基于边缘技术多普勒测风雷达的精度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于边缘技术的多普勒测风雷达在当今世界的地位日趋重要。风场测量精度是每一个雷达系统的重要技术参数。本课题重点研究边缘技术测速系统精度的提高,首先是基于实验室配合目标速度测量,最终目的是大气风场探测。本文从理论和实验两个方面展开研究,在现有实验条件下提高配合目标速度测量精度。结果表明该实验测速系统可运用于大气风场测量中。
     理论主要包括2个方面:鉴频器件F-P标准具缺陷修正;新型分光棱镜设计。关于F-P标准具的经典透过率模型是基于平行平板多光束干涉理论,并没有考虑实际加工中存在的缺陷,通过将缺陷归结为高斯分布,进而从理论上得到修正的透过率表达式,与实验吻合较好。基于角度调谐的双边缘技术中,角度微小调节是难点,因此,本课题组研制了可以精确调整两束出射光夹角的新型分光棱镜,理论上可以将角度调节精度提高1~2个数量级。
     实验主要包括6个方面:脉冲计数法测量配合目标转速;分光棱镜性能测试实验;种子注入单纵模稳频激光器Spitlight 1200稳定性测试;单边缘技术测量配合目标转速;双边缘技术测量配合目标转速;大气回波信号探测与EMD降噪处理。使用He-Ne激光器并利用脉冲计数原理准确测量配合目标转速,无论顺时针还是逆时针旋转,速度测量标准差均不超过0.08m/s。利用1064nm脉冲激光测试分光棱镜性能,表明在激光入射角17°附近,出射光夹角调整精度可以提高50倍。控制种子源发散角在1.9mrad、1.5mrad、1.3mrad 3种情况下测量其在F-P标准具上的透过特性,最后选择发散角1.5mrad测量种子源频率稳定性,测量结果表明种子源短期稳定度在5MHz左右,相当于1.77×10-8,有2%的测试点频率波动超过5MHz。单边缘速度测量在采用频率修正前测速精度为2.1m/s,修正后测速精度为1.9m/s。该工作区域内最大测速灵敏度0.34%/(m/s),灵敏度不低于0.3%/(m/s)时,测速动态范围±50m/s。双边缘速度测量正向最大偏差2.1m/s,负向最大偏差2.6m/s,双边缘探测最大灵敏度为0.46%/(m/s),比单边缘探测灵敏度提高了1.4倍,这对微弱信号探测更加有利,在灵敏度不低于0.42%/(m/s)时,测速动态范围±70m/s。探测了大气后向散射回波信号,不加放大器时,雷达回波信号探测距离为1.3km。通过雷达方程进行数值模拟,表明在200m之后,理论与实际吻合较好。并将回波信号通过EMD方法分解为10个IMF分量和一个余量,通过在重构信号中剔除高频分量实现雷达信号的降噪处理。
The Doppler wind lidar based on edge techniques becomes more and more important in the world at present. Wind measurement accuracy is the significant technique parameter of the wind lidar. The subject main focus on enhancing the accuracy of the velocity measurement system with edge techniques, the system is found on measuring the velocity of the cooperative target at the beginning, and it will be used in the course of masuring the wind velocity in the atmosphere at last. The research in the paper is main from theory and experiment, the aim is improving the accuracy of velocity measurement for the cooperative target in the laboratory. The results show that the system can be used in the atmospheric wind field measurement.
     The theory research includes two aspects: The defect modification of frequency discriminator (F-P etalon); The design for a new kind of light-spliting prism. The classical transmission model of F-P etalon is found on multi-beam interference in the parallel plate, there is no consideration of the defect in the course of manufacture, through introducing the parameter of defect which follows Gaussian distribution, the modified expression of the transmittance has been produced after some theoretic illation, and it is accordance with the experiment results. The accurate adjustment of the two beams which enter into the F-P etalon is the difficulty in double edge based on angle-tuning. Therefore, a new kind of prism has been designed for the accurate adjustment of the two beams, and tuning accuracy can be increased 1~2 order of magnitude with this device.
