MgB_2类似化合物的超导电性的第一性原理研究与新材料探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1911年Onnes首先在液态汞中发现超导电性以来,超导一直是人们研究的热点。2001年,日本科学家在二硼化镁(MgB_2)中发现了高达39K的超导电性,这又一次引起了人们对超导尤其是简单金属化合物中的超导电性研究的热潮。
     MgB_2中39K的超导电性及其潜在的应用前景提出了3个需要解决的问题:
     (1) 其超导本质是什么?
     (2) 具有类似结构的化合物中是否也存在超导电性?
     (3) 能不能通过掺杂使其超导转变温度或者超导性质得到提高或改善?
     目前,根据实验结果和第一性原理计算,MgB_2中超导电性的本质已经得到证实:MgB_2是一种由各向异性的强电子声子相互作用导致的二能隙超导体。但是,对于其类似化合物中超导电性的研究却还存在很多问题:许多简单金属二硼化物中不存在超导电性,关于过渡金属二硼化物中超导电性的实验报道则存在很多的分歧。另外,MgB_2的掺杂实验表明现有的掺杂不仅没有提高其超导转变温度,而且还提出了很多新的问题。为了解释这些实验现象,利用现在已较为成熟的第一性原理计算的方法,我们对MgB_2类似化合物的结构和电子结构进行了研究,并探讨了δ能带和E_(2g)模式声子之间的电声相互作用对类似化合物超导电性的影响。
     本论文共分为6个部分,主要内容如下:
     第一章首先简要介绍了超导发展的历史和MgB_2中超导电性的发现,然后详细地介绍了MgB_2中的超导电性的本质和目前MgB_2类似化合物中的超导电性的研究现状。MgB_2中的超导电性可以用Eliashberg超导理论得到很好的解释,但是对于MgB_2类似化合物(包括二硼化物和掺杂的MgB_2),实验结果表明其超导性质较MgB_2发生了很大的变化,而且不同的实验结果之间也存在分歧。
     第二章介绍了本文的理论基础和计算方法。首先简要概括了可以解释MgB_2中超导电性的Eliashberg超导理论,然后详细地介绍了密度泛函理论、密度泛函微扰理论以及平面波赝势的计算方法,最后对本文所用的近似方法和软件进行了简要的说明。
Superconductivity is one of the most interesting areas since it was first discovered in Mercury by Onnes in 1911. In 2001, superconductivity as high as 39K was revealed in Magnesium Diboride (MgB_2) by Japanese scientists, which stimulated significant interest in superconductivity, especially in related simple metal compounds.
    Superconductivity as high as 39K in MgB_2 and its potential applications raised three basic questions:
    (1) What's the origin of its relatively high superconductivity?
    (2) Is there superconductivity or even higher transition temperature in related materials?
    (3) Can its transition temperature and superconducting properties be improved by doping?
    At present, the origin of superconductivity in MgB_2 has been confirmed according to detailed experiments and first principles calculation: it is a kind of two gap superconductor where anisotropic electron-phonon interaction (EPI) dominates. However, there are lots of problems in researches on related materials: no superconductivity was found in other simple metal diboride and experimental reports on superconductivity in transition metal diboride usually don't agree; studies on the doping effects non only didn't verify its superconducting origin, but also bring about lots of new questions. In order to answer these questions, structure and electronic structure of MgB_2-related materials are investigated using first principles calculations, and further the effects of the electron-phonon interaction between σ band and E_(2g) phonon mode on superconductivity are discussed in related compounds. My thesis is divided into 6 parts, their main contents are summarized below: In chapter 1 the history of superconductivity and the discovery of superconductivity in MgB_2 are generally introduced, and then the current researches on the superconductivity in MgB_2 were discussed in detail. According to present researches, superconductivity in MgB_2 can be explained by Eliashberg theory, but the physical properties of related materials (including metal diboride and doped MgB_2) have changed very much compared to those of MgB_2. There are disagreements between different experimental results on the superconducting transition temperature of related materials, and there are no good theoretical explanations for those experimental results now.
引文
[1] H. K. Onnes, Commun. Phys. Lab. Univ. Leiden 120b, 122b, 124b, (1911).
    [2] B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit, and G. W. Hull, Jr. Superconductivity of Nb_3Ge, Phys. Rev. 139 (1965) A1501-A1503.
    [3] Beehgaard, C. S. Jacobsen, K. Mortensen, H. J. Pedersen, and N. Thorup, The properties of five highly conducting salts: (TMTSF)_2X, X = PF~(6-), AsF~(6-), SbF~(6-), BF~(4-) and NO~(3-), derived from tetramethyltetraselenafulvalene (TMTSF), Solid State Communications 33 (1980) 1119-1125.
    [4] See for example: Olah et al. Chlorination and Bromination of Fullerenes, Journal of he American Chemical Society, 113 (1991) 9385-9387. Sekine et al. Magnetic Behavior and Structure of the Halogen-Doped Fullerene C_(60), J. Appl. Phys. 72 (1992) 5448-5450.
    [5] J. G. Bednorz, K. A. Muller, Possible High Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B-Condensed Matter 64 (1986) 189-193.
    [6] P. Dai, B.C. Chakoumakos, G.F. Sun, K.W. Wong, Y. Xin, and D.F. Lu, Synthesis and Neutron Powder Diffraction Study of the Superconductor HgBa_2Ca_2Cu_3O_(8+δ) by T1 Substitution, Physica C 243 (1995) 201-206.
    [7] Gao L, Xue Y Y, Chu C W, et al. Superconductivity up to 164K in HgBa_2Ca_(m-1_Cu_mO_(2m+2) (m= 1, 2, 3) under quasihydrostatic pressures, Phys Rev B, 50 (1994) 4260~4263.
    [8] Y. Levi, O. Millo, A. Sharoni, Y. Tsabba, G. Leitus, S. Reich, Evidence for localized high-Tc superconducting regions on the surface of Na-doped WO_3, Europhysics Letters51(5) (2000) 564-570.
    [9] W. Grochala, A. Porch, P. P. Edwards, Meissner-Ochsenfeld superconducting anomalies in the Be-Ag-F system, Solid State Communications, 130 (2004) 137-142.
    [10] C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, P. Monthoux, Heavy-fermion superconductivity in CeCoIn_5 at 2.3 K, J. Phys.: Condens. Matter, 13(17) (2001) L337-L342.
    [11] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108 (1957) 1175-1224.
    [12] L. N. Cooper, Bound electrons pairs in a degenerate Fermi gas, Phys. Rev. 104 (1956) 1189-1190.
    [13] W. L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167 (1968) 331-344.
    [14] A. B. Migdal, Interaction between electrons and lattice vibrations in a normal metal, J. Exptl. Theoret. Phys. (U. S. S. R) 34, (1958) 1438-1446, Soviet Physics JETP 34 (1958) 996-1001.
    [15] G. M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, J. Exptl. Theoret. Phys. (U. S. S. R) 38 (1960) 966-976, Soviet Physics JETP 11 (1960) 696-702.
    [16] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39K in magnesium diboride, Nature 410, (2001) 63-64.
    [17] M. L. Cohen, P. W. Anderson, Comments on the maximum superconducting temperature, in: D. H. Douglass (Ed.) Superconductivity in d- and f- metals, AIP, New York 1972, p17. J. R. Schrieffer, Theory of Superconductivity, Perseus Books, Reading 1983.
    [18] Y. Wang, T. Plackowski, A. Junod, Specific heat in the superconducting and normal state (2-300K, 0-16T) and magnetic susceptibility of the 38K superconductor MgB_2, Physica C 355 (2001) 179-193.
    [19] F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, J. D. Jorgensen, Specific heat of Mg_(11)B_2: evidence for a second energy gap. Phys. Rev. Lett. 87 (2001) 047001-1-047001-4.
    [20] F. Bouquet, et al. Specific heat of single crystal MgB_2: a two-band superconductor with two different anisotropics. Phys. Rev. Lett. 89 (2002) 257001-1-257001-4.
    [21] H. D. Yang, J. -Y. Lin, H. H. Li, F. H. Hsu, C. J. Liu, S. -C. Li, R. -C. Yu, C. -Q. Jin, Order parameter of MgB_2: a fully gapped superconductor. Phys. Rev. Lett. 87. (2001)167003-1-167003-4.
    [22] F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D. X. Thanh, J. Klein, S. Miraglia, D. Fruchart, J. Marcus, Ph. Monod, Two-gap state density in MgB_2: a true bulk property or a proximity effect? Phys. Rev. Lett. 87 (2001) 177008-1-177008-4.
    [23] S. Tsuda, T. Yokoya, T. Kiss, Y. Takano, K. Togano, H. Kito, H. Ihara, S. Shin, Evidence for a multiple superconducting gap in MgB_2 from high-resolution photoemission spectroscopy. Phys. Rev. Lett. 87 (2001) 17700-1-177007-4.
    [24] P. Szabo, P. Samuely, J. Kacmarcik, T. Klein, J. Marcus, D. Fruchart, S. Miraglia, C. Marcenat, A. G. M. Jansen, Evidence for two superconducting energy gaps in MgB_2 by point-contact spectroscopy. Phys. Rev. Lett. 87 (2001) 137005-1-137005-4.
    [25]R. S. Gonnelli, et al. Direct evidence for two-band superconductivity in MgB_2 single crystals from directional point-contact spectroscopy in magnetic fields. Phys. Rev. Lett. 87 (2002) 247004.
    
