基于粗粒化元胞自动机在生物序列与动力学的模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物学家用系统、控制论与信息处理方法来观察了解生物学过程的例子越来越多。确定性、不确定性的数学模型和智能计算模型帮助他们构思新的实验方法,洞察复杂的生物系统。另一方面,系统控制论等信息科学学者也正把生物体看作又一类新的复杂系统与智能系统的研究目标。信息科学与生物科学的互动越演越列,交叉越演越密,其重要体现之一是生物信息学的研究。其研究内容包括基因组信息学、蛋白质的结构模拟以及药物设计三个重要的方面。
     本文采用粗粒化元胞自动机研究生物信息中的若干模型,取得了以下方面的创新研究成果:
     ● 构造氨基酸数字编码模型
     采用相似规则、对称规则、分子识别理论以及信息处理方法,建立了氨基酸的数字编码模型。此编码模型考虑了氨基酸的物理化学特性,且氨基酸与其数字编码是一一对应的。它可以把生物字符序列转变为二进制数字序列,这种变换使得生物信息可以用其它的数字信息处理方法来研究。
     ● 提出了基于粗粒化元胞自动机的生物序列可视化模型
     基于粗粒化元胞自动机给出了一种新的基因序列可视化方法。与其它生物序列可视化方法作图时碱基所对应的空间点只与此碱基之前的碱基数量和种类有关所不同的是,在构图时,碱基所对应的空间点与此前后碱基的数量和种类都有关。首次提出了元胞自动机图(CAI)的概念与方法,使许多隐含在长而复杂的生物字符序列中的特征,通过CAI清楚地表现出来。提供了一个研究生物序列关键特征和辨识基因功能的新途径。
     ● 给出了SARS序列的一种特征分析
     基于粗粒化元胞自动机序列可视化模型,首次发现了SARS病毒图像中所含有的“V”型结构,提出了局部对称性的概念。分析靠“V”型所对应的序列区,得出SARS序列5端开始第3232bp~5624bp、5703bp~7195bp:12128bp~14470bp、16444bp~19231bp、19720bp~21803bp,这五段中腺嘌呤(A)的个数与鸟嘧啶(U)基本相同,且在前半段以腺嘌呤为主,后半段以鸟嘧啶为主,而其他的所有非SARS冠状病毒都不具有此特征。根据这个特征为依据,对所有的冠状病毒进行比较,给出鸟类流行性支气管炎病毒与猪流行性腹泻病毒与SARS最接近的论断。
     ● 研究了蛋白质亚细胞定位预测
     基于伪氨基酸成分的扩大协方差判别式算法,提出了一种新的基于粗粒化元胞自动机的蛋白质序列图和氨基酸成分的预测蛋白质亚细胞定位方法,使现有的图像识别技术可以直接地被应用于预测蛋白质亚细胞定位。Self-consistency和Jackknife测试已表明蛋白质定位与它的元胞自动机图是有联系的。
     ● 研究了蛋白质二级结构类型预测
     与现有的预测蛋白质二级结构类型只基于氨基酸成份的方法不同,我们首
Now the systemic, cybernetic and information processing methods have been widely used by biologist to observe and understand the biology process. They conceive new experiment methods based on certainty or uncertainty mathematics models and intelligent computational models. On the other hand, organism is treated by information science scholar as new research targets of complex and intelligent systems. The interaction of information science and biological science is more and more inosculate, one of its important representations is bioinformatics. There are three important sub-disciplines within bioinformatics: genome informatics, protein structural simulation, iatric design.We have made scientific researches on above three aspects of bioinformatics based on coarse-graining cellular automata. The innovative research contributions mainly include the following contents:Constructing digital coding for amino acidWe make use of similarity rule, complementaity rule, molecular recognition theory, and information theory to set up a model of digital coding for amino acids. The model reflects better amino acid chemical physical properties and degeneracy. It transforms the symbolic DNA sequences into digital genetic signals of amino acids and it opens the possibility to apply a whole range of powerful signal processing methods for analysis of amino acids.Using coarse-graining cellular automata to generate image representation for biological sequencesBy using coarse-graining cellular automata, new biological sequence visual method was put forward. It licked the shortage of other visual method that the point of the special curve corresponding to a certain nucleic acid is colligated only with the base prior to it, while the effects of all the bases behind it are totally ignored. We firstly put forward the concept of the so-called cellular automata image(CAI). Many important features, which are originally hidden in a long and complicated biological sequence, can be clearly revealed thru its cellular automata image. It is anticipated that the cellular automata image will become a very useful vehicle for investigation into their key features, identification of their function, as well as revelation of their "fingerprint".Putting forward peculiar character analysis in RNA sequence of SARSBy using coarse-graining cellular automata, the 'V structual characteristic in SARS' CAI was firstly found. A peculiar character of RNA sequence is found in SARS, revealing particular symmetry in its sequencing, from about 3232 to 5624nt, 5703 to 7195nt, 12128 to 14470nt, 16444 to 19231nt, 19728 to 21803nt in the SARS-CoV genome sequences near 5-terminal, the number of Adenine (A) is almost equal to the number of thymine (T) in the above five sections, and the A are mostly mastered in the 5'-terminal of the segment, T are mostly in the 3'-terminal region. Comparison of symmetry between SARS and other coronaviruses shows heuristically that SARS coronavirus might come from the avian infectious bronchitis virus or porcine epidemic diarrhea virus.Investigating the prediction of subcellular location of proteins
    Based on a model that takes into account the concept of pseudo amino acid, a new approach that applies Cellular automata image and amino acid composition to predict the protein subcellular location is presented in this paper. One of the remarkable merits of this approach is that many image recognition tools can be straightforwardly utilized in predicting protein subcellular location. High rates of both self-consistency and jackknife tests are obtained. The results indicate that the protein localization is considerably correlated with its C A image.? Investigating the prediction of structural class of proteinsHow to improve the prediction quality for protein structural classification by effectively incorporating the sequence-order effects is an important and challenging problem. Based on the concept of CAI, a new approach is presented. The advantage by incorporating the complexity measure factor of CAI into the pseudo amino acid composition as one of its components is that it can catch the essence of the overall sequence pattern of a protein and hence more effectively reflect its sequence-order effects. It was demonstrated thru the jackknife cross-validation test that the overall success rate by the new approach was significantly higher than those by the others.? Putting forward the model of predicting the effect on replication ratio by HBV missense mutationHepatitis B viruses (HBVs) show instantaneous and high ratio mutations when they are replicated, some sorts of which significantly affect the efficiency of virus replication through enhancing or depressing the viral replication, while others have no influence at all. Based on CAI, a novel model to predicting the effect on replication ratio by HBV mutation has been introduced firstly. The different CAIs can be gained by the HBV sequence of mutation. With the change in the CAI after mutation, we can predict the degree of effects produced by the mutation. The results show that the images thus obtained can very efficiently simulate the effects of the gene missense mutation on the virus replication. The establishment of such a predictor will no doubt expedite the process of prioritizing genes and proteins identified by genomics efforts as potential molecular targets for drug design.? Putting forward the probability coarse-graining cellular automata model for Hepatitis B viral infectionsThe basic model of hepatitis B virus (HBV) infection dynamics, are based on the assumption of well-mixed virus and cell populations. But spatial characteristics potentially play a nontrivial role in the development and outcome of a HBV infection, such as localized populations of dead cells might adversely affect the spread of infection. Here, we use a 2-D probability cellular automata model to study the evolution of HBV infection. The model takes into account the existence of different types of HBV infectious and non-infectious particles. The simulation results show that the model can be used to account for the important features of the disease, namely the wide variety of manifestations of infection and the age dependence. It is first time to simulate this feature under no change other parameters of model. And we also consider the effects of the model's parameters on the dynamics of the infection.On the other hand, we used our 2-D probability coarse-graining cellular automata model to study the evolution of HBV infection with taking medication. The space-time evolvement, self-organization course and curative effects of different medication as eliminating infectious cells, eliminating HBV and destroying the
    qualification of infection are simulated. The results show that the medication can inhibit HBV replication has the best curative effect. It is anticipated that probability coarse-graining Cellular Automata may also serve as a useful vehicle for drug design.