     The experiment research includes six aspects: Veracious velocity measurement of the cooperative target with pulse counting method; Performance testing for the new kind of prism; Stability testing for the seed injected laser Spitlight 1200; Velocity measurement of the cooperative target with single edge technique; Velocity measurement of the cooperative target with double edge technique; The detection of the atmospheric echo signal and the denoising with EMD. The He-Ne laser is used in measuring the velocity of the target with pulse counting method, the standard deviation of the measured velocity is no more than 0.08m/s no matter the target rotated deasil or widdershins. The perfoemane of the prism has been tested at the wavelength 1064nm, the result showed that the angle-tuning accuracy of the two emitted beams from the prism can be increased 50 times while the incidence angle is near to 17 degree. Measure the transmission of the F-P etalon while the divergence angle of the seed are under the following three value: 1.9mrad,1.5mrad and 1.3mrad,and choose 1.5mrad as the divergence angle of the testing condition, and the experiment results showed that the short-term stability of the seed is 5MHz, namely, it is 1.77×10-8 for the central wavelength. There are 2% of the total measured points whose frequency fluctuation exceed 5MHz. The accuracy of velocity with single edge technique is 2.1m/s before the frequency modification, and became 1.9m/s after the frequency modification. The maximal sensitivity in the working region is 0.34%/(m/s). The dynamic range of the measurable velocity is±50m/s while the sensitivity is no less than 0.3%/(m/s). The positive deviation of the velocity is 2.1m/s and the negative deviation is 2.6m/s with double edge technique. The sensitivity of double edge detection is 0.46%/(m/s), it is 1.4 times of the sensitivity with single edge detection, it is more advantaged in the detection of weak signals. The dynamic range of the measurable velocity is±70m/s while the sensitivity is no less than 0.42%/(m/s). The echo signal of the backscattering of the atmosphere has been detected. The detection distance of the echo signal is 1.3km without the amplifier. Simulation of the echo signal through the lidar equation indicated that the experiment data is consistent with the theoretic analysis while the distance is longer than 200m. The echo signal has been disassembled into ten IMFs and one residue through Empirical Mode Decomposition (EMD). The lidar signal can be de-noised with the elimination of the high-frequency component.
引文
1 J.A. Mckay, David Rees. Space-baced Doppler wind lidar:modeling of edge detection and fringe imaging Doppler analyzers. Adv. Space Res. 2000, 26 (6): 883~891
    2 C. Werner, I. Leike, J. Streicher. Spaceborne Doppler Lidar Perspectives. Fifth International Symposium on Atmospheric and Ocean Optics, Proceeding of SPIE. Tomsk, Russia. 1998:350~359
    3 Z. Zelinger, M. Strizik, P. Kubat, Z. Janour, P. Berger, A. Cerny, P. Engst. Laser remote sensing and photoacoustic spectrometry applied in air pollution investigation. Optics and Lasers in Engineering. 2004,42:403~412
    4 H. Delbarre, P. Augustin, F. Said, et.al. Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE. Atmospheric Research 2005,74:403~433
    5 J. Rothermel, L. D. Olivier, R. M. Banta, et.al. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar. Opt. Exp. 1998,2(2):41~50