    [26] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, L. L. Boyer, Superconductivity of metallic boron in MgB_2, Phys. Rev. Lett. 86, (2001) 4656-4659.
    
    [27] J. M. An, W. E. Pickett, Superconductivity of MgB_2: Covalent bonds driven metallic, Phys. Rev. Lett. 86. (2001) 4366-4369.
    
    [28] K. -P. Bohnen, R. Heid, B. Renker, Phonon dispersion and electron-phonon coupling in MgB_2 and AlB_2, Phys. Rev. Lett. 86. (2001) 5771-5774.
    
    [29] T. Yildirim, et al. Giant anharmonicity and nonlinear electron-phonon coupling in MgB_2: a combined first-principle calculation and neutron scattering study, Phys. Rev. Lett. 87. (2001) 037001-1-037001-4.
    
    [30] A. Y. Liu, I.I. Mazin, J. Kortus, Beyond Eliashberg superconductivity in MgB_2: anharmonicity, two-phonon scattering, and multiple gaps. Phys. Rev. Lett. 87. (2001) 087005-1-087005-4.
    
    [31] Y. Kong, O. V. Dolgov, O. K. Andersen, Electron-phonon interaction in the normal and superconducting states of MgB_2. Phys. Rev. B. 64 (2001) 020501-1- 020501-4.
    
    [32] H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, S. G. Louie, First principles calculation of the superconducting transition in MgB_2 within the anisotropic Eliashberg formalism. Phys. Rev. B. 66 (2002) 020513-1-020513-4.
    
    [33] H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, S. G. Louie, The origin of the anomalous superconducting properties of MgB_2, Nature 418. (2002) 758-760.
    
    [34] S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S. -G. Wang, H. Ding, A. Kaminski, J. C. Campuzano, S. Sasaki, K. Kadowaki, The origin of multiple superconducting gaps in MgB_2, Nature 423. (2003) 65-67.
    
    [35] A. A. Golubov, J. Kortus, O. V. Dolgov, O. Jepsen, Y. Kong, O. K. Andersen, B. J. Gibson, K. Ann, R. K. Kremer, Specific heat of MgB_2 in a one- and a two- band model from first principles calculations, J. Phys.: Condens. Matter, 14 (2002) 1353- 1360.
    
    [36] O. V. Dolgov, R. K. Kremer, J. Kortus, A. A. Golubov, S. V. Shulga, Thermodynamics of two-band superconductors: The case of MgB_2, Phys. Rev. B, 72 (2005) 024504-1-024504-11.
    
    [37] A. A. Golubov, A. Brinkman, O. V. Dolgov, J. Kortus, O. Jepsen, Multiband model for penetration depth in MgB_2, Phys. Rev. B 66 (2002) 054524-1-054524-5.
    [38] A. Brinkman, A. A. Golubov, H. Rogalla, O. V. Dolgov, J. Kortus, Y. Kong, O. Jepsen, O. K. Andersen, Multiband model for tunneling in MgB_2 junctions, Phys. Rev. B, 65 (2005)180517(R)-1-180517(R)-4.
    [39] A. Gurevich, Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors, Phys. Rev. B 67 (2003) 184515-1-184515-13.
    [40] A. A. Golubov, A. E. Koshelev, Upper critical field in dirty two-band superconductors: Breakdown of the anisotropic Ginzburg-Landau theory, Phys. Rev. B 68 (2003) 104503-1-104503-11.
    [41] B. B. Jin, T. Dahrn, A. I. Gubin, Eun-Mi Choi, H. J. Kim, S. Lee, W. N. Kang, N. Klein, Anomalous Coherence Peak in the Microwave Conductivity of c-Axis Oriented MgB_2 Thin Films, Phys. Rev. Lett. 91 (2003)127006-1-127006-4.
    [42] E. J. Nicol, J. P. Carbotte, Properties of the superconducting state in a two-band model, Phys. Rev. B 71 (2005) 054501-1-054501-18.
    [43] 《金属物理学》冯端等著 北京-科学出版社 1998.
    [44] http://www.supereonductors.org/Type2.htm
    [45] T. H. Geballe, B. T. Mattias, J. P. Remeika, A. M. Clogston, V. B. Compton, J. P. Maita, H. J. Williams, High-temperature sp-band superconductors, Physics 2(6) (1966) 293-310.
    [46] C. Buzea, T. Yamashita, Review of superconducting properties of MgB_2, Supercond. Sci. and Techn. 14 (2001) R115, and references therein.
    [47] S. L. Bud'ko, et al. Boron isotope effect in superconducting MgB_2, Phys. Rev. Lett. 86 (2001) 1877-1880.
    [48] D. G. Hinks, H. Claus, J. D. Jorgensen, The Complex nature of superconductivity in MgB_2 as revealed by the reduced total isotope effect, Naure 411, (2001) 457-460.
    [49] D. G. Hinks, J. D. Jorgensen, The isotope effect and phonons in MgB_2, Physica C, 385(2003)98-104.
    [50] H. Suhl, B. T. Matthias, L. R. Walker, Bardeen-Cooper-Schrieffer Theory of Superconductivity in the Case of Overlapping Bands, Phys. Rev. Lett. 3 (1959) 552-554.
    [51] J. Geerk, R. Schneider, G. Linker, A. G. Zaitsev, R. Heid, K. -P. Bohnen, H. v. Lohneysen, Observation of Interband Pairing interaction in a two-band superconductivity: MgB_2, Phys. Rev. Lett 94, (2005)227005-1-227005-4.
    [52] J. K. Hulm, B. T. Matthias, New borides and nitrides, Phys. Rev. 82 (1951) 273- 274.
    