引文
【1】 Teresa KA, The babel of bioinformatics. Science, 2000, 290(5491): 471.
    【2】 Francois R, From data to knowledge. Bioinformatics, 2000, 16(5): 411
    【3】 Riis SK, Krogh A, Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. J. Comput. Biol., 1996, 3: 163-183.
    【4】 黄文奇,李宗,基于模拟退火算法的蛋白质折叠问题求解,计算机工程与应用,2005,(7):40-42
    【5】 吴晓明,宋长新,王波,程敬之,隐马尔可夫模型用于蛋白质序列分析,生物医学工程学杂志,2002,19(3):455-458.
    【6】 周海廷,隐马尔可夫过程在生物信息学中的应用,生命科学研究,2002,6(3):204-210.
    【7】 王敞,陈增强,基于并行遗传算法的蛋白质空间结构预测,计算机科学,2003,30(7):147-148.
    【8】 Bonhoeffer S, May RM, Shaw GM, Nowak MA. Virus dynamics and drug therapy. Proc Natl Acad Sci USA. 1997, 94: 6971-6976.
    【9】 Bekkering FC, Brouwer JT, Hansen BE, Schalm SW. Hepatitis C viral Kinetics in difficult to treat patients receiving high dose interferon and ribavirin. J Hepatol. 2001, 34: 435-440
    【10】 Perelson AS, Modelling viral and immune system dynamics. Nat Rev Immunol. 2002, 2: 28-36.
    【11】 Mielke A, Pandey RB. A computer simulation study of cell population in a fuzzy interaction model for mutation HIV, Physica A, 1998, 251: 430-438.
    【12】 Hershberg U, Louzoun Y, Atlan H and Solomon S. HIV time hierarchy: Winning the war while, loosing all the battles. Physica., 2001, 178-190.
    【13】 郝柏林,张淑誉,漫谈物理学和计算机,北京:科学出版社,1988
    【14】 Cardner M, Mathematical games, Sci Amer. 1971, 244(2): 112-116.
    【15】 Wolfram S, Statistical mechanics of cellular automata. Rav Mod Phys. 1983, 55(3): 601-644.
    【16】 Wolfram S, Computation theory of cellular automata. Commun Math Phys. 1984, 95: 15-57.
    【17】 Frisch U, Hasslacher B, Pomeau Y, Lattice-gas automata for the Navier-Stokes equation. Phys Rev lett. 1986, 56: 1505-1508.
    【18】 Chua LO, Yang L, Cellular neural networks: theory. IEEE Trans Circuits Syst, 1988, 35: 1257-1272.
    【19】 李才伟,胡瑞安,杨叔子,自组织过程的随机元胞自动机模拟,华中理工大学学报,1996,24(9):64—67.
    【20】 李才伟,吴金平,化学混沌与BZ反应的细观元胞自动机模拟,计算机与应用化学,2000,17(6):489-493.
    【21】 冯春,马建文,戴芹等,多维参数反演遗传算法的元胞自动机模型与应用,地球信息科学,2005,7(1):71-75.
    【22】 何春阳,史培军,陈晋等,基于系统动力学模型和元胞自动机模型的土地利用情景模型研究,中国科学,2005,35(5):464-473.
    【23】 杨立中,方伟峰,黄锐,邓志华,基于元胞自动机的火灾中人员逃生的模型,科学通报,2002,47(12):896-901.
    【24】 周子力,王新伟,一种交通流的元胞自动机模型及分析,计算机工程,2004,30(9):177-179.
    【25】 薛郁,董力耘,戴世强,一种改进的一维元胞自动机交通流模型及减速概率的影响,物理学报,2001,50(3):445-450.
    【26】 李才伟,元胞自动机及其复杂系统的时空演化模拟[D].博士学位论文.华中理工大学,1997.
    【27】 Wolfram S, Statistical Mechanics of Cellular Automata. Rev. Mod. Phys., 1983, 55(3): 601-644.
    【28】 Wolfram S, Universality and complexity in cellular automata. Physica D, 1984, 10: 1-35.
    【29】 Culick K, Yu F, Undecidability of CA chlassification scheme. Complex System, 1988, 2: 177-190:
    【30】 谢惠民,非线性科学丛书:复杂性与动力系统,上海科技教育出版社,1994.
    【31】 Billings SA, Yang Y, Identification of probabilistie cellular automata, IEEE Transaction on System, Man and Cybernaties, Part B, 2002, 33(2): 1-12.
    【32】 Flocchini P, Geurts F, Mingarelli A, Santoro N, Convergence and aperiodicity in fuzzy cellular automata: revisiting rule 90. Physica D: Nonlinear Phenomena, 2000, 142: 20-28.
    【33】 Kagaris D, Tragoudas S, Von Neumann hybrid cellular automata for generating deterministic test sequences. ACM Trans. on Design Automation of Electronic Systems (TODAES), 2001, 6(3): 308-321.
    【34】 Richards FC, Meyer TP, Packard NH, Extracting cellular automata rules directly from experimental data. Physica D, 1990, 45: 189-202.
    【35】 Mitchell M, Hraber PT, Crutchfield JP, Revisiting the egde of chaos: evolving cellular automata to perform computations. Complex Systems, 1993, 7: 89-130.
    【36】 冯春,马建文,戴芹等,多维参数反演遗传算法的元胞自动机模拟与应用,地球信息科学,2005,7(1):71-75.
    【37】 严飞,基于Agent和元胞自动机的智能交通仿真研究,大连海事大学硕士论文,2004,23-30.
