新型壳聚糖衍生物的合成及壳聚糖季铵盐用于钛片表面修饰的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是一种天然来源的聚阳离子高分子材料,具有良好的生物可降解性、生物相容性和生物活性。
     首先,用壳聚糖和2, 3-环氧丙基三甲基氯化铵合成了5种不同取代度的壳聚糖季铵盐,并用红外光谱(FT-IR)和核磁共振氢谱(1H-NMR)对其结构进行表征,测定了所合成壳聚糖季铵盐的溶解度、稀溶液pH稳定性、吸湿性等相关性质,同时对其成膜性、膜抑菌性作了初步研究。结果表明:壳聚糖季铵盐的溶解度、稀溶液pH稳定性和吸湿性随着壳聚糖季铵盐取代度的增加而增加;壳聚糖季铵盐具有良好的成膜性,所制得膜透明光滑,有一定的强度和韧性,对金黄色葡萄球菌和大肠杆菌的抑菌效果均明显优于壳聚糖膜。
     其次,依次通过piranha acid处理、硅烷化学反应、戊二醛处理,将壳聚糖季铵盐(DS:18%)化学键接到医用钛表面,从而制得壳聚糖季铵盐功能化钛片。并用x-射线光电子能谱(XPS)和全反射红外光谱(FT-IR/ATR)对每一步化学处理钛片进行表征。结果显示:随着每一步化学反应的进行,相对元素含量C/Ti、O/Ti逐渐增加。将壳聚糖季铵盐处理到戊二醛沉积的表面后,相对元素含量N/Ti从0.212增加到1.088;随着每一步化学处理,归属于TiO2的O 1s含量逐渐变小,从81%,72%,61%降到40%;归属于金属钛的Ti 2p 453.4 eV吸收峰逐渐变小。经过戊二醛和壳聚糖季铵盐处理的钛片表面,归属于金属钛的Ti 2p 453.4 eV吸收峰几乎消失;壳聚糖季铵盐功能化钛片表面出现了一系列特征吸收带,包括3365 cm-1 (-OH ),1664 cm-1 (Amide I),1165 cm-1 (νas, C-O-C桥)和958 cm-1–1155 cm-1(糖环的骨架振动和伯仲醇羟基的伸缩振动)。上述一系列结果说明壳聚糖季铵盐被成功键接到医用钛表面。
     最后,利用水相体系(chitosan-HOBt in the aqueous system)和有机相体系(SCC in the organic system)合成了两种新型低取代度的壳聚糖季磷盐(WSPCS DS:3.6%和WSPCS DS:4.2%)和两种新型高取代度的壳聚糖季磷盐(OSPCS DS:54.5%和OSPCS DS:81.7%)。FT-IR、1H-NMR、31P-NMR和XRD测定结果表明:WSPCS和OSPCS中均存在元素磷,且以磷盐的化学价态存在;WSPCS和OSPCS中原壳聚糖的结晶性均受到显著影响;与壳聚糖相比,WSPCS显著改善了其在水中的溶解性,OSPCS显著改善了其在有机溶剂如DMSO中的溶解性。
Chitosan, a well-known abundant natural polycationic macromolecule with good biodegradability, biocompatibility and so on, gets much attention currently for biomedical application.
     Firstly, varies of 2-Hydroxypropyltrimethyl ammonium chloride chitosans (HACC) with different degree of substitution (DS: 6%, 18%, 37%, 54% and 81%) were synthesized by the reaction of chitosan with glycidyltrimethylammonium chloride (GTMAC), and characterized by FT-IR and 1H-NMR spectroscopy. Their properties such as water solubility, aqueous solution stability upon pH and moisture absorption ability were studied, following with the film-forming capability and the antibacterial property of films. Results indicated that the water solubility, aqueous solution stability upon pH and moisture absorption ability increased with increasing DS of HACC. Additionally, HACC films, prepared by tape casting with their dilute solutions, were presented as transparent films with favorable mechanical performance and better antibacterial property against Staphylococcus aureus and Escherichia coli than chitosan film.