    [53] W. T. Ziegler, R. A. Young, Studies of compounds for superconductivity, Phys. Rev. 90 (1953) 115-119.
    
    [54] A. S. Cooper, E. Corenzwit, L. D. Longinotti, B. T. Matthias, W. H. Zachariasen, Proc. Natl Acad. Sci. 67 (1970) 313.
    
    [55] G. V. Samsonov, I. M. Vinitsky, Refractory Compounds (1976).
    
    [56]L.Leyarovska, E. Leyarovski, J. Less-Common Met. 67, (1979) 249.
    
    [57] V. A. Gasparov, N. S. Sidorov, I.I. Zver'kova, M. P. Kulakov, Electron transport in diborides: observation of superconductivity in ZrB_2, JETP Letter 73(10) (2001) 532-535.
    
    [58] J. Akimitsu Annual Mtg of Physical Society of Japan 3 (2001) p533.
    
    [59] D. Kaczorowski, A. J. Zaleski, O. J. Zogal, J. Klamut, Incipient superconductivity in diborides, cond-mat/0103571 (2001)
    
    [60] R. Heid, B. Renker, H. Schober, P. Adelmann, D. Ernst, K. -P. Bohnen, Lattice dynamics and electron-phonon coupling in transition-metal diborides, Phys. Rev. B 67, (2003) 180510(R)-1-180510(R)-4.
    
    [61] I. Felner, Absence of superconductivity in BeB_2, Physica C 353 (2001) 11-13.
    
    [62] Y. G. Naidyuk, O. E. Kvitnitskaya, I. K. Yanson, S. L. Drechsler, G. Behr, S. Otani, Electron-phonon interaction in transition-metal diborides TB_2 ( T =Zr,Nb,Ta. Studied by point-contact spectroscopy, Phys. Rev. B 66 (2002) 140301(R)-1-140301- 4.
    
    [63] P. P. Singh, Theoretical study of electron-phonon interaction in ZrB_2 and TaB_2, Phys. Rev. B 69 (2004) 094519-1-094519-5, and references therein.
    
    [64] F. N. Islam, A. K. M. A. Islam, Occurrence of superconductivity in diboride of Zr, Physica C 426-431 (2005) 464-468.
    
    [65] R. Escamilla, O. Lovera, T. Akachi, A. Duran, R. Falconi, F. Morales, R. Escudero, Crystalline structure and the superconducting properties of NbB_(2+x), J- Phys.: Condens. Matter 16 (2004) 5979-5990, and references therein.
    
    [66] C. A. Nunes, D. Kaczorowski, P. Rogl, M. R. Baldissera, P. A. Suzuki, G. C. Coelho, A. Grytsiv, G. Andre", F. Bouree S. Okada, The NbB_2-phase revisited: homogeneity range, defect structure, superconductivity, Acta Materials, 53 (2005) 3679-3687.
    
    [67] T. Takahashi, S. kawamata, S. Noguchi, T. Ishida, Superconductivity and crystal growth of NbB_2, Physica C426-431(2005) 478-481.
    [68] P. de la Mora P, M.. Castro, G. Tavizon, Comparative study of the electronic structure of alkaline-earth borides (MeB_2; Me=Mg, Al, Zr, Nb, and Ta) and their normal-state conductivity, Journal of Solid State Chemistry, 169 (2002) 168-175.
    [69] J. E. Hirsch, Hole Superconductivity in MgB_2: a high Tc cuprate without Cu, Phys. Lett. A 282 (2001) 392-398.
    [70] P. P. Singh, Role of Boron p-Electrons and Holes in Superconducting MgB_2, and other Diborides: A Fully-Relaxed, Full-Potential Electronic Structure Study, Phys. Rev. Lett. 87 (2001)087004-1-087004-4.
    [71] P. Ravindran, P. Vajeeston, R. Vidya, A. Kjekshus, H. Fjellvag, Detailed electronic structure studies on superconducting MgB_2 and related compounds, Phys. Rev. B 64 (2001)224509-1-224509-15.
    [72] G. Satta, G. Profeta, F. Bernardini, A. Continenza, S. Massidda Electronic and structural properties of superconducting dibofides and calcium disilicide in the AlB_2 structure, cond-mat/0102358.
    [73] G. Satta, G. Profeta, F. Bemardini, A. Continenza, S. Massidda, Electronic and structural properties of superconducting MgB_2, CaSi_2, and related compounds, Phys. Rev. B64 (2001)104507-1-104507-9.
    [74] N. I. Medvedeva, A. L. Ivanovskii, J. E. Medvedeva, A. J. Freeman, Electronic structure of superconducting MgB_2 and related binary and ternary borides, Phys. Rev. B64 (2001) 20502-1-20502-4.
    [75] P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamanil, Electronic structure, bonding, and ground-state properties of AlB_2-type transition-metal diborides, Phys. Rev. B63 (2001) 045115-1-045115-12.
    [76] G. Profeta, A. Continenza, F. Bemardini, S. Massidda, MgB_2 and BeB_2: A comparative study of their electronic and superconducting properties, Phys. Rev. B 65 (2001)054502-1-054502-7.
    [77] R. Heid, B. Renker, H. Schober, P. Adelmann, D. Ernst, K. -P. Bohnen, Lattice dynamics and electron-phonon coupling in transition-metal diborides, Phys. Rev. B67(2003)180510(R)-1-180510-4.
    [78] P. P. Singh Electron-phonon interaction in NbB_2: a comparison with MgB_2, Solid state communications 125 (2003) 323-326.
    [79] R. J. Cava, H. W. Zandbergen, K. Inumaru, The substitutional chemistry of MgB_2, Physica C, 385 (2003)8-15, and references therein.
    [80] M. R. Cimberle, M. Novak, P. Manfrinetti, A. Palenzona, Magnetic characterization of sintered MgB_2 samples: effect of the substitution or doping with Li, Al and Si, cond-mat/0105212.
    
    [81] T. Takenobu, T. Itoh, D. H. Chi, K. Prassides, Y. Iwasa, Interlayer carbon substitution in the MgB_2 superconductor, cond-mat/0103241.
    
    [82] A. A. Golubov, I. I. Mazin, Effect of magnetic and nonmagnetic impurities on highly anisotropic superconductivity, Phys. Rev. B 55, (1997) 15146-15152.
    
    [83] M. Putti, M. Affronte, P. Manfrinetti, A. Palenzona, Effects of Al doping on the normal and superconducting properties of MgB_2: A specific heat study, Phys. Rev. B 65 (2003) 094514-1-094514-6, and references therein.
    
    
    [84] J. Karpinski, N. D. Zhigadlo, G. Schuck, S. M. Kazakov, B. Batlogg, K. Rogacki, R. Puuzniak, J. Jun, E. Muller, P. Wagli, R. Gonnelli, D. Daghero, G. A. Ummarino, V. A. Stepanov, Al substitution in MgB_2 single crystals: influence on superconducting and structural properties, Phys. Rev. B 71 (2005) 174506-1-174506-15, and references therein.
    
    [85] R. H. T. Wilke, S. L. Bud'ko, P. C. Canfield, D. K. Finnemore, R. J. Suplinskas, S. T. Hannahs, System effects of Carbon doping on the superconducting properties of Mg(Bl-xCx)2, Phys. Rev. Lett. 92 (2004) 217003-1-217003-4.
    
