流感病毒H1N1的光催化灭活研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流感一直是一种危害性极大的病毒性急性呼吸道传染病。目前预防流感的唯一有效措施是疫苗接种,但至今尚未研制出能有效控制流感的疫苗。因此,在进行新流感疫苗研制的同时,开发广谱、高效、环境友好的流感病毒灭活剂,对预防流感的传染具有十分重要的意义。利用光催化剂的强光催化氧化性能,杀灭空气中和溶液中流感病毒可能是一种有效的方法。本论文用改进的溶胶-凝胶法制备出TiO_2溶胶,并通过对其干燥、改性制备出了纳米TiO2粉体和TiO2薄膜样品。以流感病毒H1N1 为模型反应物,考察了粉末催化剂样品在溶液中和365nm 紫外光照射下对病毒的灭活性能,及薄膜催化剂样品在空气中和荧光灯照射下对病毒的灭活性能。采用血凝效价实验和透射电镜观察,并结合对催化剂样品的XRD 分析、N_2吸附性能测定及催化剂在实验条件下的表面Zeta 电势测量结果,探讨了催化剂用量、焙烧温度、比表面积和表面电性与其病毒灭活性能的关系,并对灭活过程进行了观察和探讨。
    论文得到如下重要结果和结论(:1) 在60min内单纯365nm紫外光对H1N1没有明显灭活效果;无光照下,TiO2对H1N1 通过吸附有一定的灭活作用,但效果较差;而在365nm 紫外光照射和TiO2催化剂同时存在下,H1N1 病毒能被快速有效地杀灭。(2) 铜和银离子掺杂、铂修饰、超强酸化能改变TiO_2 悬浮液对H1N1 的灭活速率,其中超强酸化样品的性能最佳。(3) 悬浮液的pH 值和催化剂的Zeta 电势对其病毒灭活性能有显著影响。当溶液的pH 值高于催化剂的等电点时,催化剂颗粒由于荷负电对H1N1 有好的吸附能力,催化剂的灭活性能增强。(4) TiO_2对H1N1 的光催化灭活作用开始发生在H1N1 的纤突部分,破坏纤突部分就可导致H1N1 的失活。随着光照时间延长,H1N1 病毒分子发生变形、破裂,直至变成了有机碎片和被矿化。(5) 在荧光灯照射下TiO_2薄膜也能对空气中的H1N1 产生光催化灭活作用,60min 灭活率达87.5 %,180min 可使之完全灭活。只用荧光灯或只用膜催化剂都不能使H1N1 有效灭活。
    本论文创新性在于,首次把光催化方法用于流感病毒H1N1 的灭活,并发现TiO_2的光催化作用不仅可以使H1N1 失去活性,而且可完全破坏其分子结构,甚至使其矿化。还发现催化剂颗粒的Zeta 电势对悬浮液中TiO2 吸附和光催化灭活H1N1 有很大的影响,TiO_2薄膜在荧光灯照射下也能够杀灭空气中的H1N1病毒。证实超强化可以进一步改善TiO_2对H1N1 的灭活性能。这些发现和研究结果对开发流感病毒H1N1 灭活技术具有重要的理论和实际意义。
Influenza is a severe acute respiratory disease. At present, the only effective measure in controlling the influenza is the inoculating of bacterin. Although the development of new effective influenza bacterin is important, it is also important to develop a photocatalyst which has the characteristic of broad-spectrum、high efficiency、friendly to environment etc. In this study, the photocatalysts including TiO_2 powder and TiO_2 thin film were prepared by sol-gel method. The photocatalysts were characterized by XRD, BET and Zeta Potential measurements. Two methods: hemagglutimation test to determine the change of the titer of influenza virus H1N1 and the direct observation of deformation of H1N1 under TEM were used to study the inactivation efficiency of TiO2 on H1N1 under 365 nm ultraviolet illuminations. The photocatalytic inactivation efficiency of TiO2 thin film on H1N1 under fluorescent lamps was also investigated in air.
    The following important results were obtained: (1) No inactivation of H1N1 was observed under 365nm ultraviolet illumination only; TiO2 could partly inactivate H1N1 by adsorption; Under UV illumination, TiO_2 could completely inactivate H1N1 in 60 min. (2) Silver ion doped、copper ion doped、platinum modified、SO42-modified TiO_2 could alter the inactivation rate of TiO2. Among them, SO42-/TiO2 solid superacid catalyst is the most effective one which could reduce the complete inactivation time from 60 min to 10 min. (3) The acidity of TiO2 suspension could affect the photocatalytic inactivation efficiency. At pH value higher than the isoelectirc point, TiO_2 photocatalyst were negative charged and the adsorption ability and the inactivation efficiency of TiO_2 on H1N1 increased. (4) TEM micrographs revealed that H1N1 was attacked at its projecting part first and it could be destroyed and even mineralized for longer photocatalytic treatment. (5) H1N1 could also be effectively inactivately by TiO2 thin film under the illumination of fluorescent lamp.