     Secondly, HACC functionalized titanium was prepared by treating the pristine titanium with piranha acid oxidation, silanization procedure, glutaraldehyde reaction and HACC (DS: 18%) deposition successively. Each kind of chemical treated titanium was characterized by x-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared attenuated total reflection (FT-IR/ATR). The results showed that with each reaction occurred, the atomic ratio of C/Ti and O/Ti gradually increased. Following the reaction of glutaraldehyde treated titanium with HACC, the atomic ratio of N/Ti rised from 0.212 to 1.088. With each reaction occurred, the content of O 1s attributed to TiO2 became smaller and smaller, from 81%, 72%, 61% to 40%. Also with each reaction carried out, the electron peak of Ti 2p at 453.4 eV due to Ti base gradually turned smaller and the peak almost diappearred after the titanium was treated with glutaraldehyde and HACC. Additionally, series infrared absorption bands were observed on the surface of HACC funtionalized titanium, including 3365cm-1 (-OH), 1664cm-1 (Amide I), 1165cm-1 (νas, C-O-C bridge) and the absorption bands between 958cm-1and 1155cm-1 (skeletal vibrations involving the C-O stretching of saccharide structure of HACC). All these results indicated that HACC was successfully covalently attached to medical titanium surfaces.
     Eventually, novel Water Soluble Phsophonium Chitosan Derivatives (WSPCS) were synthesized with differing degree of substitution (3.6% and 4.2%) of quaternary phosphonium by reacting chitosan with (2-Carboxyethyl) triphenylphosphonium chloride in a homogeneous system. At the same time, novel Organo Soluble Phosphnium Chitosan (OSPCS) were prepared with differing degree of substitution (54.5% and 81.7%) using chitosan-sodium dodecyl sulfate polyelectrolyte/surfactant complex in an organo system. All these compounds were characterized by FT-IR, 1H-NMR, 31P-NMR and x-ray diffraction (XRD). The results suggested that both WSPCS and OSPCS contained element of phsophonium. The crystallinity of not only WSPCS but also OSPCS was significantly influenced by the introduction of triphenylphosphonium group to chitosan backbone. WSPCS also showed improved water solubility, while the resulting OSPCS showed enhanced organo solubility compared to original chitosan.
引文
[1] B.A. Stankiewicz, D.E.G. Briggs, R.P. Evershed, M.B. Flannery, M. Wuttke, Preservation of Chitin in 25-Million-Year-Old Fossils, Science, 1997, 276 (5318), 1541-1543
    [2] J.K. Francis Suh, H.W.T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review, Biomaterials, 2000, 21 (24), 2589-2598
    [3] M.N.V. Ravi Kumar, A review of chitin and chitosan applications, Reactive and Functional Polymers, 2000, 46 (1), 1-27
    [4] A. Di Martino, M. Sittinger, M.V. Risbud, Chitosan: A versatile biopolymer for orthopaedic tissue-engineering, Biomaterials, 2005, 26 (30), 5983-5990
    [5] K. Kurita, Controlled functionalization of the polysaccharide chitin, Progress in Polymer Science (Oxford), 2001, 26 (9), 1921-1971
    [6] E.I. Rabea, M.E.T. Badawy, C.V. Stevens, G. Smagghe, W. Steurbaut, Chitosan as antimicrobial agent: Applications and mode of action, Biomacromolecules, 2003, 4 (6), 1457-1465
    [7] C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science, 2009, 34 (7), 641-678
    [8]汪玉庭,刘玉红,等,甲壳素、壳聚糖的化学改性及其衍生物应用研究进展,功能高分子学报, 2002, 15 (1), 107-114
    [9] H. Sashiwa, Y. Shigemasa, R. Roy, Dissolution of Chitosan in Dimethyl Sulfoxide by Salt Formation, Chemistry Letters, 2000, 29 (6), 596-597