    【38】 于鑫,段晓东,刘向东,周福才,基于元胞自动机的流行病传播模型及模拟,计算机工程与应用,2005,41(2):205-209.
    【39】 Meirav U, Kastner MA, Wind SJ, Single-electron charging of quanturn-dot atoms. Phys Rev Lett, 1990, 65: 771.
    【40】 何红波,周继承,胡慧芳,李义兵,基于量子元胞自动机的逻辑电路,固体电子学研究与进展,2001,21(3):265-271.
    【41】 Watrous J, On one-dimensional quantum cellular qutomata, In 36th Annual Symposium on Foundations of Computer Science, 1995, pp: 528-537.
    【42】 Schumacher B, Werner RF, Reversible quantum cellular automata, quant-ph/0405174.
    【43】 Wolfram S, A New Kind of Science. Wolfram Media, Inc. IL. 2002, 435-457.
    【44】 Tommaso T, Norman M, Invertible cellular automata: A review. Physiea D. 1990, 45: 229-253.
    【45】 Perrier JY, Sipper AG., Zahnd J, Toward a Viable, Self-reproducing Universal Computer. Physica D, 1996, 97: 335-352.
    【46】 De Boer RJ, Hogeweg P, Growth and recruitment in the immune network. In A. F. Perelson and G. Weisbuch, editors, theoretical and experimental insights into immunology, volume 66, pp: 223-247. Springer Verlag, New York, 1992.
    【47】 Celada F, Seden PE, A computer model of cellular interactions in the immune system. Immunol. Today, 1992, 13: 56-62.
    【48】 Santos RMZD, Coutinho S, Dynamics and HIV approach: A cellular automata approach. Phys. Rev. Lett, 2001, 87(16): 102-104.
    【49】 Ermentrout GB, Edelstein-Keshet L, Cellular Automata Approaches to Biological Modeling, Journal of Theoretical Biology, 1993, 160: 97-133.
    【50】 Resnic M, Turtles, Termites and Traffic Jams. MIT Press, 1994.
    【51】 Schonfisch B, Kinder M, A fish migration model. In Proc. Of fifth international conference on cellular automata for research and industry, ACRI 2002, Switzerland, 210-219.
    【52】 Schonfisch B, Roos AD, Synchronous and asynchronous updating in cellular automata. Biosystems, 1999, 51: 123-143.
    【53】 Keenan DC, Competition, Collusion and Chaos. Journal of Economic Dynamcics and Control, 1993, 17: 327-353.
    【54】 Boghosian BM, Yepez J, Alexander FJ, Margolus NH, Integer lattices gases. Phys. Rev. R, 1997, 55: 4137-4147.
    【55】 李才伟,吴金平,细观元胞自动机与三分子反应模拟,计算机与应用化学,2000,17(5):436-439.
    【56】 Crutchfield JP, Hanson JE, Turbulent pattern bases for cellular automata. Physica D, 1993: 69: 279-301.
    【57】 Lsraeli N, Goldenfeld N, On computational irrducibility and predictability of complex physical systems. Phys. Rev. Lett. 2004, 92: 074105.
    【58】 Dubacq JC, Durand B, Formenti E, Kolmogorov complexity and cellular automata classification, Theoretical computer science, 2001, 259:271-285.
    【59】 Jin XG, Kim TW, Classification of cellular automata and complexity, International Journal of Modern Physics, 2003, 17: 4232-4237.
    【60】 程慰峰.医学免疫学.北京:人们卫生出版社,2001.
    【61】 Celada F, Seidan PE, Affinity maturation and hypermutation in a simulation of the humoral immune response. Eur. J. Immunol., 1996, 26: 1350-1358.
    【62】 Gao, F., Ou, H. Y., Chen, L. L., zheng, W. X., Zhang, C. T., prediction of proteinase cleavage sites in polyproteins of coronaviruses and its applications in analyzing SARS-CoV genomes. FEBS Lett. 2003, 553: 451-456.
    【63】 杨锡南,孙啸,生物信息学中基因数据可视化,计算机与应用化学,2001,18(5):403—410.
    【64】 Gates MA, Simpler DNA sequence representations. Nature, 1985, 316:219-221.
    【65】 Guo XF, Randic M, Basak S C, A novel 2-D graphical representation of DNA sequences of low degeneracy, Chemical Physics Letters. 2001, 350: 106-112.
    【66】 Zhang CT, Chou KC, A graphic approach to analyzing codon usage in 1562 Escherichia coli protein coding sequences, J. Mol. Biol., 1994, 238: 1-8.
    【67】 Zhang R, Zhang CT, Z curves, an intuitive tool for visualizing and analyzing DNA sequences. J. Biomol. Struc. Dyn. 1994, 11: 767-782.
    【68】 Chi EH, Barry P, et al., Visualization of biological sequence similarity search results, In IEEE Visualization '95, pages 44-51. IEEE CS Press, 1995.
    【69】 Hu Z, et al., SeqVISTA: A graphical tool for sequence feature visualization and comparison, BMC Bioinformatics, 2003, 4: 1.
    【70】 Alston M, Johnson CG, Robinson G, Colour merging for the visualization of biomolecular sequence data, Severth international conference on information visualization(Ⅳ'03), July 16-18, 2003, Pages 169-175.
    【71】 Biro JC, Benyo B, et al., A common periodic table of codons and amino acids, Biochemical and Biophysical research communications 2003, 306: 1408-1415.
    【72】 Cristea P, Independent Component Analysis for Genetic Signals, SPIE Conference BIOS 2001-international Biomedical optics Symposium, SC316, Short Course, San Jose, USA, 20-26 January 2001.
    【73】 PanYX, Huang ZD, et al., Application of Pseudo Amino Acid Composition for Predicting Protein Subceltular Location: Stochastic Signal Processing Approach, Journal of Protein Chemistry, 2003, 22(4): 395-402.
    【74】 Sofer WH, Predicting secondary structure of proteins using genetic algorithms, http://waksman.Rutgers.Edu/Waks/Sofer/sofer.Html.
    【75】 Stambuk N, On the Genetic Origin of Complementary Protein Coding, Croatica Chemica acta. 1998, 71(3): 573-589.
    【76】 Lin SK, The Nature of the Chemical Process. 1. Symmetry Evolution Revised Information Theory, Similarity Principle and Ugly Symmetry. Int. J. Mol. Sci. 2001, 2: 10-39.
    【77】 Bashford JD, Tsohantjis L, Jarvis PD, A supersymmetric model for the evolution of the genetic code. Proc. Natl. Acad. Sci. 1998, 95:987-992.
    【78】 Blalock JE, Best KL, Binding of peptides that are specified by complementary, RNAs Biochem. J. 1986, 234:679-683.
    【79】 Blalock JE, Genetic origins of protein shape and interaction rules, Nature Medicine, 1995, 1: 876-878.