    [86] T. Masui, S. Lee, S. Tajima, Carbon-substitution effect on the electronic properties of MgB_2 single crystals, Phys. Rev. B 70 (2004) 024504-1-024504-4.
    
    [87] S. M. Kazakov, R. Puzniak, K. Rogacki, A. V. Mironov, N. D. Zhigadlo, J. Jun, Ch. Soltmann, B. Batlogg, J. Karpinski, Carbon substitution in MgB_2 single crystals: structural and superconducting properties, Phys. Rev. B 71 (2005) 024533-1-024533- 10, and references therein.
    
    [88] R. S. Gonnelli, D. Daghero. G. A. Ummarino. A. Calzolari, V. Dellarocca, V. A. Stepanov, S. M. Kazakov, J. Jun, J. Karpinski, A point-contact study of the superconducting caps in Al-substituted and C-substituted MgB_2 single crystals, Phys. Rev. B 71 (2005) 060503-1-060503-4, and references therein.
    
    [89] I.I. Mazin, O. K. Anderson, O. Jepsen, O. V. Dolgov, J. Kortus, A. A. Golubov, A. B. Kuz'menko, D. Van der Marel, Superconductivity in MgB_2: Clean or Dirty? Phys. Rev. Lett. 89 (2002) 107002-1-107002-4.
    
    [90] J. Kortus, O. V. Dolgov, R. K. Kremer, A. A. Golubov, Band Filling and Interband Scattering Effects in MgB_2: Carbon versus Aluminum Doping, Phys. Rev. Lett 94 (2005) 027002-1-027002-4. P. Samuely, P. Szabo, P. C. Canfield, S. L. Bud'ko, Comment on "Band Filling and Interband Scattering Effects in MgB_2: Carbon versus Aluminum Doping", Phys. Rev. Lett 95 (2005)099701-1. J. Kortus, O. V. Dolgov, R. K. Kremer, A. A. Golubov, Kortus et al. Reply:, Phys. Rev. Lett. 95 (2005)099702-1.
    [91] A. V. Sologubenko, N. D. Zhigadlo, S. M. Kazakov, J. Karpinski, H. R. Ott, Influence of carbon substitution on the heat transport in single crystalline MgB_2, Phys. Rev. B71 (2005)020501(R)-1-020501-4.
    [92] M. Angst, S. L. Bud'ko, R. H. T. Wilke, P. C. Canfield, Difference between Al and C doping in anisotropic upper critical field development in MgB_2, Phys. Rev. B 71(2005)144512-1-144512-6.
    [93] M. Ortolani, D. Di Castro, P. Postorino, I. Pallecchi, M. Monni, M. Putti, P. Dore, Clean and dirty superconductivity in pure, Al-doped, and neutron irradiated MgB_2: A far-infrared study, Phys. Rev. B71 (2005) 172508-1-172508-4.
    [94] S. Tsuda, T. Yokoya, T. Kiss, T. Shimojima, S. Shin, T. Togashi, S. Watanabe, C. Zhang, C. T. Chen, S. Lee, H. Uchiyama, S. Tajima, N. Nakai, K. Machida, Carbonsubstitution dependent multiple superconducting gap of MgB_2: A sub-meV resolution photoemission study, Phys. Rev. B72 (2005) 064527-1-064527-5.
    [95] Y. Wang, F. Bouquet, I. Sheikin, P. Toulemonde, B. Revaz, M. Eisterer, H. W. Weber, J. Hinderer, A. Junod, Specific heat of MgB_2 after irradiation, J. Phys.: Condens. Matter 15 (2003) 883-893.
    [96] M. Putti, M. Affronte, C. Ferdeghini, P. Manfrinetti, C. Tarantini, E. Lehmann, Observation of the Crossover from Two-Gap to single-gap superconductivity through specific heat measurements in neutron-irradiated MgB_2, Phys. Rev. Lett, 96 (2006) 077003-1-077003-4.
    [97] J. S. Ahn, Y. -J. Kim, M. -S. Kim, S. -I. Lee, E. J. Choi, Structural and superconducting properties of MgB_(2-x)Be_x, Phys. Rev. B 65 (2002) 172503-1-172503-4..
    [98] J. S. Ahn, E. S. Choi, W. Kang, D. J. Singh, M. Han, E. J. Choi, Thermoelectric power of MgB_(2-x)Be_x, Phys. Rev. B 65 (2002) 214534-1-214534-5.
    [99] W. Du, H. B. Zhang, D. Xu, X. Q. Wang, X. Q. Hou, G. H. Zhang, Y. L. Geng, H. Y. Liu, F. Y. Jiang, Y. L. Wang, Edge dislocation and superstructure in MgB_2 superconducting crystals, Supercond. Sci. Technol. 18 (2005) 1513-1516.
    [100] A. Serquis, Y. T. Zhu, E. J. Peterson, J. Y. Coulter, D. E. Peterson, F. M. Mueller, Effect of lattice strain and defects on the superconductivity of MgB_2, Appl. Phys. Lett. 79 (2001) 4399-4401.
    
    [101] Wei Du, Dong Xu, Hongbin Zhang, Xinqiang Wang, Guanghui Zhang, Xianqin Hou, Heyi Liu, Yanling Wang, Single crystal growth or MgB_2 by using Mg-Self-Flux method at ambient pressure, Journal of Crystal Growth 268 (2004) 123-127.
    [1] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108 (1957) 1175-1224.
    [2] 超导电性导论(美)M.廷哈姆 著 北京-科学出版社 1985.
    [3] W. L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167 (1968) 331-344.
    [4] G. M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, J. Exptl. Theoret. Phys. (U. S. S. R) 38 (1960) 966-976, Soviet Physics JETP 11 (1960) 696-702.
    [5] A. B. Migdal, Interaction between electrons and lattice vibrations in a normal metal, J. Exptl. Theoret. Phys. (U. S. S. R) 34, (1958) 1438-1446, Soviet Physics JETP 34 (1958) 996-1001.
    [6] The electron-phonon interaction in metals G. Grimvall, NORTH-HOLLAND PUBLISHING CO. AMSTERDAM, NEW YORK, OXFORD, 1981.
    [7] P. B. Allen, R. C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 12 (1975) 905-922.
    [8] J. P. Carbotte Properties of boson-exchange superconductors, Rev. Mod. Phys. 62 (1990) 1027-1157.
    [9] M. Bohn, K. Huang, Dynamical Theory of Crystal Lattices. Oxford: Oxford University Press, 1954.
    [10] 谢希德,陆栋,固体能带理论,复旦大学出版社 1998.
    [11] D. R. Hartree, Proc. Cam. Phil. Soc. 24 (1928) 89.
    [12] V. Z. Fock, Z. Phys. 61 (1931)209.
    [13] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) 864-871.
    [14] W. Kohn, L. J. Shan, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) 1133-1138.
    [15] U. von Barth, L. Hedin, J Phys C 5 (1972) 1629.
    [16] E. P. Wigner, On the Interaction of Electrons in Metals, Phys. Rev. 46 (1934) 1002-1011.
    [17] L. Hedin, B. I. Lundqvist, J. Phys. C 4 (1971) 2064.
    [18] J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981) 5048-5079.
    [19] J. P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54 (1996) 16533-16539.
    [20] R. O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61 (1989) 689-746.
    [21] J. P. Perdew, Y, Wang, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys Rev B 33 (1986) 8800-8802; Ibid. B 40 (1989) 3399.
    [22] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868, ibid. Phys. Rev. Lett. 78 (1997) 1396.
    [23] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 3098-3100. J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 33 (1986) 8822-8824, Phys. Rev. B 34 (1986) 7406.
    [24] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 3098-3100. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785-789.
    [25] J. P. Perdew, K. Burke, Comparison Shopping for a Gradient-Corrected Density Functional, Int. J. Quantum Chem. S 57 (1996) 309-319.
    [26] S. Kurth, J. P. Perdew, P. Blaha, Molecular and Solid-State Tests of Density Functional Approximations: LSD, GGAs, and Meta-GGAs, International Journal of Quantum Chemistry, 75 (1999) 889-909.
    [27] M. D. Stiles Generalized Slater-Koster method for firing band structures, Generalized Slater-Koster method for fitting band structures, Phys. Rev. B 55 (1997) 4168-4173.
    [28] for a review see: M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045-1097.
    [29] H. L. Skriver, The LMTO Method, Springer-Verlag 1984.
    [30] J. C. Phillips, Energy-Band Interpolation Scheme Based on a Pseudopotential, Phys. Rev. 112 (1958) 685-695. V. Heine, The Pseudopotential Concept, Solid State Physics 24, p1-36, Ed. Ehrenreich, Seitz, Turnbull (Academic Press, New York, 1970).
    
