adaptive Sensor Array Processing (ASAP) Workshop, vol. 1, pp. 141-155, 15 May 1998.
    [90] Michel Legris, Maud Amate, Alain Hetet, “Navigation data fusion for low frequency Synthetic Aperture Sonar focusing”, 7th JASM, Brest, France October 2004.
    [91] Mrstik V. Terrain height measurement accuracy of interferometric synthetic aperture radars. IEEE Transactions on Geoscience and Remote Sensing, 1996, vol.34:219-228.
    [92] Parker, J. A., Kenyon, R. V., and Troxel, D. E.. Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imag., 1983, MI-2:31-39.
    [93] Per Espen Hagen and Roy Edgar Hansen, Synthetic Aperture Sonar for the HUGIN 1000-MR AUV, UDT Europe 2006.
    [94] Pinto, M., Bellettini, A., Wang, L. S., Munk, P., Myers, V., and Pautet, L.. A new synthetic aperture sonar design with multipath mitigation. In Proceedings of the High-Frequency Ocean Acoustics Conference, La Jolla, California, 2004.
    [95] P. N. Denbigh, “A Bathymetric Sidescan Sonar,” Proceedings of the Ultrasonics International ’79 Conference, pp. 321-326, 1979.
    [96] Prati. C, Rocca. F. Use of spectral shift in SAR interferometry, Second ERS-1 symposium[C]. Hamburg, 1993.
    [97] Qian Lin, Vesecky J.F, Zebker H.A. Registration of interferometric SAR images. IEEE Trans. ONGRS, 1992, Vol.20(2): 1579-1581.
    [98] Raney, R. K., Runge, H., Bamler, R., Cumming, I. G., and Wong, F. H.. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sensing, 1994, Vol.32(4):786-799.
    [99] Raven R S, Electronic stabilization for displaced phase centers systems. U. S. Patent 4244036, January 1981.
    [100] Richard Bamler, A comparison of range-Doppler and wave-number domain SAR focusing algorithms, IEEE Transactions on Geoscience and Remote Sensing, 30(4):706-713, July 1992.
    [101] Rodriquez E, Martin J.M. Theory and design of interferometric synthetic aperture radars. IEEE Processings, 1992, 139(2): 147-159.
    [102] Roy Edgar Hansen, Torstein Olsmo S?b?, Kenneth Gade, Sean Chapman, “Signal Processing for AUV based Interferometric Synthetic Aperture Sonar”,MTS/IEEE Conference and Exhibition (Oceans 2003),2003,Page(s): 2438 -2444.
    [103] P.T. Gough and M.A. Miller. Displaced ping imaging autofocus for a multi-hydrophone SAS. IEEE Proc. Radar Sonar Navig., Vol. 151, No.3, pp.163-170, June 2004
    [104] Rodriguez, E. and Martin, J. M.. Theory and design of interferometric synthetic aperture radars. Radar and Signal Processing, IEE Proceedings of, 1992, Vol.139(2):147-159.
    [105] Rolt, K. D. and Schmidt, H.. Azimuthal ambiguities in synthetic aperture sonar and synthetic aperture radar imagery. IEEE J. Oceanic Eng., 1992, Vol.17(1):73-79.
    [106] Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., and Goldstein, R. M.. Synthetic aperture radar interferometry. Proc. IEEE, 2000, Vol.88(3):333-382.
    [107] Runge, H. and Bamler, R.. A novel high precision SAR focussing algorithm based on chirp scaling. In Geoscience and Remote Sensing Symposium, 1992, pages 372-375.
    [108] S. A. Fortune, M. P. Hayes and P. T. Gough, “Contrast Optimisation of Coherent Images”, MTS/IEEE Conference and Exhibition (Oceans 2003),2003,Page(s): 2622-2628.
    [109] S. M. Banks, A. Bellettini: The application of fast factorised back-projection to synthetic aperture sonar, Internal report IN-686, SACLANT Undersea Research Centre, La Spezia, Italy, August 2001.
    [110] Spagnolini U. 2-D phase unwrapping and instantaneous frequency estimation. IEEE Trans, Geosci. Remote Sensing, 1995, 33(3): 579-589
    [111] Scheiber, R. and Bothale, V. M.. Interferometric multi-look techniques for SAR data. In Proceedings of the Geoscience and Remote Sensing Symposium, IGARSS, 2002, volume 1, pages 173-175. IEEE International.
    [112] Schock, S. G., Wulf, J., Quentina, G., and Sara, J.. Synthetic aperture processing of buried object scanning sonar data. In Proceedings of the MTS/IEEE Oceans Conference, 2005, volume 3, pages 2236-2241. MTS/IEEE.
    [113] Seymour, M. S. and Cumming, L. G.. Maximum likelihood estimation for SAR interferometry. In Geoscience and Remore Sensing Symposium, IGARSS ’94, 1994, volume 4, pages 2272-2275.
    [114] Soumekh, M.. A system model and inversion for synthetic aperture radar imaging. IEEE Trans. Image Processing, 1992, Vol.1(1):64-76.
    [115] Tomiyasu, K.. Tutorial review of synthetic-aperture-radar SAR with applications to imaging of the ocean surface. Proceedings of the IEEE, 1978, Vol.66(5):563-583.
    [116] Touzi, R. and Lopes, A.. Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multi-look speckle field. IEEE Trans. Geosci. Remote Sensing, 1996, Vol.34(2):519-532.
    [117] Ulander, L., Hellsten, H., and Stenstr¨om, G.. Synthetic aperture radar processing using fast factorised back-projection. IEEE Trans. Aerosp.Electron. Syst., 2003, Vol.39(3):760-776.
    [118] 王超, 张红, 刘智. 星载合成孔径雷达干涉测量. 科学出版社, 2002.
    [119] Wang, L., Bellettini, A., Hollett, R., Tesei, A., and Pinto, M.. InSAS’00: Interferometric SAS and INS aided SAS imaging. In Oceans 2001, volume 1, pages 179-187. IEEE.
    [120] Wilby, A.. The advantages, challenges and practical implementation of an interferometric swath bathymetry system. IEEE J. Oceanic Engineering, 1999, Vol.1:23-29.
    [121] www.geoacoustics.com.
    [122] Xu, W., Chang, C., Kwoh, L. K., Lim, H., and Heng, W. C. A.. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline. In Proceedings of the IEEE 1994 International Geoscience and Remote Sensing Symposium (IGARSS), 1994, pages 730-732, Pasadena, CA.
    [123] Xu, W. and Stewart, W. K.. Coherent source direction estimation fot[sic] three-row bathymetric sidescan sonars. In Oceans 1999, volume 1, pages 299-304.
    [124] 张澄波,“综合孔径雷达”,高等教育出版社,1988年。
    [125] Zebker, H. A. and Villasenor, J.. Decorrelation in interferometric radar echos. IEEE Trans. Geosci. Remote Sensing, 1992, Vol.30(5):950-959.
    [126] Itoh K. Analysis of the phase unwrapping problem. Applied Optics, 1982, 21(14): 2470-2478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700