    【80】 N. Stambuk, On the optimization of complementary protein coding, in: S. Ohno, K. Aoki, M. Usui and E. Uehio (Eds.), Uveitits Today, Elsevier, Amsterdam, pp, 315-318, 1998.
    【81】 Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R Coronavirus main proteinase (3CL~(pro)) structure: basis for design of anti-SARS drugs. Science, 2003, 300: 1763-1767.
    【82】 Drosten C, Gunther S, Preiser W, et al., . Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med 2003, 348:1967-1976.
    【83】 Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel eoronavirus associated with severs acute respiratory syndrome. Science, 2003, 300(5624): 1394-1399.
    【84】 Marra MA, Jones SJ, Astell CR, et al., The genome sequence of the SARS-associated coronavirus. Science, 2003, 300(5624): 1399-1404.
    【85】 Ruan YJ, et al., Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection, The Lancet. 2003, 361:1779-1785.
    【86】 Ksiazek TG, et al., A novel coronavirus associated with severe acute respiratory syndrome, N. Engl. J. Med. 2003, 348, 1953-1966.
    【87】 刘龙丁,董少忠,李建峰等,SARS病毒免疫学性状的结构基础分析,中国生物工程杂志,2003,23(5):6-11.
    【88】 陈蕴佳,高歌,鲍一明等,SARS冠状病毒全基因组序列初步分析,遗传学报,2003,30:494-500.
    【89】 李谦,王友同,郑珩等,SARS冠状病毒基因组序列分析与抗SARS药物设计,药物生物技术,2003,10(3):181-185.
    【90】 Li WH, et al., Angiotensin-eonverting enzyme 2 is a functional receptor for the SARS coronavirus, Nature. 2003, 426, 450-454.
    【91】 Ng TW, Turinici G, Danchin A, A double epidemic model for the SARS propagation. BMC Infect Dis. 2003, 3: 19.
    【92】 Sawicki SG, Sawicki DL, A new model for coronavirus transcription. Adv Exp Med Biol. 1998, 440: 215-219.
    【93】 Enserink M, Clues to the animal origins of SARS. Science. 2003, 300:1351.
    【94】 Eickmann M, Becker S, Klenk HD, et al., Phylogeny of the SARS coronavirus. Science. 2003, 302(5650): 1504-1505.
    【95】 Stavrinides J, Guttman DS, Mosaic evolution of the severe acute respiratory syndrome coronavirus. J Virol. 2004, 78(1): 76-82.
    【96】 Zhang XW, Yap YL, Danchin A, Testing the hypothesis of a recombinant origin of the SARS-associated coronavirus. Arch Virol. 2005, 150(1): 1-20.
    【97】 Holmes EC, Rambaut A, Viral evolution and the emergence of SARS coronavirus. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2004, 359(1447): 1059-1065.
    【98】 Ward W, John G, Rob D. Elision: A method for accommodating multiple molecular sequence alignments with alignment-ambiguous sites. Mol Phylogenet Evol, 1995, 4: 1-9.
    【99】 齐震等,基于全基因组比较的SARS冠状病毒种系进化分析,科学通报,2003,48(12):1175-1178.
    【100】 Lobry JR, Lobry C, Evolution of DNA composition under no-strand-bias conditions when the substitution rates are not constant. Mol Biol Evol. 1999, 16(6): 719-723.
    【101】 Rocha EP, Danchin A, Ongoing evolution of strand composition in bacterial genomes. Mol Biol Evol. 2001, 18(9): 1789-1799.
    【102】 Sueoka N, Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J. Mol. Evol. 1995, 40(3): 318-325.
    【103】 Chou, K. C., 2005. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21, 10-19.
    【104】 NaKai K, Kanehisa M, A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics, 1992, 14: 897-911.
    【105】 李凤敏,李前忠,蛋白质亚细胞定位的预测,生物物理学报,2004,20(4):297-307.
    【106】 Murphy RF, Boland MV, Velliste M, Towards a systematics for protein subcellular location: quantitative description of protein localization patterns and automated anslysis of fluorescence microscope images. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2000, 8:251-259.
    【107】 Emanuelsson O, von Heijne G., Prediction of organellar targeting signals. Biochim Biophys Acta, 2001, 1541: 114-119.
    【108】 Rost B, Twilight zone ofprotein sequence alignments. Protein Eng, 1999, 12: 85-94.
    【109】 Nair R, Rost B, Sequence conserved for sub-cellular localization. Protein Science, 2002, 11: 2836-2847.
    【110】 Von Heijne G., Proteinsorting signals: simple peptides with complex functions, Exs, 1995, 73: 67-76.
    【111】 Nakai K, Prediction of invivo fates of proteins in the era of genomics and proteomics. Journal of Structural Biology, 2001, 134: 103-116.
    【112】 Emanuelsson O, Nielsen H, Brunak S, et al., Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol, 2000, 300(4): 1005-1016.
    【113】 Chou KC, Cai YD, Using functional domain composition and support vector machines for prediction of protein subeellular location. Journal of Biological Chemistry. 2002, 277: 45765-45769.
    【114】 Chou KC, A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space. Proteins: Structure, Function & Genetics. 1995, 21: 319-344.
    【115】 Nakashima H., Nishikawa K, Discrimination of intracellular and extraeellular proteins using amino acid composition and residue-pair frequencies. J. Mol. Biol. 1994, 238: 54-61.
    【116】 Cedano J, Aloy P, P'erez-Pons JA, Querol E, Relation between amino acid composition and cellular location of proteins. J. Mol. Biol 1997, 266: 594-600.
    【117】 Reinhardt A, Hubbard T, Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res. 1998, 26: 2230-2236.
    【118】 Hua S, Sun Z, Support vector machine approach for protein subcellular localization prediction. Bioinformatics. 2001, 17: 721-728.
    【119】 Chou KC, Elrod DW, Protein subeellular location prediction. Protein Engineering 1999, 12: 107-118.
    【120】 Cai, Y. D., Zhou, G. P., Jen, C. H., Lin, S. L., and Chou, K. C. Identify catalytic triads of serine hydrolases by support vector machines. Journal of Theoretical Biology.. 2004, 228, 551-557.
    【121】 Pan YX, Zhang ZZ, Guo ZM, et al., Application of pseudo amino acid composition for predicting protein subeellular location: stochastic signal processing approach. Journal of Protein Chemistry 2003, 22: 395-402.
    【122】 Xiao X, Shao SH, Ding YS, et al., Using complexity measure factor to predict protein subcellular location. Amino Acida. 2005, 28: 57-61.
    【123】 Haddadnia J, Faez K, Ahmadi M, A neural based human face recognition system using an efficient feature extraction method with pseudo zernike moment. Journal of Circuits, Systems, and Computers. 2002, 11: 283-304.
    【124】 Zhu SC, Wu Y, Mumford D, Minimax entropy principle and its application to texture modeling. Neural computation. 1997, 9: 1627-1660.
