火灾作用下钢筋混凝土结构非线性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构抗火是结构工程领域里的一个重要难题。钢筋混凝土结构的抗火性能虽然优于其它结构,但同样面临抗火问题研究。由于试验设备和火灾试验本身极其昂贵,利用有限元计算软件来模拟钢筋混凝土构件及结构在火灾中的非线性反应变得越来越重要。本文在系统分析和总结目前国内外火灾工程研究概况的基础上,对火灾作用下钢筋混凝土结构进行了非线性有限元分析。其主要内容分为以下几个部分:
     1.归纳总结了国内外钢筋和混凝土的高温材料性能的研究成果,包括钢筋、混凝土的热工性能参数及热力学性能参数。二者的热工性能参数和热力学性能参数是研究高温下钢筋混凝土结构力学性能的重要前提。
     2.基于有限元-差分混合方法的数学模型,编制了钢筋混凝土结构的内部温度场分析程序,计算结果与现有的国内外试验结果吻合较好。试验和理论分析比较表明本文采用的理论和编制的程序是合理的。
     3.考虑到建模需要,简要介绍了本构模型应满足的基本力学原理。然后推导出钢筋混凝土结构材料的高温本构模型的基本公式,给出了建立钢筋和混凝土高温本构模型应遵循的基本步骤。针对钢筋和混凝土高温弹塑性本构模型,基于后退欧拉法建立了弹性预测-塑性修正的数值求解方法,提高了等效塑性应变和塑性变形的计算效率。基于上述本构模型和数值算法,编制了相应的非线性分析程序,并对已有的试验结果进行了数值模拟,验证了本构模型和数值算法的有效性。
     4.给出了一种计算高温下钢筋混凝土偏压构件极限承载力的简化计算方法,计算中考虑了高温下结构的材料性能、力学性能和稳定性退化以及侧向挠度的影响。通过此方法能够比较准确地计算出不同温度下钢筋混凝土偏压构件的极限承载力,计算结果与试验结果吻合较好。在此基础上,以四面受火钢筋混凝土方形柱为例,对极限承载力的各个影响因素进行了分析,得出配筋率、钢筋屈服强度对极限承载力影响不大,而混凝土保护层厚度、混凝土受压强度和截面尺寸则是影响极限承载力的主要因素。
     5.根据材料在不同温度的本构模型,对考虑薄膜应力效应的钢筋混凝土板的极限承载力进行了分析。通过分析板块中面的平衡方程及位移协调方程,建立了由板位移和Airy应力函数表示的两个微分控制方程。基于能量原理,采用二重Fourier级数解推导了火灾作用下楼板的位移、薄膜应力、应变以及板极限承载力的表达式。所得的计算结果与试验结果吻合较好,同时为考虑薄膜效应时楼板的抗火设计提供了参考。
     6.推导出材料在大变形条件下的热弹塑性本构模型,采用梁-柱单元划分和荷载增量法对钢筋混凝土连续梁的抗火性能进行了非线性分析。通过计算火灾作用下钢筋混凝土连续梁的高温极限承载力和力学性能,分析了不同加载位置、荷载大小以及加温跨数等因素作用下变形和内力重分布的变化规律。结果表明,在升温过程中加载位置和加载水平使得连续梁发生剧烈的内力重分布,并产生可变的高温塑性铰,从而改变结构的破坏形态。
Fire resistance of structures is an important and difficult problem in structural engineering. Fire resistance of reinforced concrete structures is better than other ones, but it is also necessary to research the fire resistance properties. Because of the high cost of fire testing facilities and the fire tests itself, it is more and more important to use software of finite element analysis to model the nonlinear response of the reinforced concrete members and structures in fire. Based on the systematic analysis and conclusions of fire resistance research in this thesis, the nonlinear finite element response of reinforced concrete structures is analyzed. The main content is organized as follows:
     1. The research results of material performance of the steel and concrete at high temperature are summarized, including the thermal and mechanical performance parameters of steel and concrete in high temperature. These parameters are the important precondition to research the mechanical properties of reinforced concrete structures in high temperature.