    6 S. M. Hannon, K. S. Barr, D. K. Jacob, M. W. Phillips. Application of Pulsed Doppler Lidar in the Airport Terminal Area. Lidar Remote Sensing for Industry and Environmental Monitoring V, Proceeding of SPIE. Honolulu, HI, USA. 2005: 186~197
    7 M. J. Post, R. E. Cupp. Optimizing a pulsed Doppler lidar. Appl. Opt. 1890,29: 4145~4158
    8 M. J. McGill,W. R. Skinner. Multiple Fabry-Pe′rot interferometers in an incoherent Doppler lidar. Opt. Eng. 1997,36(1):139~145
    9 F. F. Hall, R. M. Huffaker, R. M. Hardesty, et.al. Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar. Appl. Opt. 1984, 23:2503~2506
    10 C. L. Korb, B. M. Gentry, C. Y. Weng. Edge technique: theory and application to the lidar measurement of atmospheric wind. Appl. Opt. 1992, 31 (21): 4202~4212
    11 Bruce M. Gentry, C. L. Korb. Edge technique for high-accuracy Doppler Velocimetry. Appl. Opt. 1994, 33(24):5770~5777
    12 C. L. Korb, B. M. Gentry, S. Xingfu Li. Spaceborne lidar wind measurement with the edge technique. Lidar Techniques for Remote Sensing,Proc. of SPIE. Rome, Italy. 1994:206~213
    13 C. L. Korb, B. M. Gentry, S. X. Li, Edge technique Doppler lidar wind measurements with high vertical resolution. Appl. Opt. 1997,36(24):5976~5983
    14 C. L. Korb, B. M. Gentry, S. Xingfu Li, Cristina Flesia. Theory of the double edge technique for Doppler lidar wind measurement. Appl. Opt. 1998, 37(15):3097~3104
    15 Cristina Flesia, C. L. Korb. Theory of the double-edge molecular technique for Doppler lidar wind measurement. Appl. Opt. 1999,38(3):432~440
    16 C. Flesia, C. L. Korb, C. Hirt. Doulbe-edge molecular measurement of lidar wind profiles at 355nm. Opt. Lett. 2000,25(19): 1466~1468
    17 C. Flesia, C. L. Korb, C. Hirt. Double-edge molecular measurement of lidar wind profiles at 355nm. Opt. Lett. 2000,25(19):1466~1468
    18 B. M. Gentry, H. Chen. Tropospheric wind measurements obtained with the Goddard Lidar observatory for winds (GLOW): validation and perfor- mance.Singh. Lidar Remote Sensing for Industry and Environment Monitoring II. San Diego, CA, USA. 2002: 74~81
    19 B. M. Gentry, H. Chen, S. X. Li. Glow-The Goddard Lidar Observatory for Winds. Proceedings of SPIE. Sendai, Japan. 2001:314~320
    20 H. Chen, B. Gentry. Preliminary Results of Wind Measurements by Glow System in Field Campaigns. Lidar Remote Sensing for Industry and Environment Monitoring III, Proceedings of SPIE. Hangzhou, China. 2003:295~302
    21 B. Gentry, M. McGill. Development of an airborne molecular direct detection Doppler lidar for tropospheric wind profiling. Lidar Remote Sensing for Environmental Monitoring VIII, Proceedings of SPIE. San Diego, CA, USA. 2007:61810B-1~7
    22 M. McGill, W. R. Skinner, T. D. Irgang. Validation of wind profiles measured with incoherent Doppler lidar. Appl. Opt. 1997,36(9):1928~1939
    23 M. J. Gill, W. R. Skinner, T. D. Irgang. Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar. Appl. Opt. 1997,36(6):1253~1268
    24 M. T. Dehring, J. M. Ryan, P. B. Hays, B. Moore III, J. Wang. GroundWinds balloon fringe-imaging Doppler lidar mission concept and instrument performance. Lidar Remote Sensing for Industry and Environmental Monitoring V. Honolulu, HI, USA. 2005:210~219
    25 T. D. Irgang, P. B. Hays, W. R. Skinner. Two-channel direct-detection Doppler lidar employing a charge-coupled device as detector. Appl. Opt. 2002,41(6): 1145~1154