    【125】 Portilla J, Simoncelli EP, A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision. 2000, 40: 49-71.
    【126】 Gusev VD, Nemytikova LA, Chuzhanova NA, On the complexity measures of genetic sequences. Bioinformatics. 1999, 15: 994-999.
    【127】 Ziv J, Lempel A, On the complexity of f'mite sequences. 1EEE Trans. Inf. Theory IT. 1976, 22:75-81.
    【128】 Chou KC, Cai YD, Using GO-PseAA predictor to predict enzyme subclass. Biochemical and Biophysical Research Communications. 2004, 325: 506-509.
    【129】 Chou, KC, Cai Y. D. (2003) Predicting protein quaternary structure by pseudo amino acid composition PROTEINS: Structure, Function, and Genetics 53, 282-289.
    【130】 Chou KC, Cai YD, Prediction and classification of protein subcellular location: sequence-order effect and pseudo amino acid composition. Journal of Cellular Biochemistry. 2003, 90: 1250-1260.
    【131】 Cadano J, Aloy P, P'erez-Pons JA., Querol E, Relation between amino acid composition and cellular location of proteins. J. Mol. Biol. 1997, 266: 594-600.
    【132】 Pan YX., Zhang ZZ, Guo ZM, Feng GY, Huang ZD, He L, Application of pseudo amino acid composition for predicting protein subcellular location: stochastic signal processing approach. Journal of Protein Chemistry. 2003, 22: 395-402.
    【133】 Xiao, X., Shao, S. H., Ding, Y. S., Huang, Z. D., and Chou, K. C. (2005) Using cellular automata images and pseudo amino acid composition to predict protein sub-cellular location. Amino Acids, in press.
    【134】 Wang M, Yang J, Xu ZJ, Chou KC, SLLE for predicting membrane protein types. Journal of Theoretical Biology, 2004, 232: 7-15.
    【135】 Anfinsen CG, Principles that Govern the Folding of Protein Chains. Science, 1973, 181: 223-230.
    【136】 Weiner PK, Kollman PA, AMBER: Assisted Model Building with Energy Refinement. A General Program for Modeling Molecules and Their Interactions, J. Comp. Chem. 1981, 2: 287-303.
    【137】 Ackay DHJ, Cross AJ, Hagler AT, The role of energy minimization in simulation strategies of biomolecular systems, in: Prediction of protein structure and the principles of protein conformation. Ed. Fasman, GD., New York: Plenum Press. 1989:317.
    【138】 Chou KC, Review: Prediction of protein structural classes and subeelltdar location. Current Protein and Peptide Science. 2001, 1:171-208.
    【139】 Chou PY, Fasman GD, Prediction of secondary structure of proteins from their amino acid sequence Adv Enzymol. 1978, 47: 45-147.
    【140】 王树青,刘红,杜奇石,魏冬青,依据氨基酸残基的相关性预测蛋白质的结构类型,物理化学学报,2004,20(5):498-502.
    【141】 Finkelstein AV, Ptitsyn OB, Why do globular proteins fit a limited set of folding patterns? Prog. Biophys. Mol. Biol. 1987, 50: 171-190.
    【142】 Nakashima H, Nishikawa K, Ooi T, The folding type of a protein is relevant to the amino acid composition. J Biochem. 1986, 99: 152-162.
    【143】 Chou, K. C., and Cai. Y. D. (2004) Predicting enzyme family class in a hybridization space. Protein Science 13, 2857-2863.
    【144】 Chou KC, Prediction of protein folding types from amino acid composition by correlation angles. Amino Acids. 1993, 6:231-246.
    【145】 秦红珊,杨新歧,用BP神经网络基于氨基酸特性预测非同源蛋白质二级结构含量,生物物理学报,2002,18:465-473.
    【146】 邱建丁,梁汝萍,邹小勇等,连续小波变换在蛋白质结构预测中的应用,中山大学学报,2003,42(2):59-61.
    【147】 Xiao X, Shao S, Ding Y, Huang Z, Chen X, Chou KC, Using cellular automata to generate image representation for biological sequences. Amino Acids. 2005, 28: 29-35.
    【148】 秦红珊,杨新歧,曹文斗,从非同源蛋白质的一级序列预测其结构类。生物物理学报,2002,18(2)213-223.
    【149】 Gao Y, Shao SH, Xiao X, et al., Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, Bessel function, and Chebyshev filter, Amino Acids. 2005, 28: 373-376.
    【150】 Chou KC, A key driving force in determination of protein structural classes. Biochemical and Biophysical Research Communications. 1999, 264: 216-224.
    【151】 Kentaro T, Minoru K, Analysis of amino acid indeiees and mutation matrices for sequence comparison and structure prediction of proteins. Protein Engineering. 1996, 9(1): 27-36.
    【152】 Biou V, Gibrat JF, Levin JM, et al., Secondary structure prediction: combination of three different methods. Protein Engineering. 1988, 2: 185-191.
    【153】 Kyte J, Doolittle RF, A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982, 157: 105-132.
    【154】 Ponnuswamy PK, Prabhakaran M, Manavalan P, Hydrophobic packing and spatial arrangement of amino acid residues in globular proteins. Biochim Biophys Acta. 1980, 623: 301-315.
    【155】 Wold S, Eriksso L, Hellberg S, et al., Principla property values for six non-natual amino acids and their application to a structure-activity relationship for oxytocin peptide analogues. Can J Chem. 1987, 65: 1814-1820.
    【156】 Shen HP, Yang J, Liu XJ, Chou KC, Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo amino acid composition to predict membrane protein types Biochem. Biophys. Res. Commun. 2005, 334:577-581.
    【157】 Elrod DW, Cbou KC, A study on the correlation of G-protein coupled receptor types with amino-acid-composition Protein Engineering. 2002, 15:713-715.
    【158】 Zhang CT, Chou KC, Maggiora GM, Prodieting protein structural classes from amino acid composition: application of fuzzy clustering. Protein Engineering. 1995, 8: 425-435.
    【159】 Chou KC, Zhang CT, Predicting protein folding types by distance ftmetions that make allowances for amino acid interactionsJournal of Biological Chemistry, 1994, 269: 22014-22020.
    【160】 Chou KC, Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochemical & Biophysical Research Commurtieations. 2000, 278: 477-483.
    【161】 Du QS, Wei DQ, Chou KC, Correlations of amino acids in proteins Peptides. 2003, 24: 1863-1869.
    【162】 Chou KC, Prediction of protein cellular attributes using pseudo amino acid composition. PROTEINS: Structure, Function, and Genetics. 2001, 43: 246-255.
    【163】 Picardi M, Pane F, Quintarelli C, De Renzo A, Del Giudice A, Hepatitis B virus reactivation after fludarabine-based regimens for indolent non-Hodgldn's lymphomas: high prevalence of acquired viral genomic mutations. Haematologica. 2003, 88: 1296-1303.
