新颖萘酰亚胺类抗肿瘤剂的设计合成与生物性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于萘酰亚胺活性结构,设计合成了四类新型抗肿瘤药物先导,评价了其对7种肿瘤细胞株(HeLa、A549、P388、HL-60、MCF-7、HCT-8、A375)的细胞毒性,以及对DNA嵌入、BSA结合、细胞周期阻滞、凋亡诱导和COX-2酶结合等性能。
     第一部分研究了氨基酸-萘酰亚胺加合物的抗肿瘤性能。通过在侧链引入具有生物功能的亮氨酸替代传统的N,N-二甲基氨基乙二胺,设计合成了6个目标化合物。细胞毒性测试结果表明该系列化合物具有中等强度的抗肿瘤活性,IC50值为10-6-10-5M,而化合物8a-c对MCF-7细胞具有选择性毒性;BSA结合实验表明,6-位苯硫基乙基氨基取代基可能对其MCF-7细胞选择性毒性有一定贡献;ctDNA滴定和粘度实验表明,该类化合物为DNA嵌入剂。
     第二部分研究了Amonafide类似物的抗肿瘤和促凋亡性能。通过对4-位氨基取代基的疏水性结构修饰,设计合成了10个目标化合物。细胞毒性测试结果表明该系列化合物具有中等强度的抗肿瘤活性,IC50值为10-6-10-5 M; FACS实验表明该系列化合物具有显著的细胞周期阻滞性能,并能有效地诱导HL-60细胞凋亡;Annexin V-FITC/PI实验进一步确证,化合物5b、7b、7e以浓度依赖的方式有效地诱导HL-60细胞凋亡;生物学机理研究表明:化合物5a以不依赖于p53的方式通过调节Cyclin B1、Cdkl的转录水平,减少Cyclin B1-Cdkl复合物的含量,将细胞阻滞在G2期;通过阻抑PI3K/Akt途径中p85和Akt的磷酸化激活作用,抑制NF-κB核转位,下调Bcl-2蛋白的表达并呈剂量依赖性,上调Bax的表达,上调Caspase-3、-9的活性,而最终诱导细胞凋亡。
     第三部分研究了二苯基烯丙哌嗪苯甲酸-萘酰亚胺衍生物的抗肿瘤和促凋亡性能。通过在萘酰亚胺的2-位和6-位同时引入不同的生物活性单元,设计合成了9个目标化合物。细胞毒性测试表明该系列化合物具有中等强度的抗肿瘤活性,IC5o值为10-6-10-5M;化合物12e表现出独特的选择性的MCF-7细胞毒性;FACS实验表明,该系列化合物表现出显著的细胞周期阻滞性能,并能有效地诱导HL-60细胞凋亡;Annexin V-FITC/PI实验进一步确证,化合物12b和13d以浓度依赖的方式有效地诱导HL-60细胞凋亡。
     第四部分研究了吲哚美辛-萘酰亚胺加合物的抗肿瘤、促凋亡、乏氧以及COX-2酶结合等性能。基于多靶点药物设计的特点,将吲哚美辛与萘酰亚胺进行加合,设计合成了4个目标化合物。细胞毒性测试结果表明该系列化合物具有一定程度的抗肿瘤活性,并能显著诱导HeLa细胞凋亡;酰胺衍生物4c和4d表现出比其酯类衍生物较好的细胞毒性和促凋亡活性,而酯类衍生物4a和4b则表现出比其酰胺衍生物更好的乏氧选择性细胞毒性;酶结合实验表明,目标化合物与COX-2酶之间具有一定程度的作用。
In the dissertation, four kinds of naphthalimide derivatives, based on the lead compound of Amonafide, were designed and synthesized. Their antitumor activities were evaluated against HeLa, A549, P388, HL-60, MCF-7, HCT-8, A375 cancer cell lines in vitro. The properties of their DNA-intercalating, BSA binding, cell cycle arrest and induction of apoptosis, were also systematically studied.