    [10] A. Denuziere, D. Ferrier, A. Domard, Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico-chemical aspects, Carbohydrate Polymers, 1996, 29 (4), 317-323
    [11] N.M. Alves, J.F. Mano, Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications, International Journal of Biological Macromolecules, 2008, 43 (5), 401-414
    [12]杨冬芝,刘晓非,壳聚糖抗菌活性的影响因素,应用化学, 2000, 17 (6), 598-602
    [13]王秀文,刘占龙,等,胶原—壳聚糖冻干海绵的制备及其抑菌作用,中国生化药物杂志, 2002, 23 (4), 187-188
    [14]胡瑛,杜予民,刘慧,壳聚糖抗菌性与分子量和环境介质相关性研究,分析科学学报, 2003, 19 (4), 305-308
    [15] Y.-J. Jeon, P.-J. Park, S.-K. Kim, Antimicrobial effect of chitooligosaccharides produced by bioreactor, Carbohydrate Polymers, 2001, 44 (1), 71-76
    [16] K. Suzuki, T. Mikami, Y. Okawa, A. Tokoro, S. Suzuki, M. Suzuki, Antitumor effect ofhexa-N-acetylchitohexaose and chitohexaose, Carbohydrate Research, 1986, 151 403-408
    [17] S.-I. Nishimura, H. Kai, K. Shinada, T. Yoshida, S. Tokura, K. Kurita, H. Nakashima, N. Yamamoto, T. Uryu, Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates, Carbohydrate Research, 1998, 306 (3), 427-433
    [18]陈煜,窦桂芳,罗运军,谭惠民,甲壳素和壳聚糖在伤口敷料中的应用,高分子通报, 2005, 1 94-100
    [19]黄华芹,高洸,李文国,壳聚糖在纺织工业中的应用研究,针织工业, 2003, 2 125-127
    [20]王艳,周培根,俞剑燊,王平平,戚晓玉,陶圣诞,产壳聚糖酶菌株的生物学特性及抑菌性能研究,生物技术, 2004, 14 (5), 25-28
    [21] Y. Kato, H. Onishi, Y. Machida, Application of chitin and chitosan derivatives in the pharmaceutical field, Current Pharmaceutical Biotechnology, 2003, 4 (5), 303-309
    [22] M. Prabaharan, Review Paper: Chitosan Derivatives as Promising Materials for Controlled Drug Delivery, J Biomater Appl, 2008, 23 (1), 5-36
    [23]徐健,金鑫荣,天然高分子甲壳素/壳聚糖在生物和医药方面的应用,大学化学, 1994, 9 (3), 22-25
    [24] K.A. Janes, P. Calvo, M.J. Alonso, Polysaccharide colloidal particles as delivery systems for macromolecules, Advanced Drug Delivery Reviews, 2001, 47 (1), 83-97
    [25] H. Takeuchi, Y. Matsui, H. Yamamoto, Y. Kawashima, Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats, Journal of Controlled Release, 2003, 86 (2-3), 235-242
    [26] A. Bernkop-Schnch, D. Guggi, Y. Pinter, Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system, Journal of Controlled Release, 2004, 94 (1), 177-186
    [27] H.-Q. Mao, K. Roy, V.L. Troung-Le, K.A. Janes, K.Y. Lin, Y. Wang, J.T. August, K.W. Leong, Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency, Journal of Controlled Release, 2001, 70 (3), 399-421
    [28] L. Liu, F. Li, Y.e. Fang, S. Guo, Regioselective Grafting of Poly(ethylene glycol) onto Chitosan and the Properties of the Resulting Copolymers, Macromolecular Bioscience, 2006, 6 (10), 855-861
    [29]汪玉庭,栾兆坤,交联壳聚糖冠醚的合成及其对金属离子的吸附性能,环境化学, 1998, 17 (4), 349-354
    [30]张文清,柴平海,壳聚糖及其衍生物在化妆品中的应用,高分子通报, 1999, 2 73-76
    [31] C.-H. Kim, S.-Y. Kim, K.-S. Choi, Synthesis and Antibacterial Activity of Water-soluble Chitin Derivatives, Polymers for Advanced Technologies, 1997, 8 (5), 319-325
    [32] J.K. Lee, S.U. Kim, J.H. Kim, Modification of Chitosan to Improve Its HypocholesterolemicCapacity, Bioscience, Biotechnology, and Biochemistry, 1999, 63 (5), 833-839
    [33] J.-K. Lee, H.-S. Lim, J.-H. Kim, Cytotoxic activity of aminoderivatized cationic chitosan derivatives, Bioorganic & Medicinal Chemistry Letters, 2002, 12 (20), 2949-2951
    [34] A. Mochizuki, Y. Sato, H. Ogawara, S. Yamashita, Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. II. The permselectivity of chitosan membrane, Journal of Applied Polymer Science, 1989, 37 (12), 3375-3384
    [35]许晨,丁马太,壳聚糖季铵盐的合成及结构表征,功能高分子学报, 1997, 10 (1), 51-55
    [36] L. Léger, E. Rapha?l, H. Hervet, Polymers in Confined Environments, 1999, pp. 185-225.
