软土浅埋隧道变形、渗流及固结性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在土体内部进行隧道施工,无论隧道埋深大小,其开挖会使开挖面周围土体因卸荷而发生变形,造成地表短期沉降;同时,对土体产生的扰动及新边界条件的形成导致应力场和渗流场重分布,土体重新固结及流变变形,引起整个地层的长期沉降。当沉降变形发展到一定程度,将影响地下管线等设施的正常使用,甚至危及地面建筑物的安全。因此,如何预测和控制隧道的地表沉降已成为工程界关心的重要问题。随着城市化进程的加快,地铁、市政管道等隧道工程的建设在我国蓬勃发展,而目前薄弱的理论研究还滞后于蓬勃发展的工程实践。本文从解析理论和数值分析两方面出发,结合已有的工程背景,对软土浅埋隧道工程中渗流、固结和沉降问题展开系统、深入的研究,以期为工程实践提供技术支撑。主要创新工作如下:
     1.通过将Sagaseta提出的通用地层变形方式,即考虑径向收缩、椭圆化变形和竖向位移独立影响下的隧道周边复杂位移边界条件引入Airy应力函数,推导了浅埋隧道周边土体变形计算公式,并提出适用于正常固结土的简化计算方法。在此基础上分析了隧道径向收缩、椭圆化变形和竖向位移对土体变形的影响及其规律,并通过与四个隧道工程实测数据的对比,对公式中各参数取值的合理性进行了探讨,同时给出了预估隧道沉降的推荐参数值。
     2.通过引入以隧道边界径向收缩、椭圆化变形和竖向位移表示的隧道周边复杂位移边界条件,并将该边界条件转化为映射后的复平面边界条件,利用复变函数解法,给出了盾构隧道任意衬砌变形复变函数的精确解答。进而通过数值分析,对所提出的复变函数求解方法进行验证,并结合本文已给出的应力函数解答,分析了两种不同解析理论及数值分析所得结果的差异。
     3.对考虑衬砌和土体渗透特性的半无限空间中隧洞周边渗流问题进行了研究。采用土体与衬砌分算,分别得到了两者渗流方程,在此基础上利用边界条件和流量连续条件,给出了半无限含水层中带衬砌隧洞渗流问题的复变函数解析解。进而通过数值分析对该复变函数解进行了验证,并分析了隧道径深比、土体与衬砌渗透系数相对值、内壁水压力等因素对渗流量和衬砌周边水头的影响及其规律。
     4.根据四元件流变模型和Terzaghi-Rendulic固结理论,建立了衬砌透水与封闭条件下的超静孔隙水压力的控制方程,并得到了处于饱和粘弹性土体中隧道的超静孔隙水压力解析解,由此可确定求解域中任意点任意时刻的超静孔隙水压力。
     5.以上海地铁二号线工程为研究背景,利用通用有限元程序Abaqus,考虑隧道施工和运营的多工况的特点,对盾构隧道的长期沉降进行了数值分析。程序中选用prony级数拟合的四元件粘弹性本构模型,考虑地基土的成层性,耦合了Biot固结理论进行计算,并与实测所得长期沉降进行了对比。
During the process of tunnel construction, regardless of the tunnel depth, tunnel excavation causes soil convergence around the tunnel face and results in short-term surface settlement; meanwhile, soil disturbance and the resulting new boundary conditions lead to re-distribution of stress field and seepage field, and consolidation and creep of the soft soil, which bring about long-term subsidence. Excessive subsidence caused by tunnel construction may affect the safety and normal use of the surface structures, foundations and adjacent pipelines, etc. Therefore, how to predict and control the tunnel settlement becomes an important engineering issue. With the accelerated urbanization process, a large number of tunnels are built and put into use; however, the relevant theoretical study lags far behind the booming engineering practice. To give technique supports for the tunnel construction, the seepage field, consolidation behavior and land subsidence of the soil around shallow tunnel are systematically studied using both analytical and numerical methods in this dissertation. The main original work includes:
     1. The general ground deformation pattern suggested by Sagaseta, which can consider uniform convergence, pure distortion and vertical translation of tunnel individually, is incorporated into Airy stress function as the complex boundary condition of the displacement around the tunnel section. An elastic solution for the prediction of the tunneling-induced ground deformations for shallow tunnels in the soft ground is derived, and the simplified solution for normal consolidated soil is proposed. The influences of uniform convergence, pure distortion and vertical translation on land subsidence are analyzed. The comparisons of the solutions with the data observed in four different tunnels are made and the reasonable values of the parameters in the solution are investigated. Finally, three deformation types for different soils are suggested for practical purpose.