    【164】 陈敏,张军等,乙型肝炎病毒受体研究进展,病毒学报,2002,18(2):185-193.
    【165】 Gunther S, Baginski S, Kissel H, Reinke P, Kruger H, Will H, Meisel H, Accumulation and persistence of hepatitis B virus core gene deletion nutants in renal transplant patients are associated with end-stage liver disease. Hepatology, 1996, 24:751-758.
    【166】 Scaglioni PP, Melegari M, Wands JR, Biologic properties of hepatitis B viral genomes with mutations in the precore promoter and precore open reading frame. Virology. 1997, 233: 374-381.
    【167】 尹华发,高志良,姚集鲁.乙型肝炎病毒S基因变异的研究现状.国外医学内科学分册,1999,26(7):284—286.
    【168】 钱螃,朱万辉.乙型肝炎病毒前C基因突变的研究进展,国外医学病毒学分册,1999,3(3):75—77.
    【169】 武力,袁正宏.两株乙型肝炎病毒基因组结构分析及其复制和抗原表达特性的比较。病毒学报,2000,16(2),116—121.
    【170】 Ling R, Harrison TJ, Functional analysis of mutations conferring lamivudine resistance on hepatitis B virus. Journal of Virology. 1999, 80:601-606.
    【171】 Locarnini S, Hepatitis B viral resistance: mechanisms and diagnosis. Journal of Hematology. 2003, 39: 124-132.
    【172】 刘传苗,张欣欣,陆志檬,乙型肝炎病毒YMDD联合前C变异及其临床意义,中华传染病杂志,2002,20(5):274-278.
    【173】 Gang MH., Lee YI., Suh DJ, Lee JH, . Gradual accumulation of mutations in precore core region of HBV in patients with chronic active hepatitis: implications of clustering changes in a small region of the HBV core region. J Med Virol, 1996, 48: 38-46.
    【174】 Yuan TT, Faruqi A, Shih JWK, Shih C, The mechanism of natural occurrence of two closely linked HBV precore predominant mutations. Virology, 1995, 211: 144-156.
    【175】 Ondrechen M J, Clifton JG, Ringe D, A simple computational predictor of enzyme function from structure. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98: 12473-12478.
    【176】 Karplus M, Petsko GA, Molecular Dynamics Simulations in Biology, Nature, 1990, 347: 631-639.
    【177】 Mehta PK, Heringa J, Argos P, A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%. Protein Sci. 1995, 4:2517-2528.
    【178】 Chou KC, Carlacci L, . Energetic approach to the folding of a/β barrels. Proteins: Structure, Function, and Genetics. 1991, 9: 280-295.
    【179】 Bryant SH, Altschul SF, Statistics of sequence-structure threading. Curr. Opin. Struct. Biol. 1995, 5: 236-244.
    【180】 Jones DT, Thornton JM, Potential energy functions for threading. Curr. Opin. Struct. Biol. 1996, 6: 210-216.
    【181】 Jones DT, Progress in protein structure prediction. Curr. Opini. Struct. Bio. 1997, 7, 377-387.
    【182】 Chou KC, Zhang CT, Review: Prediction of protein structural classes. Critical Reviews in Biochemistry and Molecular Biology. 1995, 30: 275-349.
    【183】 Schulze-Kremer S, Genetic algorithms and protein folding. Methods in Molecular Bilogy. 2000, 143: 175-222.
    【184】 尹华发,高志良,姚集鲁.乙型肝炎病毒S基因变异的研究现状.国外医学内科学分册,1999,26(7):284—286.
    【185】 何建文,武力,姚忻,李河民,闻玉梅,乙型肝炎病毒S基因129Leu河145Arg变异株的抗原表达与DNA免疫研究,中华微生物河免疫学杂志,1999,19(3):201-205.
    【186】 钱螃,朱万辉.乙型肝炎病毒前C基因突变的研究进展,国外医学病毒学分册,1999,3(3):75—77.
    【187】 刘春郠,张长法,唐永明,潘雪飞,乙肝病毒基因变异研究概况,现代中西医结合杂志,2002,11(18):1847-1849.
    【188】 彭劼,骆抗先,侯金林等,Hbe抗体阳性的无症状携带与慢性活动性肝炎的HBV X及前C基因变异,中华内科杂志,2001,40(5):335-336.
    【189】 彭劼,骆抗先,侯金林,郭亚兵,王战会,乙型肝炎病毒核心启动子缺失变异对病毒抗原表达的影响,第一军医大学学报,2002,22(4):306-208.
    【190】 金奇,医学分子病毒学[M].北京:科学出版社,2001,29-45.
    【191】 Allen MI, Deslaurisers M, Andrews CW, et al., Identification and characterization of Mutations in hepatitis B Virus Resistant to Lamivudine, Hepatology, 1998, 27: 1670-1677.
    【192】 Suzane KO, Naoya K, et al. The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance, Clin. Invest, 2001, 107: 449-455.
    【193】 Liaw YF, Chien RN, Yeh CT, et al., Acute exacerbation and hepatitis B virus clearance after emergence of YMDD motif mutation during Lamivudine therapy. Hepatology, 1999, 2: 567-571.
    【194】 Peters MG, Singer G, Howard T, et al. Fulminant hepatitc failure resultingfrom lamivudine-resistant hepatitis B virus in a renal transplant recipient: durable response after orthotopic liver transplantation on adefovir dipivoxil and hepatitis B immune globulin. Tansplantation, 1999, 68(12): 1912-1914.
    【195】 Wang JH, Lu SN, Lee CM, et al., Fatal hepatic failure after emergence of the hepatitis B virus mutant during lamivudine therapy in a patient with liver cirrhosis. Scand J Gastroenterol, 2002, 37: 366-369.
    【196】 Bozdayi AM, Uzunalimoglu O, et al., YSDD: a novel mutation in HBV DNA polymerase confers clinical resistance to lamivudine. J Viral Hepat. 2003, 10(4):256-265.
    【197】 Yeh CT, Chien RN, Chu CM, Liaw YF, Clearance of original hepatitis B virus YMDD-motif mutants with emergence of distinct Lamivudine-resistant mutants during prolonged lamivudine therapy, Hepatology, 2000, 31 (6): 1318-1326.
    【198】 Ogata N, Fujii K, et al., Novel patterns of amino acid mutations in the hepatitis B virus polymerase in association with resistance to lamivudine therapy in japanesse patients with chronic hepatitis B. J Med Virol, 1999, 59(3): 270-276.
    【199】 Xiong X, Yang H, Westland CE, et al. In vitro evaluation of hepatitis B virus polymerase mutations associated with famciclovir resistance. Hepatology, 2000, 31(1): 219-224.
    【200】 Melegari M, Scaglioni PP, Wands JR. Hepatitis B virus mutants associated with 3TC and famciclovir administration are replication defective. Hepatology, 1998, 27(2):628-633.