     2. Based on the hybrid mathematic model of finite element-difference, the analysis program of the internal temperature field are developed, and the computing results show in good agreement with the existing test results. The results of test and theoretical analysis demonstrate that the method and the computer program given in the thesis are reliable.
     3. Considering the demand of modeling, the basic mechanical principles that the constitutive model should be satisfied is introduced in brief. Then the basic formulae of constitutive model of reinforced concrete are derived, and the basic steps of establishing the constitutive model of reinforcement and steel in high temperature are given. According to the constitutive model, the numerical solving method of elastic predictor and plastic corrector is established, and the efficiency of computing equivalent plastic strain and plastic deformation is greatly improved. Corresponding, the numerical algorithm of constitutive model of steel and reinforcement in high temperature is established based on the backward Euler method. According to the above constitutive model and numerical algorithm, the program of nonlinear analysis is developed, and the existing tests are simulated, which demonstrates the validity of the constitutive model and numerical algorithm.
     4. A simplified calculation approach is provided, which can be used for calculating the ultimate bearing capability of reinforced concrete eccentric compression member. The effects of material property, mechanical performance and stability deterioration of structures under high temperature is considered. By this approach, ultimate bearing capability of the reinforced concrete eccentric compression member under different temperatures can be calculated accurately, and the results are matching well with the test data. Based on this, taking a four-face heated reinforced concrete column for example, each influence parameter on ultimate bearing capability is analyzed. The results indicate that concrete cover, concrete compressed strength and sectional dimension are the main influence parameters on ultimate bearing capacity, while the influences of steel ratio and steel yield strength can be ignored.
     5. Considering the constitutive model of materials at different temperatures, ultimate bearing capability of reinforced concrete slabs under membrane effect is analyzed. Based on the force equilibrium and geometric compatibility equation in the middle plane, two governing differential equations expressed by the deflection and Airy stress function are obtained. Based on the principle of energy, the deflection, membrane force, stress, strain and the ultimate bearing capability of slab are deduced by double Fourier series. The calculation results are in good agreement with the test results, therefore, the results can offer the reference for the fire resistance design of slab when the membrane effect is considered.