    To our knowledge, it is the first time that the inactivation of H1N1 based on the theory of TiO_2 photocatalysis was investigated.We found that H1N1 not only could be inactivated but also could be decomposed or even be mineralized by the
    photocatalysis of TiO2. The adsorption ability and photocatalytic inactivation efficiency of TiO2 on H1N1 could be significantly affected by the surface charge of photocatalyst. TiO2 thin film also could be effective in the photocatalytic inactivation of H1N1 under the illumination of fluorescent lamp only. SO42-/TiO2 solid superacid catalyst showed the best efficiency in the photocatalytic inactivation of H1N1. All these findings and results were very important both in theory and in practice.
引文
[1] 修文琼,杨式芹,沈晓娜,等.2001 年福建省部分监测点监测结果分析.海峡预防医学杂志,2003,9(3):50-51
    [2] Subbarao K.. Influenza vaccines: present and future [J ].Adv Virus Res, 1999, 54: 349-373
    [3] Stamboulian D,Bonveh i PE. Influenza. [J ]. Infect D is ClinNo rth Am , 2000, 14 (1) : 141
    [4] Do lin R, Reichman RC,M ado re HP, et al. A cont ro lled t rialof amantadine and rimantadine in the p rophylaxis ofinfluenza infect ion. [J ]. N Engl J M ed, 1982, 307: 580
    [5] M arkvon IM ,W u W 2Y, Kok GB, et al. Rat ional design of potent sialidase based inhibitiors of influzena virus replication. [J ]. N ature, 1993, 363: 418
    [6] 张隽,综述.神经氨酸酶抑制剂研究进展.国外医学呼吸系统分册,2002,22(6):318-320
    [7] John.C.Hoff and Edwin E.Geldreich.Comparison of the biocidal efficiency of alternative disinfectants.J.AWWA,1981,73(1)
    [8] 童秀芬.环境污染与防治,1989,11(3)
    [9] F.Fiessinger,J.J.Rook and J.P.Puguet.Alternative methods for chlorination.The science of the total environment,1985,47
    [10]袁洽劻, 凌波. 实用消毒灭菌技术[M] . 北京: 化学工业出版社, 2002
    [11]Fujishima A., Honda K.. Electrochemical Photolysis of water at a semiconductor electrode.Nature, 1972, 37: 238-245
    [12]Carp O., Huisman C.L., Reller A.. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry.Progress in Solid State Chemistry, 2004,32:33-177
    [13]Frank SN, Bard AJ.Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder. J Am Chem Soc, 1977,99:303-304
    [14]Frank SN, Bard AJ. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders.J Phys Chem ,1977,81:1484-1488
    [15]Schrauzer GN, Guth TD. Photolysis of water and photoreduction of nitrogen on titanium dioxide.J Am Chem Soc, 1977,99:7189-7193
    [16]Kreutler B, Bard AJ. Photodeposition of platinum on TiO2 powder and other substrates.J Am Chem Soc, 1978,100:4317-4318
    [17]Pruden AL, Ollis DF.The degradation of trichloroethylene in water. J Catal, 1983,82:404-417
    [18]Hsiav CY, Lee CL, Ollis DF. Photocatalytic degradation of tetrachloride(CCl4) with illuminated TiO2 photocatalyst.J Catal, 1983,82:418-423
    [19]Matsunaga T, Tomato R, Nakajima T, et al.. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett, 1985,29:211-214
    [20]Fujishima A, Ohtsuki J, Yamashita T, et al..Behavior of tumor cells on photoexcited semiconductor surface. Photomed Photobiol, 1986;8:45-46
    [21]O’Regan B, Gra¨tzel M. A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Nature ,1991,353:737-740
    [22]Wang R, Hashimoto K, Fujishima A, et al..Light induced amphiphilic surface. Nature, 1997,388:431-432
    [23]Bard J. Science, 1980,201:139
    [24]Hoffmann M. R., Martin S. T., et al.. Environmental Applications of Semiconductor Photocalysis.Chem. Rev.,1995,95: 69-96
    [25]King CH, Shotts EB, Wooley RE, et al.. Survival of coliforms and bacterial pathogens within protozoa during chlorination.Appl Environ Microbiol, 1988,54:3023-3033
    [26]Zszewsyk U, Zszewsyk RU, Manz W, et al.. Microbiological safety of drinking water.Ann Rev Microbiol, 2000,54:81-127