    【201】 Akihiko O, Tetsuya I, Kentaro Y, Ryugo Y, Yoshitaka F, Shinichi K, Mutation at codon 130 in hepatitis B virus(HBV) core region increases markedly during acute exacerbation of hepatitis in chronic HBV carriers, [J]. Gastroenterology, 2001, 36: 103-110.
    【202】 Allen MI., Deslauriers M, Andrews CW, Tipples GA., Walters KA, Tyrrell D L, Brown N, Condreay LD, Identification and characterization of mutations in hepatitis B virus resistant to lamivudine clinical investigation group. Hepatology, 1998, 27: 1670-1677.
    【203】 陆建荣,蒋文,薛建亚,乙型肝炎病毒c基因启动子变异与血清HBeAg及HBV DNA的关系,第二军医大学学报,2002,23(12):1348-1350.
    【204】 Bartholomeusz A., Schinazi RF, Locarnini SA, Significance of mutations in the hepatitis B virus polymerase selected by nucleoside analogues and implications for controlling chronic disease. Viral Hepatitis Reviews. 1998, 4: 167-187.
    【205】 Buckwold VE, Xu Z, Chen M, Yen TS, Ou JH, Effects of naturally occurring mutation in the hepatitis B virus basal core promoter on precore gene expression and viral replication. Joural of Virology. 1996, 70: 5845-5851.
    【206】 Buckwold VE, Xu Z, Yen TS, Ou JH, Effects of a frequent double-nucleotide basal core promoter mutation and its putative single-nucleotide precursor mutations on hepatitis B virus gene expression and replication. Journal of General Virology. 1997, 78: 2055-2065.
    【207】 Delaney WEIV, Yang H, Westland CE, Das K, Arnold E, Gibbs CS, Miller M D, Xiong S, The Hepatitis B Virus Polymerase Mutation rtV173L Is Selected during Lamivudine Therapy and Enhances Viral Replication In Vitro. J. Virol., 2003, 77: 11833-1184.
    【208】 刘传苗,张欣欣,陆志檬,乙型肝炎病毒YMDD联合前C变异及其临床意义,中华传染病杂志,2002,20(5):274-278.
    【209】 Ehata T, Omata M, Chuang WL, Uokosuka O, Ire Y, Hosoda K, Ohto M, Mutations in core nucleotide sequence of hepatitis B virus correlate with fulminant and severe hepatitis. J. Clin. Investig. 1993, 91: 1206-1213.
    【210】 Erhardt A, Reineke U, londin D, Gerlich W, Adams O, Heintges T, Niederau C, Haussinger D, Mutations of the core promoter and response to interferon treatment in chronic replicative hepatitis B. Hepatology, 1999, 31: 716-725.
    【211】 Hasegawa K, Huang J, Rogers SA, Blum HE., Liang TJ, Enhanced replication of a hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. J. Virology, 1994, 68(3): 1651-1659.
    【212】 Kalinina T, Riu A, Fisher L, Will H, Sterneck M, A dominant hepatitis B virus population defective in virus secretion because of several S-gene mutations from a patient with fulminant hepatits. Hepatology, 2001, 34: 385-394.
    【213】 Ladner SK, Miller TJ, King RW, The M539V polymerase variant of human hepatitis B virus demonstrates resistance to 2'-Deoxy -3'-Thiacytidine and a reduced ability to synthesize viral DNA, Antimicrobial agents and chemotherapy, 1998, 42(8): 2128-2131.
    【214】 Liaw YF, Impact of YMDD mutations during lamivudine therapy in patients with chronic hepatitis B. Antivir Chem Chemother, 2001, 12: 67-71.
    【215】 Sato S, Suzuki K, Akahane Y, Akamatsu K, Akiyama K, Yunomura K, Tsuda F, Tanaka T, Okamoto H, Miyakawa Y, Mayumi M, Hepatitis B virus strains with mutations in the core promoter in patients with fulminant hepatitis. Ann, Intern. Med. 1995, 122: 241-248.
    【216】 Suzane Kioko One, Naoya Kato, Yasushi Shiratori, et al., The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance, the Journal of Clinical Investigation, 2001, 107(4): 449-455.
    【217】 Baumert T F, Marrone A, Vergalla J, Liang TJ, Naturally occurring mutations define a novel function of the hepatitis B virus core promoter in core protein expression. J. Virology, 1998, 72: 6785-6795.
    【218】 Fu L, Cheng YC, Role of additional mutations outside the YMDD motif of hepatitis B virus polymerase in L(-)SddC (3TC)resistance, Biochem Pharmacol, 1998, 55: 1567-1572.
    【219】 Gunther S, Fisher L, Pult J, Sterneck M, Will H, Naturally occurring variants of hepatitis B virus. J. Virology, 1999, 69: 5437-5444.
    【220】 Lin X, Yuan ZH., Wu L, Ding JP, Wen YM, A single amino acid in the reverse transcriptase domain of Hepatitis B virus affects virus replication efficiency. J. Virology, 2001, 75(23): 11823-11833.
    【221】 Lu JR., Jiang W, Xue JY, Relationship between HBV c gene promoter gene mutation and serum HBeAg and HBV DNA contents. Acad J Sec Mil Med Univ. 2002, 23(12): 1348-1350.
    【222】 Mayerat C, Mantegani A, Spertini F, Frei PC, Mutations in the basal core promoter and precore/core gene of hepatitis B virus in patients with chronic active but not acute hepatitis B, Eur J Clin Microbiol Infect Dis. 1999, 18(12): 871-878.
    【223】 Blum HE, Galun E, Liang TJ, Naturally occurring missense mutation in the polymerase gene terminating hepatitis B virus replication, J. Virology, 1991, 65(4): 1836-1842.
    【224】 Gunther S, Baginski S, Kissel H, Reinke P, Kruger H, Will H, Meisel H, Accumulation and persistence of hepatitis B virus core gene deletion nutants in renal transplant patients are associated with end-stage liver disease. Hepatology, 1996, 24:751-758.
    【225】 Le Pogam S, Yuan TT, Sahu GK, Chatterjee S, Shih C, Low-level secretion of huraan hepatitis B virus virions caused by two independent, Naturally occurring mutations (P5T and L60V) in the capsid protein J. Virology, 2000, 74(19): 9099-9105.
    【226】 Melegari M, Scaglioni PP, Wands JR, Hepatitis B virus mutants associated with 3TC and famciclivir administrations are replication defective. Hepatology, 1998, 27: 628-633.
    【227】 Pichoud C, Seigneres B, Wang ZR, Trepo C, Zoulim F, Transient selection of hepatitis B virus polymerase gene mutant associated with decreased replication capacity and famciclovir resistance. Hepatology, 1999, 29(1): 230-237.
    【228】 Yuan TT, Lin MH, Qiu SM, Shih C, Functional characterization of naturally occurring variants of human hepatitis B virus containing the core internal deletion mutation. J. Virol. 1998, 72: 2168-2176.