     6. The thermo-elasto-plastic material constitutive model in the condition of large deformation is deduced. The nonlinear analysis of reinforced concrete continuous beam in high temperature is made with beam-columniation element and load increment method. By calculating the ultimate bearing capability and mechanical properties of reinforced concrete continuous beam at high temperature, the change law of internal force redistribution and deformation were analyzed in different load positions, loads levels and different numbers of heating spans. The results show that, in heating process, the internal force redistribution and the forming of plastic hinges at high temperature in continuous beam are caused by the loading position and level, which can change the failure pattern of structure.
引文
[1]中华人民共和国建设部.混凝土结构设计规范GB 50010-2002.中国建筑工业出版社,2002
    [2]过镇海.钢筋混凝土原理.清华大学出版社.1999:336-358页
    [3]过镇海.混凝土的强度和变形(试验基础和本构关系).清华大学出版社,1997:8-17页
    [4]Usmani A S, Chung Y C, Torero J L. How did the WTC towers collapse:a new theory. Fire Safety Journal,2003(38):501-533P
    [5]过镇海,时旭东.钢筋混凝土的高温性能及其计算.清华大学出版社,2002:3-4页
    [6]吴波.火灾后钢筋混凝土结构的力学性能.科学出版社,2003:62-63页
    [7]James A. Milke P E. Analytical methods to evaluate fire resistance of structural members. Journal of structural engineering,1999,125 (10):1179-1187P
    [8]Cox G. Fire research in the 21st Century. Fire Safety Journal,1999, 32(3):203-219P
    [9]Hyeong J K. Structural Fire modeling[D]. Tulsa The Oklahcme state unive-rsity,2001:7-14P
    [10]霍然等.建筑火灾安全工程导论.中国科学技术大学出版社,1999:69-87页
    [11]孔祥谦.热应力有限单元法分析.上海交通大学出版社,1999:21-43页
    [12]时旭东,过镇海.钢筋混凝土结构的温度场.工程力学,1996,13(1):35-43页
    [13]刘永军,李宏男等.遭受火灾钢筋混凝土构件内温度场分析软件TFIELD.沈阳建筑工程学院学报,2000,16(4):251-253页
    [14]Buyukozturk 0, Connor J J. ARC-A Computer program for three D in ensional finite element analysis of reinforced, prestressed and refractory concrete structurures. MIT, Departmant of Civil Engine-ering, Research Report,1978:78-83P
    [15]Hellon T K, Protheroe S S. The BERSAFE Finete Element System. Computer Aided Design,1974:56-65P
    [16]路春森,屈立军等.建筑结构耐火设计.中国建材工业出版社,1995:112-118页
    [17]Elghazouli A Y, Izzuddin B A, Richardson A J. Numerical modelingof the stru-ctural fire behaviour of composite. Fire Safety Journal, 2000(35):279-297P
    [18]朱伯芳.不稳定温度场数值分析的分异步长解法.水利学报,1995(3):237-243页
    [19]Harmathy T Z. Thermal Properties of Concrete at Elevated Tempera-ture. ASTM Journal of Materials,1970,5(1):47-74P
    [20]Commission of the European Communities Design of Concrete Structures. Eurocode No.2 Part 10 Structural Fire Design,1990(3)
    [21]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究.土木工程学报,1993,26(3):47-54页
    [22]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析.清华大学博士学位论文,1992:23-31页
    [23]Lie T T. A Procedure to Calculate Fire Resistance of Structural Members [C]//International Seminar on Three Decades of Structural Fire Safety[C]//Herts Fire Research station.1983:139-153P
    [24]李卫,过镇海.高温下混凝土的强度和变形性能试验研究.建筑结构学报,1993,14(1):8-16页
    [25]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系.清华大学学报,1997,37(6):87-90页
    [26]Harade T. Strength Elasticity and Thermal Properties of Concrete Subjected to Elevated Temperature.ACISP 1972(39):377-406P
    [27]Kaplan M F, Roux F J P. Effect of Elevated Temperature on the Prope-rties of Contatainment and Shielding of Nuclear Reactors. ACISP, 1972(34):405-433P