    [27]Venczel LV, Arrowood M, Hurd M, et al.. Inactivation of cryptosporidium parvum oocysts and clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine.Appl Environ Microbiol, 1997,63:1598-1601
    [28]Cipparone LA, Diehl AC. Protozoa in open reservoirs.J AWWA, 1997,89:84-96
    [29]Goswani DY, Trivedi DM, Block SS. Photocatalytic disinfection of indoor air.J Solar Energy Eng, 1997,119:92-96
    [30]Furuzono T, Iwasaki M, Yasuda S, et al.. Photoreactivity and cell adhesiveness of amino-groups modified titanium dioxide nano-particles on silicone substrate coated by covalent linkage.J Mater Sci Lett,2003,22:1737-1740
    [31]Watts RJ, Kong S, Orr MP, et al.. Photocatalytic inactivation of coliform bacteria and virus in secondary wastewater effluent.Water Res, 1995,29:95-100
    [32]Sun DD, Tay JH, Tan KM. Water Res, 2003,37:3452
    [33]Baker KH, Herson DS. Detection and occurrence of indicator organisms and pathogens.Water Environ Res, 1999,71:530-551
    [34]Iba′n.ez JA, Litter MI, Pizzaro RA. Photocatalytic bactericidal effect of TiO_2 on Enterobacter cloacae:comparative study with other Gram(-) bacteria.J Photochem Photobiol A: Chem, 2003,157:81-85
    [35]Tadashi Matsunaga , Ryozo Tomoda , Toshiaki Nakajima , et al.. Continuous sterilization system that uses photosemiconductor powders.Applied and Environmental Microbiology ,1988 , 54(6) : 1330
    [36]Ireland J . C. , Klosterman P. , Rice E. W. , et al.. Inactivation of escherichai coli by titanium oxide photocatalytic oxidation.Appl and Environ Microbiol , 1993 , 59 (8) : 1668-1670
    [37]Edward J.Wolfrum,Jie Huang,Daniel M.Blake,et al.. Photocatalytic oxidation of bacteria,bacterial and fungal spores,and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces.Environ.Sci.Technol.,2002,36:3412-3419
    [38]Jimmy C.YU,Wingkei Ho,Jun Lin,et al.. Photocatalytic activity,antibacterial effect,and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate.Environ.Sci.Technol.,2003,37:2296
    [39]Kayano Sunada,Toshiya Watanabe,and Kazuhito Hashimoto. Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination.Environ.Sci.Technol.,2003,37:4785-4789
    [40]刘平,林华香,付贤智. 掺杂TiO2光催化膜材料的制备及其灭菌机理.催化学报, 1999, 20(3): 325-328
    [41]黄汉生. 日本二氧化钛光催化剂环境净化技术开发动向. 现代化工,1998,18(12): 39
    [42]Sjogren J.C.,Sierka.R.A. Inactivation of phage MS2 by iron aided titanium dioxide photocatalysis. Applland Environ Microbiol, 1994,60(1):344
    [43]Watts,J.R.,Kong,S.,et al.. Photocatalytic inacitvation of coliform bacteria and viruses in secondary wastewater effluent. Wat.Res., 1995,29:95-100
    [44]S.Lee,K.Nishida,M.Otaki,et al.. Photocatalytic inactivation of phage Qβby immobilized titanium dioxide mediated photocatalyst. Water Science and Technology , 1997,35(11-12):101-106
    [45]Otaki M. ,Hirata T. ,Ohgaki S. Aqueous microorganisms inactivation by photocatalytic reaction. Water Science and Technology , 2000 , 42 (3) : 103-108
    [46]Bekbo¨let M, Araz CV. Inactivation of Escherichia coli by photocatalytic oxidation.Chemosphere, 1996,32:959-965
    [47]Huang Z, Maness PC, Blake BM, et al.. Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobiol A: Chem, 2000,130:163-170
    [48]Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO2 thin film.J Photochem Photobiol A: Chem, 2003,156:227
    [49]DunlopPSM, Byrne JA, Manga N, et al.. Photocatalytic inactivation of bacterial pollutants from drinking water.J Photochem Photobiol A: Chem, 2002,148:355-363
    [50]Liu HL, Yang TCK. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light.Process Biochem, 2003,39:475-481
    [51]Tao H, Wei W, Zhang S.Photocatalytic inhibitory effect of immobilized TiO2 semiconductor on the growth of Escherichia coli studied by acoustic wave impedance analysis. J Photochem Photobiol A: Chem, 2004,161:193-199