    [37] D.K. Singh, A.R. Ray, Controlled release of glucose through modified chitosan membranes, Journal of Membrane Science, 1999, 155 (1), 107-112
    [38] D.W. Jenkins, S.M. Hudson, Review of Vinyl Graft Copolymerization Featuring Recent Advances toward Controlled Radical-Based Reactions and Illustrated with Chitin/Chitosan Trunk Polymers, Chemical Reviews, 2001, 101 (11), 3245-3274
    [39] A.F. Thüemann, Polyelectrolyte-surfactant complexes (synthesis, structure and materials aspects), Progress in Polymer Science, 2002, 27 (8), 1473-1572
    [40] A.T. Dembo, S.G. Starodoubtsev, Interaction between Polyelectrolyte Gel Surfactant Complexes with Oppositely Charged Polymer and Surfactant Components, Macromolecules, 2001, 34 (8), 2635-2640
    [41] F.-L. Mi, S.-S. Shyu, T.-B. Wong, S.-F. Jang, S.-T. Lee, K.-T. Lu, Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II. Effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent, Journal of Applied Polymer Science, 1999, 74 (5), 1093-1107
    [42] G. Cai, H. Jiang, K. Tu, L. Wang, K. Zhu, A facile route for regioselective conjugation of organo-soluble polymers onto chitosan, Macromolecular Bioscience, 2009, 9 (3), 256-261
    [43] G. Cai, H. Jiang, Z. Chen, K. Tu, L. Wang, K. Zhu, Synthesis, characterization and self-assemble behavior of chitosan-O-poly([epsilon]-caprolactone), European Polymer Journal, 2009, 45 (6), 1674-1680
    [44]佟会,邱树毅,季铵盐类抗菌剂及其应用研究进展,贵州化工, 2006, 31 (5), 1-7
    [45]张葵花,林松柏,谭绍早,有机抗菌剂研究现状及发展趋势,涂料工业, 2005, 35 (005), 45-49
    [46]沈东风,孔祥东,贾之慎,壳聚糖及其衍生物的抗菌活性研究进展,海洋科学, 2000, 24 (007), 28-30
    [47]李凤艳,汪燮卿,水不溶性聚合物杀菌剂,石油化工高等学校学报, 2001, 14 (002), 39-43
    [48] A. Kanazawa, T. Ikeda, T. Endo, Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterialactivity of the surface-treated polymer films, Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31 (6), 1467-1472
    [49] A. Kanazawa, T. Ikeda, T. Endo, Polymeric phosphonium salts as a novel class of cationic biocides. IX. Effect of side-chain length between main chain and active group on antibacterial activity, Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32 (10), 1997-2001
    [50] A. Kanazawa, T. Ikeda, T. Endo, Polymeric phosphonium salts as a novel class of cationic biocides. V. Synthesis and antibacterial activity of polyesters releasing phosphonium biocides, Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31 (12), 3003-3011
    [51] A. Kanazawa, T. Ikeda, T. Endo, Novel polycationic biocides: Synthesis and antibacterial activity of polymeric phosphonium salts, Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31 (2), 335-343
    [52] S. Kurtz, F. Mowat, K. Ong, N. Chan, E. Lau, M. Halpern, Prevalence of Primary and Revision Total Hip and Knee Arthroplasty in the United States From 1990 Through 2002, J Bone Joint Surg Am, 2005, 87 (7), 1487-1497
    [53] J. Schierholz, J. Beuth, A. Rump, D. K nig, G. Pulverer, Novel strategies to prevent catheter-associated infections in oncology patients, Journal of chemotherapy (Florence, Italy), 2001, 13 (1), 239
    [54] E.M. Christenson, K.S. Anseth, J.J.J.P.v.d. Beucken, C.K. Chan, B. Ercan, J.A. Jansen, C.T. Laurencin, W.-J. Li, R. Murugan, L.S. Nair, S. Ramakrishna, R.S. Tuan, T.J. Webster, A.G. Mikos, Nanobiomaterial applications in orthopedics, Journal of Orthopaedic Research, 2007, 25 (1), 11-22
    [55] T. Xu, N. Zhang, H.L. Nichols, D. Shi, X. Wen, Modification of nanostructured materials for biomedical applications, Materials Science and Engineering: C, 2007, 27 (3), 579-594