    [28]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系.四川 建筑科学研究,1990(1):37-43页
    [29]钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究.同济大学学报,1990,18(3):7287-7297页
    [30]Marechal J C.Variations in the Modulus of Elasticity and Poisson Ration with Temperature Concrete for Nuclear Reactors. ACISP,1972 (34):405-433P
    [31]马忠诚.火灾后钢筋混凝土结构损伤评估与抗震修复.哈尔滨工业大学博士学位论文,1997:42-73页
    [32]时旭东,过镇海.高温下钢筋混凝土受力性能的试验研究.土木工程学报,2000,33(6):6-16页
    [33]姚亚雄,朱伯龙.钢筋混凝土框架结构抗火试验研究.同济大学学,1996,24(6):619-624页
    [34]Thelanderson S. Modeling of Combined Thermal and Mechanical Action in Concrete. Journal of Engineering Mechanics,1987,113(6):893-906 P
    [35]Castillo C, Durrani A J. Effect of Transient High Temperature on High Strength Concrete.ACI Materials Journal,1990,87(1):47-53P
    [36]Lie T T, Celikkol B. Method to Calculate the Fire Resistance of Circular Reinforced Concrete Columns. ACI Material Journal,1991,81 (1):84-91P
    [37]吕彤光,时旭东,过镇海.高温下Ⅰ-Ⅴ级钢筋的强度和变形试验研究.福州大学学报,1996,24:11-17页
    [38]杨建平,时旭东,过镇海.两种升温-加载途径下钢筋混凝土压弯构件受力性能的试验研究及分析.工程力学,2001,18(3):81-90页
    [39]Diederichs U, Schneider U. Bond Strength at High Temperature. Maga-zine of Concrete Research,1981(6):75-84P
    [40]王春华,程超.高温冷却后钢筋混凝土简支梁强度损伤的研究.西南交通大学学报,1992,2:65-74页
    [41]时旭东,过镇海.不同混凝土保护层厚度钢筋混凝土梁的耐火性能.工业建筑,1996,26(9):12-14页
    [42]陆洲导,朱伯龙,姚亚雄.钢筋混凝土框架火灾反应分析.土木工程学报,1995,28(6):18-27页
    [43]时旭东,李华东,过镇海.三面受火钢筋混凝土轴心受压柱的受力性能试验研究.建筑结构学报,1997,18(4):13-22页
    [44]韩玉来,王振清,王永军,白丽丽.火灾场下钢筋混凝土简支梁抗弯性能分析.海军工程大学学报,2007,19(1):1-5页
    [45]Chan Y N S, Peng G F, Anson J M. Fire behavior of high-Performance concrete made with silica fume at various moisture contents. ACI Materals Journal,1999,96(3):405-409P
    [46]Shirley T S, Burg G R, Fiorato E A. Fire endurance of high strength concrete slabs. ACI, ST,1977:211-224P
    [47]苏南,林铜柱,T.T.Lie.钢筋混凝土柱的抗火性能.土木工程学报,1992(6):25-36页
    [48]Crozier A D, Sanjayan G J. Tests of load-bearing slender reinforced concrete walls in fire. ACI Structural Journal,2000,97 (2):243-251P
    [49]时旭东,过镇海.高温下钢筋混凝土连续梁的受力性能试验研究.土木工程学报,1997,30(4):26-34页
    [50]时旭东,过镇海.高温下钢筋混凝土连续梁的破坏机构和内力重分布研究.建筑结构,1996(7):34-37页
    [51]时旭东,过镇海.高温下钢筋混凝土框架的受力性能试验研究.土木工程学报,2000,33(1):36-45页
    [52]Beeker J M, Bresler B. Reinforced Concrete Frames in Fires Enviro-rments. Journal of the Structural Division,1977,103(1):211-223P
    [53]李延和,闵明保.火灾后建筑结构受损程度的诊断方法.南京建工学院学报,1995,3:7-14页
    [54]Li G Q, Jiang S C. Prediction to Nonlinear of Steel Frames Subjected to Fire. Fire Safety Journal,1999,32:347-368P
    [55]王振清,韩玉来,苏娟,乔牧.钢筋混凝土梁火灾承载力及等效楼面荷载分析.武汉理工大学学报,2007,29(6):65-98页
    [56]刘永军.钢筋混凝土结构火灾反应数值模拟及软件开发.大连理工大学博士论文,2002:45-60页
    [57]刘永军,姚斌等.性能化结构抗火设计的若干关键问题.消防科学与技术.,2003,2(6):473-476页
    [58]白丽丽,王振清,韩玉来,朱大雷.高温后RC梁剩余承载力与可靠性分析.哈尔滨工程大学学报,2007,28(10):1084-1088页
    [59]Wang Z Q, Bai L L, Su J. Calculation on the residual capacity of RC member after high temperature. Proceedings of the international conference on health monitoring of structure, material and enviro-nment. Nanjing, China,2007(10):869-873P
    [60]闵明保,李延和,高本立.建筑结构火灾温度的判定方法.建筑结构,1994(1):37-42页
    [61]叶列平,赵树红,李全旺等.碳纤维布加固混凝土柱的斜截面受剪承载力计算.建筑结构学报,2000,21(2):59-67页