     The first section described the antitumor activities of naphthalimide-amino acid conjugates. Six target compounds were designed and synthesized by conjugating naphthalimide scaffold with flexible leucine moiety as side chain instead of conventional N,N-dimethyl-aminoethylenediamine functional group. The preliminary results showed that most of the derivatives had moderate antitumor activities with the IC50 values of 10"6-10-5 M. More importantly, compounds 8a-c exhibited exclusive antitumor activities against MCF-7 cell line. BSA binding experiment implied that hydrophobic substituents of compounds 8a-c proved to be a key structural unit for their binding abilities to BSA, which might provide some suggestions on the understanding of their exclusive antitumor selectivity against MCF-7 cell line. DNA binding experiments indicated that these derivatives behaved as DNA intercalating agents.
     The second section focused on the antitumor and pro-apoptotic function of Amonafide analogues. Ten target compounds were designed and synthesized by modification of the position-6 of naphthalimide by hydrophobic substituents. The preliminary results showed that most of the derivatives had comparable antitumor activities over Amonafide with the IC50 values of 10-6-10-5 M. More importantly, flow cytometric analysis indicated that the derivatives, such as compounds 5b、7b、7e, could effectively induce G2/M arrest and progress to apoptosis in a dose-dependent manner in HL-60 cell line after double staining with annexin V-FITC and propidium iodide. Detailed biological experiment exhibited that compound 5a induced G2/M phase growth arrest through inhibiting PI3K/Akt pathway and DNA fragmentation. Not only the expression levels of protein Cyclin B1, Cdkl changed in response to compound 5a treatment in HL-60 cells, but also we observed the inhibition of NF-κB nuclear translocation, up-regulation of Bax and down-regulation of Bcl-2. The activities of caspase-3,-9 increased, indicating that the mitochondrial pathway was involved in the apoptosis signal pathway. The results also showed that the phosphorylation of p85/PI3 K and Akt decreased following compound 5a treatment.
     The third section studied on the alternative modification of naphthalimide scaffold and evaluated their antitumor and apoptosis-inducing function. Nine target compounds were designed and synthesized by connecting naphthalimide and 4-(4-(3,3-diphenylallyl)piperazin-1-yl)benzoic acid moiety with different functional linkers, ethanolamine and sulfanilamide. The preliminary results showed that most of the derivatives had comparable antitumor activities over Amonafide with the IC50 values of 10-6-10-5 M. Interestingly, compound 12e exhibited the exclusive antitumor activity against MCF-7 among the tested cancer cell lines. More importantly, flow cytometric analysis indicated that these derivatives, such as compounds 12b and 13d, could effectively induce G2/M arrest and progress to apoptosis in a dose-dependent manner in HL-60 cell line after double staining with annexin V-FITC and propidium iodide. The present work provided a novel class of naphthalimide-based derivatives with potent apoptosis-inducing and improved antitumor activity for further optimization.
     The fourth section centered on the conjugation of indomethacin and naphthalimide scaffold, and evaluated their hypoxic/oxic cytotoxicity, apoptosis-inducing function and combination with COX-2. Four target compounds were designed and synthesized. The preliminary results showed that the derivatives had some antitumor activities and obvious apoptosis-inducing function. More importantly, amide derivatives 4c and 4d, exhibited the superior oxic cytotoxic and proapoptotic activities over their ester derivatives; while the ester derivatives 4a and 4b, showed excellent hypoxic cytotoxic activity. COX-2 titration experiments demonstrated that there was interaction between the target compound and COX-2 to some extent, which could provide some explanation for their special biological activity. The conjugates described herein represented powerful tools for the investigation of a novel class of selective inhibitors of COX-2.
引文
[1]Thurston, D. E.;刘吉成译,Chemistry and Pharmacology of anticancer Drugs(抗癌药物的化学与药理学).北京:人民卫生出版社2008,7.
    [2]郭宗儒,药物分子设计.北京:科学出版社2005.
    [3]甄永苏,抗肿瘤药物研究与开发.北京:工业出版社2004,7.
    [4]Zheng, Z. B.; Zhu, G. Z.; Tak, H.; Joseph, E.; Eiseman, J. L.; Creighton, D. J., N-(2-hydroxypropyl)methaerylamide copolymers of a glutathione (GSH)-activated glyoxalase I inhibitor and DNA alkylating agent: Synthesis, reaction kinetics with GSH, and in vitro antitumor activities. Bioconjugate Chemistry 2005,16 (3),598-607.