     2. A general ground deformation pattern is assumed as the displacement boundary condition around the tunnel section, and the elastic half plane with a hole is mapped conformably onto a ring, a solution for complex boundary condition of the displacement around a circular tunnel is deduced by the complex variable method. The results given by the solution are compared with the ones given by FEM and the data observed. Differences between the complex variable method and Airy stress function method are discussed.
     3. An analytical solution is derived for steady flow into a lined tunnel in a semi-infinite aquifer firstly by assuming the soil and lining are saturated, homogeneous and isotropic media. Using the conformal mapping, the flow in the soil region, as well as in the lining region, can be described by Laplace equation in a ring domain. Water inflow volume and hydraulic head along the tunnel circumference are solved by Fourier method for the Dirichlet problem. The influences of the ratio of radius to depth of tunnel, the hydraulic conductivity of both soil and lining and the internal water pressure on the water inflow volume and hydraulic head along the tunnel circumference are discussed and compared with numerical stimulation.
     4. Based on Burges viscoelastic constitutive model and Terzaghi-Rendulic consolidation theory, the governing equation about excess pore pressure is established with drainage and no-drainage boundary. An analytical solution for the excess pore pressure of tunnel in viscoelastic saturated soil is obtained. By this solution, the excess pore pressure of any position can be determined at any time in the considered region.
     5. Using the FEM code-Abaqus, a part of Shanghai metro line NO.2 shield tunnel is simulated to investigate the behavior of long-term ground subsidence. Burgers viseoelastic constitutive model fitted by prony series is implemented in the code coupled with Biot's consolidation theory, and the multi-layered characteristics of soil are also taken into account. A multiple-step numerical procedure is designed to simulate the mechanical behavior of shield tunnel in different period during the long-term duration. Finally, comparison with the observed data shows that the long-term response of shield tunnel can be predicted by such numerically simulation.
引文
[1]Akaqi H., Komiya K. Finite element analyses of the interaction of a pare of shield tunnels. Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering,1997,13: 1449-1452.
    [2]Arjnoi P., et al. Effect of drainage conditions on porewater pressure distributions and lining stress in drained tunnels[J]. Tunnelling and Underground Space Technology,2009,24:376-389.
    [3]Atkinson J.H., Potts D.M. Subsidence above shallow tunnels in soft ground[J]. Journal of Geotechnical Engineering,1977,103(3):307-325.
    [4]Attwell P.B., Farmer I.W. Ground disturbance caused by shield tunneling in a stiff fissured overconsolidated clay[M]. Engineering Geology,1974.
    [5]Attewell P.B. Engineering contract, site investigation and surface movement in tunneling works. In soft ground tunneling, A. A. Balkeman,1981:5-12.
    [6]Attewell P.B., Woodman J.P. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil[J]. Ground Engineering,1982,15(8):13-20,36.
    [7]Biot M.A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics,1941, 12:155-164.
    [8]Biot M.A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics,1955,26(2): 182-185.
    [9]Biot M.A. Theory of deformation for a porous viscoelastic anisotropic solid[J]. Journal of Applied Physics,1956,17(5):459-467.
    [10]Biot M.A. Mechanics of deformation and acoustic propagation in porous medium[J]. Journal of Applied Physics,1962,33(4):1482-1498.
    [11]Bobet A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics,2001,127(12):1258-1266.
    [12]Cater J.P., Small J.C., Booker J.R. A theory of finite elastic consolidation[J]. International Journal of Solids structures,1977,13(6):653-661.