    [62]Xiao Y, Wu H. Compressive behavior of concrete confined by carbon fiber composite jackets. Journal of Materials in Civil Engineering, ASCE,2000,12(2):139-146P
    [63]Pantelides P C, Gergely J, Reaveley D L and Volnyy A V. Retrofit of RC bridge pier with CFRP advanced composites. Journal of Structu-ral Engineering, ASCE,1999,125(10):1094-1099P
    [64]吴刚,安琳,吕志涛.碳纤维布用于钢筋混凝土梁抗火加固的试验研究.建筑结构,2000,30(7):3-6页
    [65]吴波,李洪泉,欧进萍.地震后有损伤结构的耗能减震加固设计.世界地震工程,1995(2):1-7页
    [66]吴波,李慧,林力岩等.东北某政府大楼采用摩擦阻尼器进行抗震加固的研究.建筑结构学报,1998,19(5):28-36页
    [67]王亚勇,薛彦涛,欧进萍等.北京饭店等重要建筑的消能抗震加固设计方法.建筑结构学报,2001,22(2):35-39页
    [68]CENDAFTENV 1993, Eurocode 3:Design of steel structures, British Standards Institution,1995,7
    [69]BSI, Structural Use of Steelwork in Building, Part 8. Code of Practice for Fire Resistance Design,1990
    [70]孙金香,高伟译.建筑物综合防火设计.天津科技翻译出版公司,1992:682-686页
    [71]Lie T T, Irwin R J. Fire resistance of rectangular steel columns filled with bar-reinforced concrete. Journal of Structural Engine-ering.1995,121 (5):797-805P
    [72]李引擎,马道贞,徐坚.建筑结构防火设计计算和构造处理.北京:中国建筑工业出版社,1991:234-235页
    [73]ECCS, European Recommendations for the Fire Safety of Steel Stru-ctures,1983
    [74]Baldwin R and North M A. A Stress-Strain Relationships for Concrete at High Temperature. Magazine of Concrete Research,1973(12):208-211P
    [75]Malhotra H L. Three Decades of Structural Fire Safety an Historical Review. International Seminar on Three Decades of Structural Fire Safety,1983 (2):1-10P
    [76]Kirby B R. High temperature properties of hot-rolled structural steel for use in fire engineering design studies, Fire Safety Jou-rnal,1998(13):27-37P
    [77]Standards Australia, AS4100, Steel structures, Sydney,1990
    [78]徐彦,赵金城.Q235钢在不同应力-温度路径下材料性能的试验研究和本构关系.上海交通大学学报,2004,38(6):967-971页
    [79]李国强,蒋首超,林桂祥.钢结构抗火计算与设计.中国建筑工业出版社,1999:316-318页
    [80]陆洲导.钢筋混凝土梁对火灾反应的研究,同济大学博士学位论文,1989:42-44页
    [81]李华东.高温下钢筋混凝土压弯构件的试验研究.清华大学硕士论文,1994:69-76页
    [82]吕彤光.高温下钢筋的强度和变形试验研究.清华大学硕士学位论文,1996:33-41页
    [83]钱在兹,陈荣荣,张自坚.混凝土与钢筋经火烧后的物理力学特性.混凝土结构基本理论及应用第二届学术会论文集.1990:131-137页
    [84]中华人民共和国国家标准(GB50045-95).高层民用建筑设计防火规范.中国计划出版社,1992
    [85]Kodur V K R, Lie T T. Fire Resistance of Circular Steel Columns Filled with fiber-Reinforced Concrete. Journal of Structural Engineering,1996,122(7):776-783P
    [86]Joint Committee of Institution of Structural Engineer and Concrete Society. Design and detailing of concrete structures for fire resstance. Interim Guidance. London,1978:123-132P
    [87]Nechnech W, Meftah F, Reynouard J M. An elasto-plastic damage model for plain concrete subjected to high temperatures. Engineering Structures,2002,24(5):597-611P
    [88]Luccioni B M., Figuueroa M I., Danesi R F. Thermo-mechanic model for concrete exposed to elevated temperatures. Engineering Stru-ctures,2003,25(6):729-742P
    [89]Shi X D, Tan T H, Tan K H. Concrete Constitutive Relationships Under Different Stress-Temperature Paths. Journal of Structural Engine-ering,2002,128(12):1511-1518P
    [90]Pearce C J, Nielsen C V. Gradient enhanced thermo-mechanical damage model for concrete at high temperatures including transient thermal creep. International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(7-8):715-735P