    [52]Yu JC, Xie Y, Tang HY, et al.. Visible light-assisted bactericidal effect of .J Photochem Photobiol A: Chem,2003,156:235-241
    [53]Koizumi Y, Nishi J, Taya M. Photocatalytic inactivation of Escherichia coli cells using iron-doped titanium dioxide particles.J Chem Eng Jpn, 2002,35:299-303
    [54]Morioka T, Saito T, Nara Y, et al.. Cariers Res, 1998,22:230
    [55]Kim B, Kim D, Cho D, et al.. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria.Chemosphere, 2003,52:277-281
    [56]Block SS, Goswami DW.Chemically enhanced sunlight for killing bacteria. Solar Energy, 1995:431-438
    [57]Ame`zaga-Madrid P, Neva′rez-Moorillo′n GV, Orrantia-Borunda E, et al.. Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin films.FEMS Microbiol Lett, 2002,211:183-188
    [58]Doud WA, Xin JH. J Sol–Gel Sci Technol, 2004,29:25-29
    [59]Saito T, Iwase I, Horis J, et al..Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J Photochem Photobiol B: Biol, 1992,14:369-379
    [60]Hancock-Chen T, Scaiano JC. Photocatalytic activity of rutile.J Photochem Photobiol B: Biol, 2000,57:193-196
    [61]Lee JH, Kang M, Choung SJ, et al.. The preparation of TiO2 nanometer photocatalyst film by a hydrothermal method and its sterilization performance for giardia lamblia.Water Res, 2004,38:713-719
    [62]Stevenson M, Bullock K, Lin WY, et al..Sonolytic enhancement of the bactericidal activity of irradiated titanium dioxide suspensions in water. Res Chem Intermed, 1997,23:311-323
    [63]Kashige N, Kakita Y, Nakashima Y, et al.. Mechanism of the photocatalytic inactivation Lactobacillus casei phage PL-1 by titania thin film.Curr Microbiol, 2001,42:184-189
    [64]Laot N, Narkis N, Neeman I, et al..TiO2 photocatalytic inactivation of selected microorganisms under various conditions .sunlight,intermittent and variable irradiation intensity ,CdS augmentation and entrapment of TiO2 into sol-gel. J Adv Oxid Technol, 1999,4:97-102
    [65]Koizumi Y, Taya M. Kinetic evaluation of biocidal activity of titanium dioxide against phage MS2 considering interaction between the phage and photocatalyst particles.Biochem Eng J ,2002,12:107-116
    [66]Cai R, Hashimoto K, Itoh K, et al.. Photokilling of malignant cells with ultrafine TiO2 powder.Bull Chem Soc Jpn, 1991,64:1268-1273
    [67]Cai R, Kubota Y, Shuin T, et al.. Induction of cytotoxicity by photoexited titanium dioxide particles.Cancer Res, 1992,52:2346-2348
    [68]Cai R, Hashimoto K, Kubota Y,et al.. Inrement of photocatalytic killing of cancer cells using TiO_2 with the aid of superoxide dismutase.Chem Lett, 1992:427-430
    [69]Kubota Y, Hosaka M, Hashimoto K, et al.. Application of photoexcited TiO2 particle to regional cancer treatment:a new approach.Reg Cancer Treat, 1995,8:192-197
    [70]R Sakai, Baba R, Hashimoto K, et al.. Selective killing of a single cancerous T24 cell with TiO_2 semiconducting microelectrode under irradiation.Chem Lett, 1995,1850-186
    [71]Sakai H, Cai R, Kato T, et al..Photocatalytic effect of TiO2 particles on tumor cells:study on the mechanism of cell death by measuring Photomed Photobiol,1990,12:135-138
    [72]Sakai H, Ito E, Cai R, et al.. Intracellular Ca2+ concentration change of T24 cell under irradiation in the presence of TiO2 ultrafine particles.Biochim Biophys Acta,1994,1201:259-265
    [73]Huang N, Xu M, Yuan C, Yu R.. The study of the photokilling effect and mechanism of ultrafine TiO2 particles on U397 cells. Journal of Photochemistry and Photobiology A:Chermstry ,1997 , 108 : 229-233