    [56] H.F. Hildebrand, N. Blanchemain, G. Mayer, F. Chai, M. Lefebvre, F. Boschin, Surface coatings for biological activation and functionalization of medical devices, Surface and Coatings Technology, 2006, 200 (22-23), 6318-6324
    [57] I.-Y. Kim, S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, C.-S. Cho, Chitosan and its derivatives for tissue engineering applications, Biotechnology Advances, 2008, 26 (1), 1-21
    [58] K. Cai, A. Rechtenbach, J. Hao, J. Bossert, K.D. Jandt, Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: Characterization and cell behaviour aspects, Biomaterials, 2005, 26 (30), 5960-5971
    [59] E.-R. Kenawy, S.D. Worley, R. Broughton, The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review, Biomacromolecules, 2007, 8 (5), 1359-1384
    [60] E.R. Kenawy, F.I. Abdel-Hay, A.E.R.R. El-Shanshoury, M.H. El-Newehy, Biologically active polymers: Synthesis and antimicrobial activity of modified glycidyl methacrylate polymers havinga quaternary ammonium and phosphonium groups, Journal of Controlled Release, 1998, 50 (1-3), 145-152
    [61] E.-R. Kenawy, Y.A.-G. Mahmoud, Biologically Active Polymers, 6, Macromolecular Bioscience, 2003, 3 (2), 107-116
    [62] E.-R. Kenawy, F.I. Abdel-Hay, A.E.-R.R. El-Shanshoury, M.H. El-Newehy, Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts, Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40 (14), 2384-2393
    [63] E.J. Delikatny, S.K. Roman, R. Hancock, T.M. Jeitner, C.M. Lander, D.C. Rideout, C.E. Mountford, Tetraphenylphosphonium chloride induced mr-visible lipid accumulation in a malignant human breast cell line, International Journal of Cancer, 1996, 67 (1), 72-79
    [64] E.J. Delikatny, W.A. Cooper, S. Brammah, N. Sathasivam, D.C. Rideout, Nuclear Magnetic Resonance-visible Lipids Induced by Cationic Lipophilic Chemotherapeutic Agents Are Accompanied by Increased Lipid Droplet Formation and Damaged Mitochondria, Cancer Res, 2002, 62 (5), 1394-1400
    [65] A. Manetta, G. Gamboa, A. Nasseri, Y.D. Podnos, D. Emma, G. Dorion, L. Rawlings, P.M. Carpenter, A. Bustamante, J. Patel, D. Rideout, Novel Phosphonium Salts Displayin Vitroandin VivoCytotoxic Activity against Human Ovarian Cancer Cell Lines, Gynecologic Oncology, 1996, 60 (2), 203-212
    [66] R.J. Dubois, C.-C. Lin, J.A. Beisler, Synthesis and antitumor properties of some isoindolylalkylphosphonium salts, Journal of Medicinal Chemistry, 1978, 21 (3), 303-306
    [67] V. Cuchelkar, P. Kope?ková, J. Kope?ek, Novel HPMA Copolymer-Bound Constructs for Combined Tumor and Mitochondrial Targeting, Molecular Pharmaceutics, 2008, 5 (5), 776-786
    [68] M.P. Murphy, R.A.J. Smith, Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations, Annual Review of Pharmacology and Toxicology, 2007, 47 (1), 629-656
    [69] R.J. Burns, R.A.J. Smith, M.P. Murphy, Synthesis and Characterization of Thiobutyltriphenylphosphonium Bromide, a Novel Thiol Reagent Targeted to the Mitochondrial Matrix, Archives of Biochemistry and Biophysics, 1995, 322 (1), 60-68
    [70] C. Qin, Q. Xiao, H. Li, M. Fang, Y. Liu, X. Chen, Q. Li, Calorimetric studies of the action of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride on the growth of microorganisms, International Journal of Biological Macromolecules, 2004, 34 (1-2), 121-126
    [71]孙多先,徐正义,张晓行,季铵盐改性壳聚糖的制备及其对红花水提液的澄清效果,石油化工, 2003, 32 (10), 892-895
    [72] D. Campoccia, L. Montanaro, C.R. Arciola, The significance of infection related toorthopedic devices and issues of antibiotic resistance, Biomaterials, 2006, 27 (11), 2331-2339