    [5]Su, T. L.; Lin, Y. W.; Chou, T. C.; Zhang, X. G.; Bacherikov, V. A.; Chen, C. H.; Liu, L. F.; Tsai, T. J., Potent antitumor 9-anilinoacridines and acridines bearing an alkylating N-mustard residue on the acridine chromophore:Synthesis and biological activity. Journal of Medicinal Chemistry 2006,49 (12),3710-3718.
    [6]Emura, T.; Suzuki, N.; Yamaguchi, M.; Ohshimo, H.; Fukushima, M., A novel combination antimetabolite, TAS-102, exhibits antitumor activity in FU-resistant human cancer cells through a mechanism involving FTD incorporation in DNA. International Journal of Oncology 2004,25 (3),571-578.
    [7]Galmarini, C. M., Drug evaluation:Sapacitabine-an orally available antimetabolite in the treatment of cancer. Current Opinion in Investigational Drugs 2006,7 (6),565-573.
    [8]Fan, D. M.; Yang, X. L.; Wang, X. Y.; Zhang, S. C.; Mao, J. F.; Ding, J.; Lin, L. P.; Guo, Z. J., A dinuclear monofunctional platinum(Ⅱ) complex with an aromatic linker shows low reactivity towards glutathione but high DNA binding ability and antitumor activity. Journal of Biological Inorganic Chemistry 2007,12 (5),655-665.
    [9]Noji, M.; Kizu, R.; Takeda, Y.; Akiyama, N.; Yoshizaki, I.; Eriguchi, M.; Kidani, Y., Preparation of antitumor oxaliplatin/cisplatin docking dinuclear platinum complex. Biomedicine & Pharmacotherapy 2005,59 (5),224-229.
    [10]Talelli, M.; Rijcken, C. J. F.; Lammers, T.; Seevinck, P. R.; Storm, G.; van Nostrum, C. F.; Hennink, W. E., Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles:Toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir 2009,25 (4),2060-2067.
    [11]Park, C.; Youn, H.; Kim, H.; Noh, T.; Kook, Y. H.; Oh, E. T.; Park, H. J.; Kim, C., Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. Journal of Materials Chemistry 2009,19 (16),2310-2315.
    [12]Ishikawa, H.; Colby, D. A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.; Rayl, T. J.; Hwang, I.; Boger, D. L., Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. Journal of the American Chemical Society 2009,131 (13), 4904-4916.
    [13]Han, K. S.; Joung, J. Y.; Kim, T. S.; Jeong, I. G.; Seo, H. K.; Chung, J.; Lee, K. H., Methotrexate, vinblastine, doxorubicin and cisplatin combination regimen as salvage chemotherapy for patients with advanced or metastatic transitional cell carcinoma after failure of gemcitabine and cisplatin chemotherapy. British Journal of Cancer 2008,98 (1),86-90.
    [14]Reddy, P. B.; Paul, D. V.; Agrawal, S. K.; Saxena, A. K.; Kumar, H. M. S.; Qazi, G. N., Design, synthesis, and biological testing of 4 beta-[(4-substituted)-1,2,3-triazol-1-yl]podophyllotoxin analogues as antitumor agents. Archiv Der Pharmazie 2008,341 (2),126-131.
    [15]Mao, Z. Y.; Han, S. Q.; Bastow, K. F.; Lee, K. H., Antitumor agents. Part 232: Synthesis of cyclosulfite podophyllotoxin analogues as novel prototype antitumor agents. Bioorganic & Medicinal Chemistry Letters 2004,14 (6),1581-1584.