    26 J. G. Yoe, M. K. Rama Varma Raja, R. Michael Hardesty, et. al. Groudwinds 2000 field campaign: demonstration of new Doppler lidar technology and wind lidar date intercomparison, Proceedings of SPIE. Hangzhou, China. 2003:327~336
    27 M. J. McGill, James D. Spinhirne. Comparison of two direct-detection Doppler lidar techniques. Opt. Eng. 1998,37 (10) :2675~2686
    28 M. J. McGill, William D. Hart, Jack A. Mckay, James D. Spinhirne. Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability. Appl. Opt. 1999,38(32):6388~6397
    29 M. J. McGill, W. R. Skinner, T. D. Irgang. Validation of wind profiles measured with incoherent Doppler lidar. Appl. Opt. 1997,36(9): 1928~1939
    30 J. A. McKay. Modeling of direct detection Doppler wind lidar I. The edge technique. Appl. Opt. 1998,37(27):6480~6486
    31 J. A. McKay. Modeling of direct detection Doppler wind lidar II. The fringe imaging technique. Appl. Opt. 1998,37(27):6487~6492
    32 J. A. McKay. F-P etalon aperture requirements for direct detection Doppler wind lidar from Earth orbit. Appl. Opt. 1999,38(27):5859~5866
    33 J. A. McKay, Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar. Appl. Opt. 2002,41(9):1760~1766
    34 C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve. Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I.Instrumental setup, validation, and first climatological results, Appl. Opt. 1999,38(12):2410~2421
    35 C. Souprayen, A. Garnier, A. Hertzog. Rayleigh-Mie Doppler wind lidar for atmospheric measurements.II. Mie scattering effect,theory, and calibration.Appl. Opt. 1999,38(12):2422~2431
    36 A. Belmonte, A. Lázaro. Measurement uncertainty analysis in incoherent Doppler lidars by a new scattering approach. Opt. Exp. 2006,14(17):7699~7708
    37 C. J. Norrie, A. E. Marini, E. Armandillo. European Space Agency technology activities for spaceborne Doppler wind lidar. Lidar Techniques for Remote Sensing, Proc. of SPIE. Rome, Italy. 1994:170~173
    38 Y. Durand, A. Culoma, R. Meynart, D. Morancais. F. Fabre, Pre-development of a direct detection Doppler wind lidar for ADE/AEOLUS mission. Sensors, Systems, and Next-Generation Satellites VII, Proc. of SPIE. Barcelona, Spain. 2004:354~363
    39 Y. Durand, E. Chinal, M. Ecdemann, et. Al. Aladin airborne demonstrator: a Doppler wind lidar to prepare ESA’s ADE-Aeolus explorer mission. Earth Observing Systems XI, Proc. of SPIE. San Diego, CA, USA. 2006:62961D1~13
    40 Y. Durand, J.L. Bézy, and R. Meynart. Laser technology developments in support of ESA's earth observation missions. Solid State Lasers XVII: Technology and Devices, Proc. of SPIE. San Jose, CA, USA. 2008:68710G1~12
    41 M. Schillinger, F. Delbru, C. Meisse, D. Hours. Aladin Telescope stability verification using a Hartmann wavefront sensor. Optical Sensors, Proc. of SPIE. Strasbourg, France. 2008:70031H1~10
    42 T. Korhonen, P. Keinanen, M. Pasanen. Polishing and testing of the 1.5 m SiC M1 mirror of the ALADIN instrument on the ADM-Aeolus satellite of ESA. Optical Fabrication, Testing, and Metrology III, Proc. of SPIE. Glasgow, United Kingdom.2008:7102191~7
    43 D. Morancais,F. Fabre, M. Endemann,A. Culoma. ALADIN Doppler wind lidar:recent advances. Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, Proc. of SPIE. Florence, Italy. 2007:675014-1~12
    44 D. Bruneau. Fringe-imaging Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar. Appl. Opt. 2002,41(3):503~510