    [73] L.P. Sun, Y.M. Du, X.W. Shi, X. Chen, J.H. Yang, Y.M. Xu, A new approach to chemically modified carboxymethyl chitosan and study of its moisture-absorption and moisture-retention abilities, Journal of Applied Polymer Science, 2006, 102 (2), 1303-1309
    [74] S.H. Lim, S.M. Hudson, Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group, Carbohydrate Research, 2004, 339 (2), 313-319
    [75] T. Tashiro, Antibacterial and bacterium adsorbing macromolecules, Die Angewandte Makromolekulare Chemie, 286 (2), 63-87
    [76] K.R. Williams, Etch rates for micromachining processing, Journal of microelectromechanical systems, 1996, 5 (4), 256
    [77] H.J. Martin, K.H. Schulz, J.D. Bumgardner, K.B. Walters, XPS Study on the Use of 3-Aminopropyltriethoxysilane to Bond Chitosan to a Titanium Surface, Langmuir, 2007, 23 (12), 6645-6651
    [78] Z. Shi, K.G. Neoh, E.T. Kang, C.K. Poh, W. Wang, Surface Functionalization of Titanium with Carboxymethyl Chitosan and Immobilized Bone Morphogenetic Protein-2 for Enhanced Osseointegration, Biomacromolecules, 2009, 10 (6), 1603-1611
    [79] D.S. Dunn, S. Raghavan, R.G. Volz, Gentamicin sulfate attachment and release from anodized Ti-6Al-4V orthopedic materials, Journal of Biomedical Materials Research, 1993, 27 (7), 895-900
    [80] A. Nanci, J.D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, M.D. McKee, Chemical modification of titanium surfaces for covalent attachment of biological molecules, Journal of Biomedical Materials Research, 1998, 40 (2), 324-335
    [81] J.E. Sundgren, P. Bod?, I. Lundstr?m, Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel, Journal of Colloid and Interface Science, 1986, 110 (1), 9-20
    [82] B.W. Callen, B.F. Lowenberg, S. Lugowski, R.N.S. Sodhi, J.E. Davies, Nitric acid passivation of Ti6A14V reduces thickness of surface oxide layer and increases trace element release, Journal of Biomedical Materials Research, 1995, 29 (3), 279-290
    [83] C. Boulmer-Leborgne, J. Hermann, B. Dubreuil, P. Brault, M.L. DeGiorgi, G. Leggieri, A. Luches, M. Martino, A. Perrone, I.N. Mihailescu, I. Ursu, G. Blondiaux, J.L. Debrun, H. Estrade, B. Rousseau, Direct carbidation of titanium as a result of multipulse UV-laser irradiation of titanium samples in an ambient methane gas, Applied Surface Science, 1992, 54 349-352
    [84] L. Ramqvist, K. Hamrin, G. Johansson, A. Fahlman, C. Nordling, Charge transfer in transition metal carbides and related compounds studied by ESCA, Journal of Physics and Chemistry of Solids, 1969, 30 (7), 1835-1847
    [85] D.A. Puleo, Activity of enzyme immobilized on silanized Co-Cr-Mo, Journal of Biomedical Materials Research, 1995, 29 (8), 951-957
    [86] A.A. Campbell, G.E. Fryxell, J.C. Linehan, G.L. Graff, Surface-induced mineralization: A new method for producing calcium phosphate coatings, Journal of Biomedical Materials Research, 1996, 32 (1), 111-118
    [87] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chemical Reviews, 1996, 96 (4), 1533-1554
    [88] S.J. Xiao, M. Textor, N.D. Spencer, H. Sigrist, Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces, Langmuir, 1998, 14 (19), 5507-5516
    [89] D.J. Ondrus, F.J. Boerio, Effect of substrates on the structure of polymer interphases : I. Oxidation of aminosilane primers, Journal of Colloid and Interface Science, 1988, 124 (1), 349-357
    [90] K.M.R. Kallury, P.M. Macdonald, M. Thompson, Effect of Surface Water and Base Catalysis on the Silanization of Silica by (Aminopropyl)alkoxysilanes Studied by X-ray Photoelectron Spectroscopy and 13C Cross-Polarization/Magic Angle Spinning Nuclear Magnetic Resonance, Langmuir, 2002, 10 (2), 492-499