    [16]Niizuma, S.; Tsukazaki, M.; Suda, H.; Murata, T.; Ohwada, J.; Ozawa, S.; Fukuda, H.; Murasaki, C.; Kohchi, M.; Morikami, K.; Yoshinari, K.; Endo, M.; Ura, M.; Tanimura, H.; Miyazaki, Y.; Takasuka, T.; Kawashima, A.; Nanba, E.; Nakano, K.; Ogawa, K.; Kobayashi, K.; Okabe, H.; Umeda, I.; Shimma, N., Synthesis of new camptothecin analogs with improved antitumor activities. Bioorganic & Medicinal Chemistry Letters 2009,19 (7),2018-2021.
    [17]Li, Q. Y.; Lv, H. Y.; Zu, Y. G.; Qu, Z. H.; Yao, L. P.; Su, L.; Liu, C.; Wang, L. M., Synthesis and antitumor activity of novel 20s-camptothecin analogues. Bioorganic & Medicinal Chemistry Letters 2009,19 (2),513-515.
    [18]Sun, M. R.; Lu, H. T.; Wang, Y. Z.; Yang, H.; Liu, H. M., Highly efficient formal synthesis of cephalotaxine, using the stevens rearrangement-acid lactonization sequence as a key transformation. Journal of Organic Chemistry 2009,74 (5),2213-2216.
    [19]Taniguchi, T.; Ishibashi, H., Short synthesis of (-)-cephalotaxine using a radical cascade. Organic Letters 2008,10 (18),4129-4131.
    [20]Zhao, H.; Wang, J. C.; Sun, Q. S.; Luo, C. L.; Zhang, Q., RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. Journal of Drug Targeting 2009,17(1),10-18.
    [21]Chun, C.; Lee, S. M.; Kim, S. Y.; Yang, H. K.; Song, S. C., Thermosensitive poly(organophosphazene)-paclitaxel conjugate gels for antitumor applications. Biomaterials 2009,30 (12),2349-2360.
    [22]Bellina, F.; Cauteruccio, S.; Monti, S.; Rossi, R., Novel imidazole-based combretastatin A-4 analogues:Evaluation of their in vitro antitumor activity and molecular modeling study of their binding to the colchicine site of tubulin. Bioorganic & Medicinal Chemistry Letters 2006,16 (22),5757-5762.
    [23]Nakagawa-Goto, K.; Chen, C. X.; Hamel, E.; Wu, C. C.; Bastow, K. F.; Brossi, A.; Lee, K. H., Antitumor agents. Part 236:Synthesis of water-soluble colchicine derivatives. Bioorganic & Medicinal Chemistry Letters 2005,15 (1),235-238.
    [24]Shchekotikhin, A. E.; Glazunova, V. A.; Dezhenkova, L. G.; Luzikov, Y. N.; Sinkevich, Y. B.; Kovalenko, L. V.; Buyanov, V. N.; Balzarini, J.; Huang, F. C.; Lin, J. J.; Huang, H. S.; Shtil, A. A.; Preobrazhenskaya, M. N., Synthesis and cytotoxic properties of 4,11-bis[(aminoethyl)amino]anthra[2,3-b]thiophene-5,10-diones, novel analogues of antitumor anthracene-9,10-diones. Bioorganic & Medicinal Chemistry 2009,17(5),1861-1869.
    [25]Antonini, I.; Santoni, G.; Lucciarini, R.; Amantini, C.; Dal Ben, D.; Volpini, R.; Cristalli, G., Synthesis and antitumor evaluation of bis aza-anthracene-9,10-diones and bis aza-anthrapyrazole-6-ones. Journal of Medicinal Chemistry 2008,57 (4),997-1006.
    [26]Schneider, K.; Keller, S.; Wolter, T. E.; Roglin, L.; Beil, W.; Seitz, O.; Nicholson, G.; Bruntner, C.; Riedlinger, J.; Fiedler, H. P.; Sussmuth, R. D., Proximicins A, B, and C-antitumor furan analogues of netropsin from the marine actinomycete verrucosispora induce upregulation of p53 and the cyclin kinase inhibitor p21. Angewandte Chemie-International Edition 2008,47 (17),3258-3261.
    [27]Igarashi, Y.; Trujillo, M. E.; Martinez-Molina, E.; Yanase, S.; Miyanaga, S.; Obata, T.; Sakurai, H.; Salki, I.; Tsuyoshi, F.; Furumai, T., Antitumor anthraquinones from an endophytic actinomycete micromonospora lupini sp nov. Bioorganic & Medicinal Chemistry Letters 2007,17 (13),3702-3705.