    [91]王振清,苏娟,韩玉来,朱大雷.火灾下钢筋混凝土构件的弹塑性分析.武汉理工大学学报,2008,30(2):66-69页
    [92]王勖成,绍敏.有限单元法基本原理和数值方法(第二版).清华大学出版社,1997:226-230页
    [93]黄克智,黄永刚.固体本构关系.清华大学出版社,1999:13-36页
    [94]唐永进.高温结构热弹塑性-蠕变问题的有限元分析.清华大学博士论文.1991:26-33页
    [95]王小宁.高温结构热弹塑性-蠕变有限元分析简化方案的研究.清华大学博士论文.1994:44-53页
    [96]王勖成.有限单元法.清华大学出版社,2003:224-230页
    [97]高玉臣.固体力学基础.中国铁道出版社,1998:61-84页
    [98]Kang S H, Im Y T. Three-dimensional thermo-elastic-plastic finite element modeling of quenching process of plain carbon steel in couple with phase transformation. International Journal of Mecha-
    nical Sciences,2007(49):423-439P
    [99]Snyder M D, Bathe K J. Asolution procedure for thermo-elastic-plastic and creep problem. Nuclear Engineering Design,1981,64:49-80P
    [100]吴建营.基于损伤能释放率的混凝土弹塑性损伤本构模型及其结构非线性分析应用.上海同济大学博士论文,2004:136-169
    [101]Simo J C, Hughes T J R. Computational Inelasticity, Spring-Verla. New York,1998:126-138P
    [102]Gawin D, Pesavento F, Scherefler B A. Modelling of hygro-thermal behaviour and damage of concrete at temperature above the critical point of water. International Journal Numer. Anal. Meth. Geomech, 2002,26:537-562P
    [103]李荣涛.高温下混凝土中化学-热-湿-力学耦合过程的数值模拟及破坏分析.大连理工大学博士论文,2006
    [104]高立堂.无粘结预应力砼板火灾行为的试验研究及热弹塑性有限元分析.西安建筑科技大学博士论文,2003
    [105]王勖成,常亮明.各向同性硬化材料弹塑性本构关系的渐进积分及其计算精度.固体力学学报,1986(1):66-77页
    [106]Schneider U. Concrete at high temperature-general review. Fire Safety Journal,1988,13:55-68P
    [107]Kordina K, Ehm C, Schneider U.Effects of biaxial loading on the high temperature behavior of concrete, Proc. of 1st Int. Symposium on Fire Safety Science,1986:281-290P
    [108]Khoury G A, Sullivan P J E. Research at imperial college on the effect of elevated temperatures on concrete. Fire Safety Journal, 1988(13):69-72P
    [109]Gustaferro A H. Design implementation-concrete structures. Design of Structures Against Fire, Elsevier Applied Science Publishers Ltd,1986:126-137P
    [110]Lie T T, Lin T D. Influence of restraint on fire performance of reinforced concrete column. Proc. Of 1st Lnt. Symposium on Fire Safety Science,1986:291-300P
    [111]Haksever A. Comparison between measured and computed structural response of some reinforced concrete columns in fire. Fire Safety Journal,1981(82):293-297P
    [112]Haksever A, Ehm C. Application of biaxial concrete data for bearing members under fire attack. Fire Safety Journal,1987(12):109-119P
    [113]Purkiss J A, Caridge S L, Durkin P S. Calibration of simple methods of calculating the safety of flexural reinforced concrete members. Fire Safety Journal,1989(15):245-263P
    [114]Wang Y C. Analysis of reinforced concrete shell/plate strucrtures at elevated temperature. Building Reseach Establishment Note, BRE in U. K.,1992
    [115]Luccioni B M, Figueroa M I, Danesi R F. Thermo-mechanic model for concrete exposed to elevated temperatures. Engineering Structures, 2003(25):729-742P
    [116]Cai J, Burgess I, Plank R A. generalized steel/reinforced concrete beam-column element model for fire conditions. Engineering Stru-ctures,2003(25):817-833P
    [117]孙劲峰,时旭东,过镇海.三面受热钢筋混凝土梁在高温时和降温后力性能的试验研究.建筑结构,2002,32(1):34-36页