    [13]Cater J.P., Booker J.R. Elastic consolidation around a deep circular tunnel[J]. International Journal of Solids structures,1982,18(2):1059-1074.
    [14]Carter J.P., Booker J.R. Creep and consolidation around circular openings in infinite media[J]. International Journal of Solids and Structures,1983,19 (8):663-675.
    [15]Cater J.P., Booker J.R. Elastic consolidation around a lined circular tunnel[J]. International Journal of Solids structures,1984,26(6):589-609.
    [16]Chou W.I., Bobet A. Predictions of ground deformations in shallow tunnels in clay[J]. Tunnelling and Underground Space Technology,2002,17:3-19.
    [17]Clough G.W., Schmidt B. Design and performance of excavations and tunnels in soft clay[M]. Soft Clay Engineering, Brand E W, Brenner R P(eds):Elsevier Science Publishing Company, New York, 1981.
    [18]Deane A.P., Bassett R.H. The heathrow express trial tunnel[A]. Proceedings of the Institution of Civil Engineers and Geotechnical Engineering,113:144-156.
    [19]El Tani M. Circular tunnel in a semi-infinite aquifer[J]. Tunnelling and Underground Space Technology, 2003.18(1):49-55.
    [20]Finno R.J., Clough G.W. Finite element simulation of EPB shield tunneling[J]. Journal of the Geotechnical Engineering Division, ASCE,1985,111(2):155-173.
    [21]Fujita K. On the surface settlement caused by various methods of shield tunneling[A]. Proceeding of 10th International Conference of Soil Mechanics and Foundation Engineering. Stockholm, Vol 4: 609-610.
    [22]Goodman R.E., Moye D.G., Van Schalkwyk A., Javandel I. Ground water inflows during tunnel driving[J]. Bulletin of the Association of Engineering Geologists,1965,2:35-56.
    [23]Hwang J.H., Lu C.C. A semi-analytical method for analyzing the tunnel water inflow[J]. Tunnelling and Underground Space Technology,2007,22:39-46.
    [24]Jeffery G.B. Plane stress and plane strain in bipolar coordinates[C]. Transactions of the Royal Society, London, England,1920,221:265-293.
    [25]Karlsrud K. Water control when tunnelling under urban areas in the Oslo region[J]. NFF publication, 2001,No.12(4):27-33.
    [26]Kolymbas D., Wagner P. Groundwater ingress to tunnels-the exact analytical solution[J]. Tunnelling and Underground Space Technology,2007,22 (1),23-27.
    [27]Lee K.M., Rowe R.K. Analysis of three-dimensional ground movements:the Thunder Bay Tunnel. Canadian Geotechnical Journal,1991,28(1):25-41.
    [28]Lee K.M., Rowe R.K., Lo K.Y. Subsidence owing to tunneling. Ⅰ:Estimating the gap parameter[J]. Canadian Geotechnical Journal,1992(a),29:929-940.
    [29]Lei S. An analytical solution for steady flow into a tunnel[J]. Ground Water,1999.37:23-26.
    [30]Li X. Stress and displacement fields around a deep circular tunnel with partial sealing[J]. Computers and Geotechnics,1999,24 (2):125-140.
    [31]Li X., Berrones R.F. Time-dependent behavior of partially sealed circular tunnels[J]. Computers and Geotechnics,2002,29(6):433-449.
    [32]Liao S.M., et al. Shield tunneling and environment protection in Shanghai soft ground[J]. Tunnelling and Underground Space Technology.2009(In Press), doi:10.1016.
    [33]Loganathan N., Poulos H.G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(9):846-856.
    [34]Mair R.J. Ground movement around shallow tunnels in soft clay[J]. Tunnels and Tunneling,1982(6): 3338.
    [35]Mair R.J., Taylor R.N., Bracegirdle A. Surface Settlement profiles above tunnels in caly[J]. Geotechnique,1993,43(2):315-320.