    【229】 Yuan TT, Tai PC, Subtype-independent immature secretion and subtype-dependent replication deficiency of highly frequent, naturally occurring mutation of human hepatitis B virus core antigen. J. Virol. 1999, 73: 10122-10128.
    【230】 鲍旭丽,乙型肝炎病毒动力学研究进展,国外医学病毒学分册,2004,11(2):36-39.
    【231】 Zeuzem S, Schmidt JM, 1 et al., Effect of interferon alfa on the dynamics of hepatitis C virus turnover in vivo. Hepatology. 1996, 23: 366-371.
    【232】 Nowak MA, Bonhoeffer S, Hill AM, et al., Viral dynamics in hepatitis B virus infection. Medical Sciences, 1996, 93(9): 4398-4402.
    【233】 Neumann AU, Lam NP, Dahari H, et al., Hepatitis C viral dynamics in vivo and the antiviral efficacy of intefferon-a therapy. Science, 1998, 282:103-107.
    【234】 Tsiang M, Rooney JF, Toole JJ, Gibbs CS, Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy. Hepatology, 1999, 29(6): 1863-1869.
    【235】 Funk GA, Jansen VAA, Bonhoeffer S, Kilingback T, Spatial models of virus-immune dynamics. Journal of Theoretical Biology, 2005, 233:221-236.
    【236】 Nowak MA, Lloyd AL, Vasquez GM, et al., Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficieney virus infection. J. Virol. 1997, 71: 7518-7524.
    【237】 Zorzenon dos Santos RM., Coutinho S, Dynamics of HIV infection: A cellular automata approach. Physical review letters. 2001, 87(16): 168102.
    【238】 Alexander G. J. M., Immunology of hepatitis B virus infection, Br. Med. Bull. 1990, 46(2), 354-367.
    【239】 Lau GK, Tsiang M, Hou J, at al., Combination therapy with lamivudine and famciclovir for chronic hepatitis B infected Chinese patients: a viral dynamics study. Hepatology. 2000, 32: 394-399.
    【240】 Wolters LMM, Hansen BE, et al., the influence of baseline characteristics on theviral dynamic parameters in chronic hepatitis B patients treated with lamivudine. J Hepatol. 2002, 37: 253-258.
    【241】 Riheiro, R. M., Lo, A., Perelson, AS, Dynamics of hepatitis B virus infection. Microhes and infection. 2002, 4: 829-835.
    【242】 Xiao X, Shao S, Ding Y, Huang Z, Chen X, Chou KC, An Application of Gene Comparative Image for Predicting the Effect on Replication Ratio by HBV Virus Gene Missense Mutation. Journal of Theoratical Biology, 2005, 235(4): 555-565.
    【243】 Xiao X, Shao SH, Ding YS, Using Cellular Automata to Generate Image Representation for Biological Sequences. Amino acids. 2005, 28: 57-62.
    【244】 Guidotti LB, Rochford R, et al., Viral clearance without destruction of infected cells during acute HBV infection, Science, 1999, 284: 825-529.
    【245】 London WT, Blumberg BS, A cellular model of the role of hepatitis B virus in the pathogenesis of primary hepatocellular carcinoma. Hepatology, 1982, 2, 10S-14S.
    【246】 Factor VM, Radaeva SA, Thorgeirsson SS, Origin and fata of oval cells in dipin induced hepatocarcinogenesis in the mouse. Am J Pathol. 1994, 145, 409-422.
    【247】 Chisari FV, Ferrari C, Hepatitis B virus immunopathogenesis. Annu Rev Immunol, 1995, 13: 29-60.
    【248】 Naumov NV, Schneider T, Grotzinger T, Jung MC, Miska S, Pape G. R, Will H, Precore mutant hepatitis B virus infection and liver disease. Gastroenterology. 1992, 102: 538-543.
    【249】 Seeger C, Mason WS, Hepatitis B virus biology, Microbiol. Mol. Biol. Rew. 2000, 64: 51-68.
    【250】 Whalley SA, Murray JM, et al., Kinetics of acute Hepatitis B virus infection in human. Journal of Experimental Medicine, 2001, 193(7): 847-854.
    【251】 Perelson AS, Modelling viral and immune system dynamics, Nat. Rev. Immunol. 2002, 2: 28-36.
    【252】 Neumann AU, Lam NP, Dahari H, at al., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science, 1998, 282:103-107.
    【253】 Marchuk G. I, Petrov RV, Romanyukha AA, Bocharov G. A, Mathematical model of antiviral immune response, J. Theor. Biol. 1991, 151:1-69.
    【254】 Santantonio T, at al., Lamivudine/interferon combination therapy in anti-HBe positive chronic hepatitis B patients: a controlled pilot study. Journal of Hepatology. 2002, 36: 799-804.
    【255】 Guidotti LG., Morris A, Mendez H, Koch R, Silverman RH., Williams BR. and Chisari FV, Interferon-regulated pathways that control hepatitis B virus replication in transgenic mice. J Virol. 2002, 76, 2617-2621.
    【256】 Lee HC, Suh DJ, Lamivudine therapy for decompensated liver cirrhosis related to hepatitis B virus infection. Intervirology. 2003, 46(6): 388-393.
    【257】 Antoine C, Landau A, Menoyo V, Duong JP, Duboust A, Glotz D. Efficacy and safety of lamivudine in renal transplaat patients with chronic hepatitis B. Transplant Proceed, 2000, 32: 384-385.
    【258】 Ganem D, Pollack GD, Tavis JR. Hepatitis B virus reverse transcriptase and its many roles in hepadnaviral genomic replication. Infect Agents Dis. 1994, 3: 85-93.
    【259】 傅青春,陈成伟,慢性乙型肝炎的治疗,肝脏杂志,2000,3:165-167.
    【260】 Nowak MA, May RM, Virus dynamics, oxford university press, 2000, 27-43.
    【261】 Bonhoeffer S, May RM, Shaw GM, Nowak MA, Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. 1997, 94: 6971-6976.
    【262】 Zeuzem S, de Man RA, Honkoop P, et al., Dynamics of hepatitis B virus infection in vivo, J. Hepatol. 1997, 27: 431—436.
    【263】 Lewin SR, Ribeiro RM, Waiters T, Lau GK, et al., Analysis of hepatitis B virus load decline under potent therapy: complex decay profiles observed, Hepatology, 2001, 34: 1012-1020.
    【264】 Zhu Y, Yamamoto T, Cullen J, et al., Kinetics of hepadnavirus loss from the liver during inhibition of viral DNA synthesis, J. Virol. 2001, 75: 311-322.
    【265】 Beauchemin C, Samuel J, Tuszynsld J, A simple cellular automaton model for influenza A viral infections. Journal of Theoretical Biology. 2005, 232(2): 223-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700