    [118]杨建平,时旭东,过镇海.高温下钢筋混凝土压弯构件极限承载力简化计算.建筑结构,2002,32(8):23-25页
    [119]吴波,马忠诚,欧进萍.火灾后钢筋混凝土压弯构件的抗震性能研究.地震工程与工程振动,1994,14(4):24-34页
    [120]胡克旭,朱伯龙.结构受火灾作用的全过程分析.四川建筑科学研究,1996,51(1):29-34页
    [121]吴波,马忠诚,欧进萍.火灾后钢筋混凝土结构的抗震性能研究.哈尔滨建筑大学学报,1996,29(1):9-16页
    [122]吴波,徐玉野.钢筋砼等肢T形柱的耐火极限研究.土木工程学报,2007,40(3):32-39页
    [123]吴波,徐玉野.钢筋砼L形柱的耐火极限研究.华南理工大学学报(自然科学版),2007,35(7):110-115页
    [124]韩林海.钢管混凝土轴心受压柱耐火极限的理论计算.哈尔滨建筑大学学报,1998,31(1):25-30页
    [125]杨华.火灾作用下(后)钢管混凝土柱力学性能全过程分析.哈尔滨工业大学博士论文,2003
    [126]Crozier A D, Sanjayan G J. Tests of load-bearing slender reinforced concrete walls in fire. ACI Structural Journal, 2000,97(2):243-251P
    [127]Xiao Y and Wu H. Compressive behavior of concrete confined by carbon fiber composite jackets. Journal of Materials in Civil Engineering, ASCE,2000,12 (2):139-146P
    [128]Tan K H, Yao Y.Fire Resistance of Four-Face Heatad Reinforced Concrete Columns. Journal of Structural Engineering,2003,129(9): 1220-1229P
    [129]Dotreppe J C, Fransse J M, Brul S A. Experimental research on the determination of the main parameters affecting the behaviour of reinforced concrete columns under fire conditions. Magazine of Concrete Research,1996,179(49):117-127P
    [130]Yao Y.Fire resistance of reinforced concret columns. Singapore: Nanyang Technological University,2002
    [131]Wood R H. Plastic and elastic design of slabs and plates. Thames and Hudson, London,1961:225-261P
    [132]Kemp K 0. Yield of a Square Reinforced Concrete Slab on Simple Supports, allowing for Membrane Forces. The Structural Engineer, 1967(45):235-240P
    [133]Bailey C G, Lennon T, Moore D B. The Behaviour of Full-scale Steel Framed Buildings Subjected to Compartment Fires. The Structural Engineer,1999(77):15-21P
    [134]Conner M A, Kirby B R, Martin D M. Behavior of a Multi-storey Composite Steel Framed Building in Fire, The Structural Engineer, 2003(81):27-36P
    [135]Bailey C G, Moore D B. The Structural Behavior of Steel Frames with Composite Floor Slabs Subject to Fire:Part1:Theory. The Structural Engineer,2000(78):19-27P
    [136]Huang Z, Burgess I W, Plank R J. Modelling of Six Full-scale Fire Tests on a Composite Building. The Structural Engineer,2002 (80): 30-37P
    [137]Gillie M, Usmani A S, Rotter J M. A Structural Analysis of the Cardington British Steel Corner Test. Journal of Constructional Steel Research,2002(58):427-442P
    [138]Elghazouli A Y, Izzuddin B A, Richardson A J. Numeric Modelling of the Structural Fire Behaviour of Composite Buildings. Fire Safety Journal,2000(35):279-297P
    [139]Cameron N J K, Usmani A S. New Design Method to Determine the Membrane Capacity of Laterally Restrained Composite Floor Slabs in Fire. Part 1:Theory and method. The Structural Engineer,2005 (83):28-33P
    [140]Bailey C G. Membrane Action of Unrestrained Lightly Reinforced Concrete Slabs at Large Displacements. Engineering Structures, 2001(23):470-483P
    [141]Bailey C G. Efficient Arrangement of Reinforcement for Membrane Behaviour of Composite Floor Slabs in Fire Conditions. Journal of Constructional Steel Research,2003(59):931-949P