    [36]Mair R.J., Taylor R.N. Bored tunneling in the urban environment[A]. Proc.14th Intenational Conference on Soil Mechanics and Foundation Engineering. Hamburg.1997, Vol.4:2353-2385
    [37]Martos F. Concerning an approximate equation of subsidence trough and its time factors[A]. Proc. of the International strata control congress, zeipzig,1958.
    [38]Mindlin, Raymond D. Stress distribution around a tunnel[J]. ASCE,1940,105:1117-1140.
    [39]Muskat M. The flow of homogeneous fluid through porous media[M]. Mc Graw Hill,1937,175-181.
    [40]Muskhelishvili N.I. Mathematical theory of elasticity [M]. Leyden: International Publishing,1954.
    [41]Ng R.M.C., and Lo K.Y. The measurement of soil parameters relevant to tunnelling in clays[J]. Canadian Geotechnical Journal,1986.22:375-391.
    [42]O'Reilly M.P., New B.M. Settlements above tunnels in the United Kingdom-their magnitude and prediction[A]. Proceeding of Tunneling'82, London:Institution of Mining and Metallurgy,1982: 137-181.
    [43]O'Reilly M.P., Mair R.J., Alderman G.H. Long-term settlements over tunnels; an eleven-year study at Grimsby[A]. Proceedings of Conference Tunnelling, London, Institution of Mining and Metallurgy, 1991:55-64.
    [44]Park K.H. Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics,2004,4(4):310-318.
    [45]Park K.H., Adisom O., Lee J.G. Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: A revisit[J]. Tunnelling and Underground Space Technology, 2007,22:23-27.
    [46]Peck R.B. Deep excavation and tunneling in soft ground[A]. The 7th International Conference of Soil Mechanics and Foundation Engineering. Mexico city,1969,225-290.
    [47]Peck R.B., Hendron Jr.A.J., Mohraz B. State of the art of soft-ground runneling[A]. Proceedings of the 1st Rapid Excavation and Tunneling Conference. Chicago,1972,1:259-286.
    [48]Rowe R.K., Lo K.Y., Kack G.J. A method of Estimating surface settlement above tunnels constructed in soft ground[J]. Canadian Geotechnical Journal.1983,20:11-22.
    [49]Rowe R.K., Lee K.M. Parameters for predicting deformations due to tunneling[A]. Proceedings,12th International Conference on Soil Mechanics and Foundation Engineering. Rio de Janeiro,1989: 793-796.
    [50]Rowe R.K., Lee K.M. Subsidence owing to tunneling. II:Evaluation of a prediction technique[J]. Canadian Geotechnical Journal,1992,29:941-954.
    [51]Sagaseta C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique,1987,37: 301-320.
    [52]Sagaseta C. On the role of analytical solutions for the evaluation of soil deformation around tunnels[A]. Application of Numerical Methods to Geotechnical Problems. CISM Courses and Lectures,1998,397: 3-24.
    [53]Schleiss A.J. Design of reinforced concrete-lined pressure tunnels[A]. International Congress of Tunnels and Water, Madrid,1998,2:1127-1133.
    [54]Shin J.H., Addenbrooke T.L., Pons D.M. A numerical study of the effect of groundwater movement on long-term tunnel behavior[J]. Geotechnique,2002,52 (6):391-403.
    [55]Shirlaw J.N. Observed and calculated pore pressures and deformations induced by an earth balance shield:Discussionl[J]. Canadian Geotechnical Journal,1995,32:181-189.
    [56]Strack O.E., Verruijt A. A complex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26: 1235-1252.
    [57]Swoboda G., Abu-Krisha A. Three-dimensional numerical modelling for TBM tunnelling in consolidated clay[J]. Tunnelling and Underground Space Technology,1999,14(3):327-333.
    [58]Terzaghi K., Shield tunnels of the Chicago Subway[J]. Journal of the Boston Society of Civil Engineers. 1942,29(3):163-210.
    [59]Timoshenko P., Goodier J.N. Theory of elasticity [M]. New York:McGraw-Hill,1970.