    [91] L.I. Larsson, D.M. Hougard, Glass slide models for immunocytochemistry and in situ hybridization, Histochemistry and Cell Biology, 1994, 101 (5), 325-331
    [92] S.J. Yuan, S.O. Pehkonen, Y.P. Ting, K.G. Neoh, E.T. Kang, Inorganic-Organic Hybrid Coatings on Stainless Steel by Layer-by-Layer Deposition and Surface-Initiated Atom-Transfer-Radical Polymerization for Combating Biocorrosion, ACS Applied Materials & Interfaces, 2009, 1 (3), 640-652
    [93] G. Hélary, F. Noirclère, J. Mayingi, V. Migonney, A new approach to graft bioactive polymer on titanium implants: Improvement of MG 63 cell differentiation onto this coating, Acta Biomaterialia, 2009, 5 (1), 124-133
    [94] C. Mao, Y. Qiu, H. Sang, H. Mei, A. Zhu, J. Shen, S. Lin, Various approaches to modify biomaterial surfaces for improving hemocompatibility, Advances in Colloid and Interface Science, 2004, 110 (1-2), 5-17
    [95] S. Sartori, A. Rechichi, G. Vozzi, M. D'Acunto, E. Heine, P. Giusti, G. Ciardelli, Surface modification of a synthetic polyurethane by plasma glow discharge: Preparation and characterization of bioactive monolayers, Reactive and Functional Polymers, 2008, 68 (3), 809-821
    [96] J. Kim, P. Seidler, L.S. Wan, C. Fill, Formation, structure, and reactivity of amino-terminated organic films on silicon substrates, Journal of Colloid and Interface Science, 2009, 329 (1), 114-119
    [97] S. Margel, O. Sivan, Y. Dolitzky, Functionalized thin films: Synthesis, characterization, and potential use, Langmuir, 1991, 7 (10), 2317-2322
    [98] F.J. Boerio, L. Armogan, S.Y. Cheng, The structure of [gamma]-aminopropyltriethoxysilane films on iron mirrors, Journal of Colloid and Interface Science, 1980, 73 (2), 416-424
    [99] H.-S. Seong, H.S. Whang, S.-W. Ko, Synthesis of a quaternary ammonium derivative of chito-oligosaccharide as antimicrobial agent for cellulosic fibers, Journal of Applied Polymer Science, 2000, 76 (14), 2009-2015
    [100] J. Holappa, T. Nevalainen, J. Savolainen, P. Soininen, M. Elomaa, R. Safin, S. Suvanto, T. Pakkanen, M. Masson, T. Loftsson, T. Jarvinen, Synthesis and Characterization of Chitosan N-Betainates Having Various Degrees of Substitution, Macromolecules, 2004, 37 (8), 2784-2789
    [101] D.L. Musso, F.R. Cochran, J.L. Kelley, E.W. McLean, J.L. Selph, G.C. Rigdon, G.F. Orr, R.G. Davis, B.R. Cooper, V.L. Styles, J.B. Thompson, W.R. Hall, Indanylidenes. 1. Design and Synthesis of (E)-2-(4,6-Difluoro-1-indanylidene)acetamide, a Potent, Centrally Acting Muscle Relaxant with Antiinflammatory and Analgesic Activity, Journal of Medicinal Chemistry, 2002, 46 (3), 399-408
    [102] G. Cardillo, L. Gentilucci, V. De Matteis, Lewis Acid-Promoted Synthesis and Reactivity ofβ-O-Benzylhydroxylamino Imides Derived from d-Glyceraldehyde, The Journal of Organic Chemistry, 2002, 67 (17), 5957-5962
    [103] L.D. Quin., A Guide to Organophosphorus Chemistry, New York, John Wiley & Sons, 2000, 192-193
    [104] J. Fangkangwanwong, M. Akashi, T. Kida, S. Chirachanchai, Chitosan-Hydroxybenzotriazole Aqueous Solution: A Novel Water-Based System for Chitosan Functionalization, Macromolecular Rapid Communications, 2006, 27 (13), 1039-1046
    [105] J. Fangkangwanwong, M. Akashi, T. Kida, S. Chirachanchai, One-pot synthesis in aqueous system for water-soluble chitosan-graft-poly(ethylene glycol) methyl ether, Biopolymers, 2006, 82 (6), 580-586

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700