    [31] D. R. Hamann, Generalized norm-conserving pseudopotentials, Phys. Rev. B 40 (1989) 2980-2987.
    
    [32] N. Troullier, J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993-2006.
    
    [33] D. R. Hamann, M. Schluter, C. Chiang, Norm-Conserving Pseudopotentials, Phys. Rev. Lett. 43 (1979) 1494-1497.
    
    [34] S. G. Louie, S. Froyen, M. L. Cohen, Nonlinear ionic pseudopotentials in spin-density-functional calculations, Phys. Rev. B 26 (1982) 1738-1742.
    [35] L. Kleinman, D. M. Bylander, Efficacious Form for Model Pseudopotentials, Phys. Rev. Lett. 48 (1982) 1425-1428.
    
    [36] M. Fuchs. M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Computer physics communications 119 (1999) 67-98 and references therein.
    [37] See for example: M. T. Yin, M. L. Cohen, Microscopic Theory of the Phase Transformation and Lattice Dynamics of Si, Phys. Rev. Lett. 45 (1980) 1004-1007; A. Fleszar, R. Resta, Dielectric matrices in semiconductors: A direct approach, Phys. Rev. B 31 (1985) 5305-5310.
    
    [38] See for example: P. E. Van Camp, V. E. Van Doren, J. T. Devreese, Microscopic Screening and Phonon Dispersion of Silicon: Moment Expansion for the Polarizability, Phys. Rev. Lett. 42 (1979) 1224-1227; M. S. Hybertsen, S. G. Louie, Phys. Rev. B 35 (1987) 5585-5601.
    
    [39] X. Gonze, First-principles responses of solids to atomic displacements and homogeneous electric fields: implementation of a conjugate-gradient algorithm, Phys. Rev. B 55 (1997) 10337-10354.
    
    
    [40] S. Baroni, P. Giannozzi, A. Testa, Green's-function approach to linear response in solids, Phys. Rev. Lett. 58 (1987) 1861-1864; P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni, Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B 43 (1991) 7231-7242.
    
    [41] See for example: D. Kh. Blat, N. E. Zein, V. I. Zinenko, Calculations of phonon frequencies and dielectric constants of alkali hydrides via the density functional method, J. Phys. Condens. Matter 3 (1991) 5515-5524; A. Y. Liu, A. A. Quong, Linear-response calculation of electron-phonon coupling parameters, Phys. Rev. B 53 (1996)R7575-R7579.
    
    [42] S. Yu. Savrasov, Linear-response calculations of lattice dynamics using muffin- tin basis sets, Phys. Rev. Lett. 69 (1992) 2819-2822; S. Yu. Savrasov, Linear-response theory and lattice dynamics: A muffin-tin-orbital approach, Phys. Rev. B 54 (1996) 16470-16486.
    
    [43] C. -Z. Wang, R. Yu, H. Krakauer, Pressure dependence of Born effective charges, dielectric constant, and lattice dynamics in SiC, Phys. Rev. B 53 (1996) 5430-5437.
    
    [44] For a review, see X. Gonze, Adiabatic density-functional perturbation theory, Phys. Rev. A 52 (1995) 1096-1114.
    
    [45] S. Baroni, S. De Gironcoli, A. D. Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001)515-562.
    
    [46] H. Hellmann, Einfuhrung in die Quantenchemie (1937) Deuticke, Leipzig.
    [47] R. P. Feynman, Forces in Molecules, Phys. Rev. 56 (1939) 340-343.
    [48] S. Y. Savrasov, D. Y. Savrasov, O. K. Anderson, Linear-response calculations of electron-phonon interaction, Phys. Rev. Lett. 72 (1994) 372-375; S. Y. Savrasov, D. Y. Savrasov, Electron-phonon interactions and related physical properties of metals from linear-response theory, Phys. Rev. B 54 (1996) 16487-16501.
    [49] J. M. An, W. E. Pickett, Superconductivity of MgB_2: covalent bonds driven metallic, Phys. Rev. Lett. 86 (2001) 4366-4369; G. Profeta, A. Continenza, F. Bernardini, S. Massidda, MgB_2 and BeB_2 : A comparative study of their electronic and superconducting properties, Phys. Rev. B 65 (2001) 054502-1-054502-7.
    [50] F. S. Kahn, P. B. Allen, Deformation potentials and electron-phonon scattering: Two new theorems, Phys. Rev. B 29 (1984) 3341-3349.
    