    [60]Verruijt A., Booker J.R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Geotechnique,1996,46(4):753-756.
    [61]Verruijt A. A complex variable solution for a deforming circular tunnel in an elastic half plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics.1997,21:77-89.
    [62]Verruijt A. Deformations of an elastic half plane with a circular cavity[J]. International Journal of Solids Structures,1998,35(21):2795-2804.
    [63]Verruijt, A., Booker, J.R., Complex Variable Analysis of Mindlin's Tunnel Problem[M]. Development of Theoretical Geomechanics. Balkema, Sydney,2000,3-22.
    [64]Yi X., Rowe R., Lee K. M. Observed and calculated pore pressure and deformations induced by earth balance shield[J]. Canadian Geotechnical Journal,1993,30:476-490.
    [65]包鹤立.衬砌局部渗漏条件下软土盾构隧道的长期性态研究[D].同济大学硕士学位论文,上海:同济大学,2008.
    [66]陈豪雄.隧道工程[M].北京:中国铁道出版社,1995.
    [67]陈卫忠,伍国军,贾善坡.ABAQUS在隧道及地下工程中的应用[M].北京:中国水利水电出版社,2010.
    [68]丁洲祥,龚晓南,朱合华等.Biot固结有限元方程组的病态规律分析[J].岩土力学,2007,28(2):269-273.
    [69]方从启.软土地层中隧道开挖引起的地面沉降[J].江苏理工大学学报,1999,20(2):5-8.
    [70]房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J].岩石力学与工程学报,1998,17(3):239-247.
    [71]房营光,陈尤雯,黄文兴.地面超载条件下浅埋双圆形隧道围岩的粘弹性分析[J].世界隧道,1999,2:8-13.
    [72]冯紫良,范厚彬.软土流变实验的数值模拟[J].同济大学学报,2003,31(4):379-382.
    [73]傅作新.工程徐变力学[M].北京:水利电力工业出版社,1985.
    [74]高文华.流变软土地基模型的时效分析与刚度计算[J].岩土力学,1998,19(4):25-30.
    [75]高新强,仇文革.隧道衬砌外水压力计算方法研究现状与进展[J].铁道工程学报,2004,84(4):128-131.
    [76]姜功良.浅埋软土隧道稳定性极限分析[J].土木工程学报,1998,31(5):65-72.
    [77]姜忻良,赵志民,李圆.隧道开挖引起土层沉降槽曲线形态的分析与计算[J].岩土力学,2004,25(10):1542-1544.
    [78]姜忻良,赵志民.镜像法在隧道施工土体位移计算中的应用[J].哈尔滨工业大学学报,2005,27(6):801-803.
    [79]交通部重庆公路科学研究所.公路隧道施工技术规范(JTJ 042-94)[S].北京:人民交通出版社,1994.
    [80]金忆丹,尹永成.复变函数与拉普拉斯变换[M].杭州:浙江大学出版社,2003.
    [81]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [82]李军世,林咏梅.上海淤泥质粉质粘土的Singh—Mitchell蠕变模型[J].岩土力学,2000,21(4):363-366.
    [83]李西斌.软土流变固结理论与试验研究[D].浙江大学博士学位论文,杭州:浙江大学,2005.
    [84]粱昆淼.数学物理方法[M].北京:人民教育出版社,1979.
    [85]梁尧篪.水工压力隧道的渗透动水压力[J].岩土工程学报,1984,6(1):85-90.
    [86]刘干斌.软土隧道固结性状及相互作用理论研究[D].浙江大学博士学位论文,杭州:浙江大学,2004.
    [87]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [88]刘军虎,王铮.由应力松弛试验数据确定松弛模量和蠕变柔量[J].固体火箭技术,1995,18(3):73-78.
    [89]吕明,E, Nilsen B, Melby K.挪威海底隧道经验[J].岩石力学与工程学报,2005,24(23):4219-4225.
    [90]缪林昌,王非,吕伟华.城市地铁隧道施工引起的地面沉降[J].东南大学学报(自然科学版),2008,38(2):293-297.