    45 D. Bruneau, J. Pelon. Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment. Appl. Opt., 2003,42(6):1101~1114
    46 D. Bruneau, A. Garnier, A. Hertzog, J. Porteneuve. Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a F-P interferometer. Appl. Opt. 2004,43(1):173~183
    47 Y. Shibata, C. Nagasawa, M. Abo, T. Nagai. Wind measurement accuracy with incoherent Doppler lidar using an iodine vapor filter. Lidar Remote Sensing for Industry and Environment Monitoring III, Proc. of SPIE. Hangzhou, China. 2003:529~535
    48 Y. Shibata, C. Nagasawa. Incoherent Doppler lidar using 355-nm wavelength for wind measurement. Lidar Remote Sensing for Industry and Environment Monitoring, Proc. of SPIE. Sendai, Japan. 2001:615~622
    49 M. Imaki, D. Sun, T. Kobayashi. Direct-detection Doppler lidar for two-dimensional wind field measurements of the troposphere. Lidar Remote Sensing for Industry and Environment Monitoring III, Proc. of SPIE. Hangzhou, China. 2003:303~310
    50 H. Kawai, Y. Iwasaki, M. Imaki, T. Kobayashi. Ultraviolet high-spectral resolution lidar with polarization detection for accurate measurement of optical properties of aerosol and clouds. Lidar Remote Sensing for Environmental Monitoring VIII, Proc. of SPIE. San Diego, CA, USA. 2007:668103-1~9
    51 M. Imaki, T. Kobayashi. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties. Appl. Opt. 2005,44 (28):6023~6030
    52 F. Shen, H. Cha, D. Sun, D. Kim, S. Kwon. Low Tropospheric Wind Measurement with Mie Doppler Lidar. Opt. Rev. 2008,15(4):204~209
    53 R. Chi, D. Sun, Z. Zhong, et. al. Analysis of the direct detection wind lidar with a dual F-P etalon. Optical Technologies for Atmospheric, Ocean, and Environmental Studies,Proceedings of SPIE. Bellingham, WA. 2005:140~147
    54夏海云,孙东松,沈法华,董晶晶.双边缘技术多普勒测风激光雷达标准具的优化.强激光与粒子束. 2006,18(11):1774~1778
    55孙东松,钟志庆,王邦新等.基于F-P标准具的直接探测多普勒测风激光雷达.量子电子学报. 2006,23(3):303~306
    56迟如利,刘东,钟志庆等.双F-P标准具在直接测风激光雷达系统中的应用与分析.强激光与粒子束. 2007,19(2):202~206
    57钟志庆,孙东松,王邦新等.基于F-P标准具的多普勒测风激光雷达.红外与激光工程. 2006,35(6):687~690
    58王邦新,沈法华,孙东松等.直接探测多普勒激光雷达的光束扫描和风场测量.红外与激光工程. 2007,36(1):69~72
    59 Z. S. Liu, W. B. Chen, J. W. Hair, et al. Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling. Proc. of SPIE. Denver, America, 1996:128-135
    60 Z. S. Liu, D. Wu, J.T. Liu, et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter. Appl. Opt. 2002,41(33):7079~7086
    61 S. Wu, Z. Liu, D. Sun, Noise reduction in LOS wind velocity of Doppler lidar using discrete wavelet analysis. Chi. Opt. Lett. 2003,1(12):722~725
    62 Z. Liu, N. Zhang, R.Wang, J. Zhu. Doppler wind lidar data acquisition system and data analysis by empirical mode decomposition method. Opt. Eng. 2007, 46(2):026001-1~8
    63 Z. Liu, B. Liu, S. Wu, Z. Li, Z. Wang. High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements. 2008, 33(13):1485~1487
    64 J. Zhou, T. Yu, J. Bi, X. Zhu, W. Chen. Diode pumped injection seeded Nd:YAG laser. Chinese Optics Letters. 2006,4(5):292~293
    65陈卫标,周军,刘继桥,朱小磊.多普勒激光雷达及其单纵模全固态激光器.红外与激光工程. 2008,37(1):57~60
    66 J. Liu, J. Zhou, W. Chen. Boundary Doppler Lidar based on multi-beam Fizeau Interferometer. Remote Sensing for Industry and Environmental Monitoring V, Proc. of SPIE. Honolulu, HI, USA. 2005:273~280
    67吴松华.高稳定性高光谱分辨率激光测风系统关键技术.中国海洋大学博士论文.2004年.40~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700