    [51] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan, First-principles computation of material properties : the ABINIT software project.Computational Materials Science 25 (2002) 478-492. X. Gonze, G. -M. Rignanese, M. Verstraete, J. -M. Beuken, Y. Pouillon, R. Caracas, F. Joliet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, and D.C. Allan, A brief introduction to the ABINIT software package, Zeit. Kristallogr. 220 (2005) 558-562. http://www.abinit.org/ABINIT/Infos/acknowledgments.html
    [52] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Foeher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, http://www.pwsef.org/.
    [1] See for example: J. K. Hulm, B. T. Matthias, New borides and nitrides, Phys. Rev. 82 (1951) 273-274; W. T. Ziegler, R. A. Young, Studies of compounds for superconductivity, Phys. Rev. 90 (1953) 115-119; A. S. Cooper, E. Corenzwit, U D. Longinotti, B. T. Matthias, W. H. Zachariasen, Proc. Natl Acad. Sci. 67 (1970) 313; G. V. Samsonov, I. M. Vinitsky, Refractory Compounds (1976); L. Leyarovska, E. Leyarovski, J. Less-Common Met. 67, (1979) 249.
    [2] C. Buzea, T. Yamashita, Review of superconducting properties of MgB_2, Supercond. Sci. and Techn. 14 (2001) R115, and references therein
    [3] I. Felner, Absence of superconductivity in BeB_2, Physica C 353 (2001) 11-13.
    [4] V. A. Gasparov, N. S. Sidorov, I. I. Zver'kova, M. P. Kulakov, Electron transport in diborides: observation of superconductivity in ZrB2, JETP Letter 73(10) (2001) 532-535.
    [5] D. Kaczorowski, A. J. Zaleski, O. J. Zogal, J. Klamut, Incipient superconductivity in diborides, cond-mat/0103571 (2001).
    [6] J. Akimitsu Annual Mtg of Physical Society of Japan 3 (2001) p533.
    [7] See for example: A. Y. Liu, I. I. Matin, J. Kortus, Beyond Eliashberg superconductivity in MgB_2: anharmonicity, two-phonon scattering, and multiple gaps. Phys. Rev. Lett. 87. (2001) 087005-1-087005-4; Y. Kong, O. V. Dolgov, O. K. Andersen, Electron-phonon interaction in the normal and superconducting states of Mg B_2. Phys. Rev. B. 64. (2001) 020501-1-020501-4; H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, S. G. Louie, First principles calculation of the superconducting transition in MgB_2 within the anisotropic Eliashberg formalism. Phys. Rev. B. 66. (2002) 020513-1-020513-4; H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, S. G. Louie, The origin of the anomalous superconducting properties of Mg B_2, Nature 418. (2002) 758-760; J. Kortus, I. I. Mazin, K. D. Belashehenko, V. P. Antropov, L. L. Boyer, Superconductivity of metallic boron in MgB_2, Phys. Rev. Lett. 86 (2001) 4656-4659; J. M. An, W. E. Pickett, Superconductivity of Mg B_2: Covalent bonds driven metallic, Phys. Rev. Lett. 86. (2001) 4366-4369.
    [8] P. de la Mora P, M. Castro, G. Tavizon, Comparative study of the electronic structure of alkaline-earth borides (MeB_2; Me=Mg, Al, Zr, Nb, and Ta) and their normal-state conductivity, Journal of Solid State Chemistry, 169 (2002) 168-175.
    [9] J. E. Hirsch, Hole Superconduetivity in Mg B_2: a high Te euprate without Cu, Phys. Lett. A 282 (2001) 392-398.
    [10] P. P. Singh, Role of Boron p-Electrons and Holes in Superconducting Mg B_2, and other Diborides: A Fully-Relaxed, Full-Potential Electronic Structure Study, Phys. Rev. Lett. 87 (2001)087004-1-087004-4.
    [11] P. Ravindran, P. Vajeeston, R. Vidya, A. Kjekshus, H. Fjellvag, Detailed electronic structure studies on superconducting MgB_2 and related compounds, Phys. Rev. B 64 (2001) 224509-1-224509-15.
    [12] G. Profeta, A. Continenza, F. Bernardini, S. Massidda, MgB_2 and BeB_2: A comparative study of their electronic and superconducting properties, Phys. Rev. B 65 (2001) 054502-1-054502-7.
    [13] G. Satta, G. Profeta, F. Bemardini, A. Continenza, S. Massidda Electronic and structural properties of superconducting diborides and calcium disilieide in the AlB_2 structure, cond-mat/0102358.
    [14] G. Satta, G. Profeta, F. Bemardini, A. Continenza, S. Massidda, Electronic and structural properties of superconducting Mg B_2, CaSi_2, and related compounds, Phys. Rev. B 64 (2001) 104507-1-104507-9.
    [15] R. Heid, B. Renker, H. Schober, P. Adelmann, D. Ernst, K. -P. Bohnen, Lattice dynamics and electron-phonon coupling in transition-metal diborides, Phys. Rev. B 67 (2003) 180510(R)-1-180510-4.
    [16] N. I. Medvedeva, A. L. Ivanovskii, J. E. Medvedeva, A. J. Freeman, Electronic structure of superconducting MgB_2 and related binary and ternary borides, Phys. Rev. B64 (2001) 20502-1-20502-4.
    [17] P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamanil, Electronic structure, bonding, and ground-state properties of AlB_2-type transition-metal diborides, Phys. Rev. B 63 (2001) 045115-1-045115-12.
    [18] X. Gonze, J. -M. Beuken, R. Caracas, F. Detraux, M. Fuehs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Joliet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J. -Y. Raty, D. C. Allan. First-principles computation of material properties: the ABINIT software project. Computational Materials Science 25 (2002) 478-492. X. Gonze, G. -M. Rignanese, M. Verstraete, J. -M. Beuken, Y. Pouillon, R. Caracas, F. Joliet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J. -Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Harnann, and D. C. Allan, A brief introduction to the ABINIT software package, Zeit. Kristallogr. 220 (2005) 558-562. http://www.abinit.org/ABINIT/lnfos/aeknowledgments.html
    [19] S. Baroni, A. Dal Corso', S. de Gironcoli, P. Giarmozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, http://www.pwscf.org/.
    [20] H. J. Monkhorst, J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.
    [21] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992)13244-13249.
    [22] N. Troullier, J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993-2006.
    [23] J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981) 5048-5079.
    [24] S. G. Louie, S. Froyen, M. L. Cohen, Nonlinear ionic pseudopotentials in spindensity-functional calculations, Phys. Rev. B 26 (1982) 1738-1742.
    [25] Natl. Bur. Stand. [U. S. ] Monogr. 25, 17, 66 (1980).
    [26] A. Yamamoto, C. Takao, T. Masui, M. Izumi, S. Tajima, High-pressure synthesis of superconducting Nb{1-x}B_2 (x=0-0.48) with the maximum Tc=9.2 K, cond-mat/0208331.
    [27] http://physics.nist.gov/physrefdata/elements/cover.html
    [28] C. G. Broyden, The Convergence of a Class of Double-Rank Minimization Algorithms 2, The New Algorithm. J. of the Inst. for Math. and Applications, 6 (1970) 222-231; R. Fletcher, A New Approach to Variable-Metric Algorithms, Computer Journal, 13 (1970) 317-322; D. Goldfarb, A Family of Variable-Metric Algorithms Derived by Variational Means, Mathematics of Computation, 24 (1970) 23-26; D. F. Shanno, Conditioning of Quasi-Newton Methods for Function Minimization, Mathematics of Computation, 24 (1970) 647-656.
    [29] W. N. Kang, C. U. Jung, K. H. P. Kim, M. S. Park, S. Y. Lee, H. J. Kim, E. M. Choi, K. H. Kim, M. S. Kim, S. I. Lee, Hole carrier in MgB_2 characterized by Hall Measurements, Appl. Phys. Lett. 79 (2001) 982-984.
    [30] H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, S. G. Louie, The origin of the anomalous superconducting properties of MgB2, Nature 418. (2002) 758-760.
    [31] J. Kortus, I.I. Mazin, K. D. Belashchenko, V. P. Antropov, L. L. Boyer, Superconductivity in metallic Boron in MgB_2, Phys. Rev. Lett. 86 (2001) 4656-4659.
    [32] T. Yildirim, O. Gulseren, J. W. Lynn, C. M. Brown, T. J. Udovic, H. Z. Qing, N. Rogado, K. A. Regan, M. A. Hayward, J. S. Slusky, T. He, M. K. Haas, P. Khalifah, K. Inumaru, R. J. Cava, Giant anharmonicity and non-linear electron-phonon coupling in MgB_2: Combined first-pdciples calculations and neutron scattering study, condmat/0103469.
    [33] L. Boeri, G. B. Bachelet, E. Cappelluti, L. Pietronero, Small Fermi energy and phonon anharmonicity in MgB_2 and related compounds, Phys. Rev. B 65 (2002) 214501-1-214501-4.
    [34] J. M. An, W. E. Pickett, Superconductivity of MgB_2: covalent bonds driven metallic, Phys. Rev. Lett. 86 (2001) 4366-4369.
    [35] D. E. Sands, C. F. Cline, A. Zalkin, C. L. Hoenig, The beryllium-boron system, Acta Cryst. 14 (1981) 309-310.