    [142]Bailey C G. Membrane Action of Slab/Beam Composite Floor Systems in Fire.Engineering Structures,2004(26):1691-1703P
    [143]Bailey C G, White D S, Moore D B. The Tensile Membrane Action of Unrestrained Composite Slabs Simulated under Fire Conditions. Engineering Structure,2000(22):1583-1595P
    [144]Foster S J, Bailey C G, Burgess I W, Plank R J. Experimental Behaviour of Concrete Floor Slabs at Large Displacements. Engine-ering Structures,2004 (26):1231-1247P
    [145]Foster S J, Burgess I W, Plank R J. Experimental Behaviour of Model-scale Concrete Floor Slabs at Large Displacement and High Temperatures. Proceedings second international conference on steel and composite structures,2004:1268-1282P
    [146]Colin G, Bailey C G, Wee S T. Small-scale Concrete Slab Tests at Ambient and Elevated Temperatures. Engineering Structures,2007 (29):2775-2791P
    [147]Li G Q, Guo S X, Zhou H S. Modeling of Membrane Action in Floor Slabs Subjected to Fire. Engineering Structures,2007(29):880-887P
    [148]Dong Y L, Fan W C, Wang Q A and Yang B R. Unlinear Analysis of Reinforced Concrete Slab in Fire. Fire Safety Science,1997 (6):34-38P
    [149]Xu B Y, Liu X S. Application of Elastic-plastic Mechanics. Tsinghua, Beijing,1995:396-401P
    [150]Wang Z Q, Chow W K. A Node on Applying the Displacement Method in Assessing Fire Hazard of Glass Systems. Journal of applied fire science,2007(14):239-249
    [151]Lin T D, Zwiers R I, Shirley S T and Burg R G. Fire Test of Concrete Slab Reinforced with Epoxy-coated Bars. Journal of ACI Structure, 1989(86):156-162P
    [152]Huang Z H, Burgess I W and Plank R J. Modeling Membrane Action of Concrete Slabs in Composite Buildings in Fire. Ⅱ:Validations. Journal of Structural Engineering,2003(29):1103-1112P
    [153]Usmani A S, Cameron N J K. Limit Capacity of Laterally Restrained Reinforced Concrete Floor Slabs in Fire. Cement &Concrete Composites,2004,26(3):127-140P
    [154]Martin D M, Moore D B. Introduction and background to the research programme and major fire tests at BRE Carding. National Steel Construction Conference, London,1997(13-14):37-64P
    [155]陆洲导,李刚,许立新.无黏结预应力混凝土框架火灾下结构反应分析.土木工程学报,2003,36(10):30-35页
    [156]姚亚雄,朱伯龙.钢筋混凝土框架结构火灾反应分析.同济大学学报,1997,25(3):255-261
    [157]Vecchio F J, Sato J A. Thermal Gradient Effects in Reinforced Concrete Frame Structures. ACI Structure Journal,1990,87(3):262-275P
    [158]Vecchio F J. Nonlinear Analysis of Reinforced Concrete Frames Subjected to Thermal and Mechanical Loads. ACI Structure Journal, 1987,84(6):492-501P
    [159]皱银生,登济玉,涂文戈.火灾高温作用下钢筋混凝土框架梁温度内力实用计算方法.铁道科学与工程学报,2005,2(6):58-62页
    [160]阎继红.高温作用下混凝土材料性能试验研究及框架结构性能分析[D].天津大学,2000,12
    [161]伍永飞.钢筋混凝土框架结构静力非线性分析程序研制.同济大学,2007:80-89页
    [162]李晓东.H型截面钢框架抗火性能的试验研究及非线性有限元分析.西安建筑科技大学,2006:69-78页
    [163]偏心、受压构件强度专题研究组:钢筋混凝土偏心受压构件正截面强度的试验研究,钢筋混凝土研究报告选集2.中国建筑工业出版社,1981
    [164]胡海涛.高温时高强混凝土压弯构件的试验研究及理论分析西安建筑科技大学,2002:45-60页
    [165]张文福.单层钢管混凝土框架恢复力特性研究.哈尔滨工业大学博士学位论文,2000:32-40,58-79页
    [166]徐蕾.方钢管混凝土柱耐火性能及抗火设计方法研究.哈尔滨工业大学博士论文,2002:69-70页
    [167]舒兴平.钢框架弹塑性有限元变形理论分析及试验研究.湖南大学博士学位论文,1992:56-68
    [168]孟凡中.弹塑性有限元变形理论和有限元方法.清华大学出版社,1985:45-53页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700