    [74]Wei C,Lin W,Zainal A, et al.. Bactericidal activity of TiO2 photocatalyst in aqueous media : Toward a solar assisted water disinfection system.Environ Sci Technol, 1994,28:934-938
    [75]Yoshihiko Kikuchi , Kayano Sunada , Tomokazu Lyoda , et al.. Dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A: Chemistry ,1997 ,106 :51
    [76]Cai R. , Hashimoto K. , Itoch K. , et al.. Photokilling of malignant cells with ultrafine TiO2 power.Bull Chem Soc Jpn. ,1991 , 64(4) :1268-1273
    [77]Dunford R. , Salinaro A. , Cai L. , et al.. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett , 1997 , 418 :87-90
    [78]Wamer W. G. , Yin Y. Y. , Wei R. R. , et al.. Oxidation damage to nucleic acids photosensitized by titanium dioxide. Free Radic Biol. Med. , 1997 ,23 (6) :851-858
    [79]Pin-Ching Maness,Sharon Smolinski,Daniel M.Blake,et al..Bactericidal activity of photocatalytic TiO2 reaction:toward an understanding of its killing mechanism.Applied and environmental microbiology,1999,65(9):4094-4098
    [80]Ilmay J . A. , Fridovich I. Suppression of oxidative envelope damage by pseudoreversion of a superoxide dismutase deficient mutant of E. coli . J . Bacteriol. , 1992 , 174 (3) :953-961
    [81]GUO Yuan-Ji (郭元吉), CHENG Xiao-Wen (程小雯). Influenza virus and experimental technology (流行性感冒病毒及其实验技术)[M], Beijing: San Xia press, 1997
    [82]苏文悦,陈亦琳,付贤智,等.SO42-/TiO2固体超强酸催化剂的酸强度及光催化性能.催化学报,2001,22(2):175-176
    [83]陈亦琳,李旦振,付贤智,等. 乙烯在Pt/Pt4+-TiO2上的可见光降解.高等学校化学学报,2001,25(2):342-344
    [84]SU Wen-Yue (苏文悦), FU Xian-Zhi (付贤智), WEI Ke-Mei (魏可镁),et al..TiO2光催化剂的光谱研究. Spectroscopy and Spectral Analysis (光谱学与光谱分析) [J], 2001, 21(1): 32-34
    [85]Hurum D. C., Agrios A. G., Gray K. A.. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B [J], 2003, 107: 4545-4549
    [86]FU Xian-Cai (傅献彩), SHEN Wen-Xia (沈文霞), YAO Tian-Yang (姚天扬). Physical Chemistry(物理化学)[M], Beijing: Higher education press, 1993
    [87]Tong S. G., Siegel D. P., Lear J. D. et al.. Morphological changes and fusogenic activity of influenza virus hemagglutinin.J. Biophys. [J], 1998, 74(1): 54-62
    [88]付贤智,李旦振. 提高多相光催化氧化过程效率的新途径.福州大学学报(自然科学版),2001,29(6):104-114
    [89]Veronica Vamathevan,Rose Amal,Donia Beydoun,et al.. Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles.Journal of Photochemistry and Photobiology A:Chemistry,2002,148:233-245
    [90]I.M.Arabatzis,T.Stergiopoulos,M.C.Bernard, et al.. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange.Applied Catalysis B:Environmental,2003,42:187-201
    [91]Ruxiong Cai,Yoshinobu Kubota,and Akira Fujishima. Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. Journal of Catalysis,2003,219:214-226
    [92]S.W.Lam,K.Chiang,T.M.Lim,et al.. Effect of charge trapping species of cupric ions on the photocatalytic oxidation of resorcinol.Applied Catalysis B:Environmental,2005,55:123
    [93]Donia Beydoun,Helen Tse,Rose Amal,et al.. Effect of copper(Ⅱ)on the photocatalytic degradation of sucrose. Journal of Molecular Catalysis A:Chemical,2002,177:265
    [94]刘守新,曲振平,韩秀文,等.Ag 担载对TiO2光催化活性的影响.催化学报,2004,25(2):133-177
    [95]Su C , Yeh J C , Lin J L , Lin J C. The growth of Ag films on a TiO2(110)-(1x1)surface.Appl Surf Sci , 2001 ,169-170 : 366-370
    [96]Fujishima A , Honda K.. Light -induced amphiphilic surfaces[J ] .Nature , 1997 , 338 : 431-432 [97]刘平,王心晨,付贤智. 光催化自清洁陶瓷的制备及其特性.无机材料学报,2000,15(1):88-92
    [98]Ollis D F , Al -Ekabi H Ed.Photocatalytic purification and treatment of water and air. Amsterdam: Elsevier , 1993:473-479
    [99]Murabayashi M, Itoh E , Togashi K. Denki Kagaku. Photocatalytic Degradation of Trichloroethylene in Liquid Phase and in Gas Phase by Using Titanium Dioxide with Platinum Deposition. 1998 , 66: 671-672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700