    [36] J. Y. Chan, F. R. Fronczek, D. P. Young, J. F. DiTusa, P. W. Adams, Synthesis, Structure, and Superconductivity in Be_(1.09)B_3, Journal of Solid State Chemistry 163 (2002) 385-389.
    [37] D. P. Young, R. G. Goodrich, P. W. Adams, J. Y. Chan, F. R. Fronczek, F. Drymiotis, L. L. Henry, Superconducting properties of Be_(B2.75), Phys. Rev. B 65 (2002) 180518(R)-1-180518-3.
    [38] P. P. Singh, Electron-phonon interaction in NbB_2: a comparison with MgB_2, Solid State Communications 125 (2003) 323-326.
    [39] P. P. Singh, Acoustic-mode-driven electron-phonon coupling in transition-metal diborides, Phys. Rev. B 67 (2003) 132511-1-132511-4.
    [40] C. Buzea, T. Yamashita, Review of superconductivity properties of MgB_2, Superconductors, Science & Technology, 14 (2001) R115, 1-35.
    [41] R. Escamilla, O. Lovera, T. Akachi, A. Duran, R. Falconi, F. Morales, R. Escudero, Crystalline structure and the superconducting properties of NbB_(2+x), J. Phys.: Condens. Matter 16 (2004) 5979-5990.
    [42] C. A. Nunes, D. Kaczorowski, P. Rogl, M. R. Baldissera, P. A. Suzuki, G. C. Coelho, A. Grytsiv, G. Andre, F. Bouree, S. Okada, The Nb B_2-phase revisited: homogeneity range, defect structure, superconductivity, Acta Materials, 53 (2005) 3679-3687.
    [43] T. Takahashi, S. kawamata, S. Noguchi, T. Ishida, Superconductivity and crystal growth of NbB_2, Physica C 426-431 (2005) 478-481.
    [44] 金属与合金的超导电性 让纳(GENNES,P.G.DE)著 北京 科学出版社1980
    [1] R. J. Cava, H. W. Zandbergen, K. Inumaru, The substitutional chemistry of MgB_2, Physica C 385 (2003) 3-15.
    [2] M. R. Cimberle, M. Novak, P. Manfrinetti, A. Palenzona, Magnetic characterization of sintered MgB_2 samples: effect of the substitution or doping with Li, Al and Si, cond-mat/0105212.
    [3] M. Putti, M. Affronte, P. Manfrinetti, A. Palenzona, Effects of Al doping on the normal and superconducting properties of MgB_2: A specific heat study, Phys. Rev. B 65 (2003) 094514-1-094514-6, and references therein.
    [4] J. Karpinski, N. D. Zhigadlo, G. Schuck, S. M. Kazakov, B. Batlogg, K. Rogacki, R. Puuzniak, J. Jun, E. Muller, P. Wagli, R. Gonnelli, D. Daghero, G. A. Ummarino, V. A. Stepanov, Al substitution in MgB_2 single crystals: influence on superconducting and structural properties, Phys. Rev. B 71 (2005) 174506-1-174506-15, and references therein.
    [5] T. Takenobu, T. Itoh, D. H. Chi, K. Prassides, Y. Iwasa, Interlayer carbon substitution in the MgB_2 superconductor, cond-mat/0103241.
    [6] R. H. T. Wilke, S. L. Bud'ko, P. C. Canfield, D. K. Finnemore, R. J. Suplinskas, S. T. Hannahs, System effects of Carbon doping on the superconducting properties of Mg(B1-xCx)2, Phys. Rev. Lett. 92 (2004) 217003-1-217003-4.
    [7] T. Masui, S. Lee, S. Tajima, Carbon-substitution effect on the electronic properties of MgB_2 single crystals, Phys. Rev. B 70 (2004) 024504-1-024504-4.
    [8] S. M. Kazakov, R. Puzniak, K. Rogacki, A. V. Mironov, N. D. Zhigadlo, J. Jun, Ch. Soltmann, B. Batlogg, J. Karpinski, Carbon substitution in MgB_2 single crystals: structural and superconducting properties, Phys. Rev. B 71 (2005) 024533-1-024533-10, and references therein.
    [9] R. S. Gonnelli, D. Daghero. G. A. Ummarino. A. Calzolari, V. Dellaroeca, V. A. Stepanov, S. M. Kazakov, J. Jun, J. Karpinski, A point-contact study of the superconducting caps in Al-substituted and C-substituted MgB_2 single crystals, Phys. Rev. B 71 (2005) 060503-1-060503-4, and references therein.
    [10] J. Kortus, O. V. Dolgov, R. K. Kremer, A. A. Golubov, Band Filling and Interband Scattering Effects in MgB_2: Carbon versus Aluminum Doping, Phys. Rev. Lett 94 (2005) 027002-1-027002-4.
    [11] I. I. Mazin, O. K. Anderson, O. Jepsen, O. V. Dolgov, J. Kortus, A. A. Golubov, A. B. Kuz'menko, D. Van der Marel, Superconductivity in MgB_2: Clean or Dirty? Phys. Rev. Lett 89 (2002)107002-1-107002-4.
    [12] J. S. Ahn, Y. -J. Kim, M. -S. Kim, S. -I. Lee, E. J. Choi, Structural and superconducting properties of MgB_(2-x)Be_x, Phys. Rev. B 65 (2002) 172503-1-172503-4..
    [13] J. S. Ahn, E. S. Choi, W. Kang, D. J. Singh, M. Han, E. J. Choi, Thermoelectric power of MgB_(2-x)Be_x, Phys. Rev. B 65 (2002) 214534-1-214534-5.
    [14] W. Du, H. B. Zhang, D. Xu, X. Q. Wang, X. Q. Hou, G. H. Zhang, Y. L. Geng, H. Y. Liu, F. Y. Jiang, Y. L. Wang, Edge dislocation and superstructure in MgB_2 superconducting crystals, Supercond. Sci. Technol. 18 (2005) 1513-1516.
    [15] A. Serquis, Y. T. Zhu, E. J. Peterson, J. Y. Coulter, D. E. Peterson, F. M. Mueller, Effect of lattice strain and defects on the superconductivity of MgB_2, Appl. Phys. Lett. 79 (2001) 4399-4401.
    [16] 李正中,固体理论,第二版,p486高等教育出版社2002.
    [17] L. Nordheim, Ann. Phys. (Leipzig) 9 (1931) 607.
    [18] T. Muto, Sci. Pap. Inst. Phys. Chem. Res. (Jpn. ) 34 (1938) 377.
    [19] O. de la Pena, A. Aguayo, R. de Coss, Effects of Al doping on the structural and electronic properties of Mg_(1-x)Al_xB_2, Phys. Rev. B66, (2002) 012511-1-012511-4.
    [20] Y. M. Ma, J. S. Tse, .T. Cui, D. D. Klug, L. J. Zhang, Y. Xie, Y. L. Niu, G. T. Zou, First-principles study of electmn-phonon coupling in hole- and electron-doped diamonds in the virtual crystal approximation, Phys. Rev. B 72 (2005) 014306-1-014306-9.
    [21] P. Soven, Coherent-potential Model of substitutional disordered alloys, Phys. Rev. 156 (1967) 809-813.
    [22] D. W. Taylor, Vibrational Properties of Imperfect Crystals with Large Defect Concentrations, Phys. Rev. 156 (1967) 1017-1029.
    [23] M. Fuchs, M. Seheffter, Ab initio pseudopotentials for electronic structure calculations of poty-atomie systems using density-functional theory, Computer Physies Communications 119 (1999) 67-98.
    [24] D. R. Hamann, Generalized norm-conserving pseudopotentials, Phys. Rev. B 40 (1989) 2980-2987.
    [25] N. Troullier, J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993-2006.
    [26] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.
    [27] H. J. Monkhorst, J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.
    [28] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, L. L. Boyer, Superoonductivity of metallic boron in MgB_2, Phys. Rev. Lett. 86, (2001) 4656-4659.
    [29] W. D, D. Xu, H. B. Zhang, X. Q, Wang, G. H. Zhang, X. Q. Hou, H. Y. Liu, Y. L. wang, Single crystal growth of MgB_2 by using Mg-self-flux method at ambient pressure., Journal of Crystal Growth, 268 (2004) 123-127.
    [30] C. G. Broyden, The Convergence of a Class of Double-Rank Minimization Algorithms 2, The New Algorithm, J. of the Inst. for Math. and Applications, 6 (1970) 222-231; R. Fletcher, A New Approach to Variable-Metric Algorithms, Computer Join'hal, 13 (1970) 317-322; D. Goldfarb, A Family of Variable-Metric Algorithms Derived by Variational Means, Mathematics of Computation, 24 (1970)23-26; D. F. Shanno, Condioning of Quasi-Newton Methods for Function Minimization, Mathematics of Computation, 24 (1970) 647-656.
    [31] P. B. Allen, R. C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 12 (1975) 905-922.
    [32] S. C. Erwin, I. I. Mazin, Toward one-band superconductivity in MgB_2, Phys. Rev. B 68 (2003) 132505-1-132505-4.
    [1] J. G. Bednorz, K. A. Muller, Possible High Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B-Condensed Matter 64 (1986) 189-193.
    [2] Bechgaard, C. S. Jacobsen, K. Mortensen, H. J. Pedersen, and N. Thorup, The properties of five highly conducting salts: (TMTSF)_2X, X=PF~(6-), AsF~(6-), SbF_(6-), BF_(4-) and NO_(3-), derived from tetramethyltetraselenafulvalene (TMTSF), Solid State Communications 33 (1980) 1119-1125. A. M. Kini, U. Geiser, H. H. Wang, K. D. Carlson, J. M. Williams, W. K. Kwok, K. G. Vandervoort, J. E. Thompson, D. L. Stupka, D. Jung, M. -H. Whangbo, A New Ambient-Pressure Organic Superconductor, kappa (ET)_2Cu[N(CN)_2Br, with the Highest Transition Temperature Yet Observed (Inductive Onset Tc=11.6 K, Resistive Onset=12.5K), Inorg. Chem. 29 (1990) 2555-2557.
    [3] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39K in magnesium diboride, Nature 410, (2001) 63-64. I. I. Mazin, Intercalant-driven superconductivity in YbC_6 and CaC_6, Phys. Rev. Lett. 95 (2005) 227001-1-227001-4. M. Calandra, F. Mauri, Theoretical explanation of superconductivity in C_6Ca, Phys. Rev. Lett. 95 (2005) 237002-1-237002-4.
    