    [91]史玉成.软土的流变特性及三轴应力松弛试验仪的应用[J].岩土工程师,1992,4(1):1-6.
    [92]孙钧,侯学渊.上海地区圆形隧道的设计理论和实践[J].土木工程学报,1984,17(3):35-47.
    [93]铁道部第二勘测设计院.铁路工程设计技术手册-隧道[S].北京:中国铁道出版社,1995.
    [94]铁道部第二勘测设计院.铁路隧道设计规范(TBT 3-96)[S].北京:中国铁道出版社,1998.
    [95]王桂芳.圆形隧道的粘弹性应力分析[J].工程力学,1990,7(1):106-127.
    [96]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [97]王立忠,吕学金.复变函数分析盾构隧道施工引起的地基变形[J].岩土工程学报,2007,29(3):319-327
    [98]王秀英,王梦恕,张弥.山岭隧道堵水限排衬砌外水压力研究[J].岩土工程学报,2005,27(1):125-127.
    [99]魏纲.顶管工程土与结构的性状及理论研究[D].浙江大学博士学位论文.杭州:浙江大学.2005.
    [100]吴波.复杂条件下城市地铁隧道施工地表沉降研究[D].西南交通大学博士学位论文,成都:西南交通大学,2003.
    [101]肖勤,刘松樵.盾构施工扰动地层的再固结沉降分析[J].地下工程与隧道,2007,3:40-43.
    [102]谢兴华,盛金昌,速宝玉,等.隧道外水压力确定的渗流分析方法及排水方案的比较[J].岩石力学与工程学报,2002,21(增2):2375-2378.
    [103]邢彭龄,张国有,杨德全,陈二云.隧道渗流的数值方法[J].内蒙古民族大学学报(自然科学版),2006,21(1):1-3.
    [104]许宏发,钱七虎,吴华杰等.确定软土流变模型参数的回归反演法[J].岩土工程学报,2003,25(3):365-367.
    [105]杨顺安,冯晓腊,张聪辰.软土理论与工程[M].北京:地质出版社,2000.
    [106]叶其孝,沈永欢.实用数学手册(第二版)[M].北京:科学出版社,2006.
    [107]曾小清.地铁工程双线隧道平行推进的相互作用及施工力学的研究[D].同济大学博士学位论文.上海:同济大学,1995.
    [108]詹美礼.软土流变实验及隧道有限元分析[D].河海大学博士论文.南京:河海大学,1991.
    [109]詹美礼,钱家欢,陈绪禄.粘弹性地基中洞周土体固结问题的解析解[J].河海大学学报,1993,21(2):54-60.
    [110]詹美礼,钱家欢,陈绪禄.粘弹塑性有限单元法及其在隧道分析中的应用[J].土木工程学报,1993,26(3):13-21.
    [111]张成平,张顶立,王梦恕,项彦勇.高水压富水区隧道限排衬砌注浆圈合理参数研究[J].岩石力学与工程学报,2007,26(11):2270-2276.
    [112]张冬梅.软粘土时效特性分析及隧道长期沉降的预测[D].同济大学博士学位论文.上海:同济大学,2003.
    [113]张冬梅,黄宏伟,杨峻.衬砌局部渗流对软土隧道地表长期沉降的影响研究[J].岩土工程学报, 2005,27(12):1430-1436.
    [114]张海波.地铁隧道盾构法施工对周围环境影响的数值模拟[D].河海大学博士学位论文.南京:河海大学,2005.
    [115]张文飞,李晓江.中空轴对称域多孔介质力学问题的解析解[J].岩石力学与工程学报,1997,16(5):483-489.
    [116]张云,殷宗泽.地下隧道软土地层变形研究综述[J].水利水电科技进展,1999,19(2):25-28.
    [117]张云.盾构法隧道的位移反分析及其工程应用[J].南京大学学报(自然科学),2001,37(3):334-341.
    [118]郑建华.复变函数[M].北京:清华大学出版社,2005.
    [119]钟桂彤.铁路隧道[M].北京:中国铁道出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700