    [4] K. Takada, H. Sakurai, E. T. Muromachi, F. Izumi, R. A. Dilanian, T. Sasaki, Superconductivity in two-dimensional CoO_2 layers, Nature 422 (2003) 53-55.
    
    [5] L. Fang, Y. Wang, P. Y. Zou, L. Tang, Z. Xu, H. Chen, C. Dong, L. Shan, H. H. Wen, Fabrication and superconductivity of Na_xTaS_2 crystals, Phys. Rev. B 72 (2005) 014534-1-014534-014534-8.
    
    [6] J. Braconnier, C. Delmas, C. Fouassier, P. Haggenmuller, Mater. Res. Bull. 15 (1980) 1797.
    
    [7] I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo_2O_4 single crystals, Phys. Rev. B 56 (1997) R12685. Y. Wang, N. S. Rogado, R. J. Cava, N. P. Ong, Spin entropy as the likely source of enhanced thermopower in Na_xCo_2O_4, Nature 423 (2003) 425-428.
    
    [8] M. L. Foo, Y. Wang, S. Watauchi, H. W. Zandbergen, T. He, R. J. Cava, N. P. Ong, Charge Ordering, Commensurability, and Metallicity in the Phase Diagram of the Layered Na_xCoO_2, Phys. Rev. Lett. 92 (2004) 247001-1-247001-4.
    
    [9] M. Karppinen, I. Asako, T. Motohashi, H. Yamauchi, Oxygen nonstoichiometry and actual Co valence in Na_xCoO_(2-δ), Phys. Rev. B 71 (2005) 092105-1-092105-4.
    
    [10] J. D. Jorgensen, M. Avdeev, D. G. Hinks, J. C. Burkey, S. Short, Crystal structure of the sodium cobaltate deuterate superconductor NaxCoO_2·4xD_2O(x~1/3), Phys. Rev. B 68 (2003) 214517-1-214517-10.
    
    [11] http://www.ncnr.nist.gov/staff/jeff/Water%20Superconductor.html
    
    [12] R. E. Schaak, T. Klimczuk, M. L. Foo, R. J. Cava, Superconductivity phase diagram of Na_xCoO_2·1.3H_2O, Nature, 424 (2003) 527-530.
    
    [13] C. J. Milne, D. N. Argyriou, A. Chemseddine, N. Aliouane, J. Veira, S. Landsgesell, D. Alber, Revised Superconducting Phase Diagram of Hole-Doped Na_x(H_3O)_zCoO_2·yH_2O, Phys. Rev. Lett. 93 (2004) 247007-1-247007-4.
    
    [14] K. Takada, H. Sakurai, E. T. Muromachi, F. Izumi, R. A. Dilanian, T. Sasaki, J. Solid State Chem. 177 (2004) 372.
    
    [15] P. W. Barnes, M. Avdeev, J. D. Jorgensen, D. G. Hinks, H. Claus, S. Short, Superconductivity and cobalt oxidation state in metastable Na_xCoO_2-δyH_2O (x~1/3; y~4x), Phys. Rev. B 72 (2005) 134515-1-134515-8.
    
    [16] M. D. Johannes, D. J. Singh, Phys. Rev. B Comparison of the electronic structures of hydrated and unhydrated Na_xCoO_2: The effect of H_2O, 70 (2004) 014507-1-014507-5.
    
    [17] C. A. Marianetti, G. Kotliar, G. Ceder, Role of Hybridization in Na_xCoO_2 and the Effect of Hydration, Phys. Rev. Lett. 92 (2004) 196405-1-196405-4.
    
    [18] K. D. Nelson, Z. Q. Mao, Y. Maeno, Y. Liu, Odd-Parity Superconductivity in Sr2RuO4, Science 306 (2004) 1151 - 1154.
    
    [19] T. Ohzuku, A. Ueda, M. Nagayama, Electrochemistry and structural chemistry of LiNiO_2(R3|-/m) for 4 volt secondary lithium cells, J. Electrochem. Soc. 140(7) (1993) 1862-1870.
    
    [20] V. Bianchi, D. Caurant, N. Baffler, C. Belhomme, E. Chappel, G. Chouteau, S. Bach, J. P. Pereira-Ramos, A. Sulpice, P. Wilmann, Synthesis, structural characterization and magnetic properties of quasistoichiometric LiNiO_2, Solid State Ionnics 140 (2001) 1-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700