    [28]Galm, U.; Wendt-Pienkowski, E.; Wang, L. Y.; George, N. P.; Oh, T. J.; Yi, F.; Tao, M. F.; Coughlin, J. M.; Shen, B., The biosynthetic gene cluster of zorbamycin, a member of the bleomycin family of antitumor antibiotics, from streptomyces flavoviridis ATCC 21892. Molecular Biosystems 2009,5 (1),77-90.
    [29]Xu, Z. D.; Wang, M.; Xiao, S. L.; Yang, M., Novel peptide derivatives of bleomycin A(5):Synthesis antitumor activity and interaction with DNA. Bioorganic & Medicinal Chemistry Letters 2005,15 (18),3996-3999.
    [30]Zalipsky, S.; Saad, M.; Kiwan, R.; Ber, E.; Yu, N.; Minko, T., Antitumor activity of new liposomal prodrug of mitomycin C in multidrug resistant solid tumor: Insights of the mechanism of action. Journal of Drug Targeting 2007,15 (7-8),518-530.
    [31]Schittl, H.; Getoff, N., Radiation-induced antitumor properties of vitamin B-5 (pantothenic acid) and its effect on mitomycin C activity:Experiments in vitro. Oncology Research 2007,16 (8),389-394.
    [32]Devi, P. G.; Pal, S.; Banerjee, R.; Dasgupta, D., Association of antitumor antibiotics, mithramycin and chromomycin, with Zn(II). Journal of Inorganic Biochemistry 2007, 101 (1),127-137.
    [33]Menendez, N.; Nur-e-Alam, M.; Fischer, C.; Brana, A. F.; Salas, J. A.; Rohr, J.; Mendez, C., Deoxysugar transfer during chromomycin A(3) biosynthesis in streptomyces griseus subsp griseus:New derivatives with antitumor activity. Applied and Environmental Microbiology 2006,72(1),167-177.
    [34]Fujiuchi, N.; Aglipay, J. A.; Ohtsuka, T.; Maehara, N.; Sahin, F.; Su, G. H.; Lee, S. W.; Ouchi, T., Requirement of IFI16 for the maximal activation of p53 induced by ionizing radiation. Journal of Biological Chemistry 2004,279 (19),20339-20344.
    [35]Veronese, F. M.; Morpurgo, M., Bioconjugation in pharmaceutical chemistry. Farmaco 1999,54 (8),497-516.
    [36]Aronica, S. M.; Raiber, L.; Hanzly, M.; Kisela, C., Antitumor/antiestrogenic effect of the chemokine interferon inducible protein 10 (IP-10) involves suppression of VEGF expression in mammary tissue. Journal of Interferon and Cytokine Research 2009,29 (2),83-91.
    [37]Yamamoto, K.; Mizutani, Y.; Nakanishi, H.; Fujiwara, J.; Ishida, H.; Toiyama, D.; Abe, K.; Hayashi, I.; Okada, K.; Kawauchi, A.; Mizuno, M.; Yoshida, J.; Miki, T., Significant antitumor activity of cationic multilamellar liposomes containing human interferon-beta gene in combination with 5-fluorouracil against human renal cell carcinoma. International Journal of Oncology 2008,33 (3),565-571.
    [38]Qian, W.; Liu, J.; Tong, Y.; Yan, S.; Yang, C.; Yang, M.; Liu, X., Enhanced antitumor activity by a selective conditionally replicating adenovirus combining with MDA-7/interleukin-24 for B-lymphoblastic leukemia via induction of apoptosis. Leukemia 2008,22 (2),361-369.
    [39]Hara, M.; Nakanishi, H.; Tsujimura, K.; Matsui, M.; Yatabe, Y.; Manabe, T.; Tatematsu, M., Interleukin-2 potentiation of cetuximab antitumor activity for epidermal growth factor receptor-overexpressing gastric cancer xenografts through antibody-dependent cellular cytotoxicity. Cancer Science 2008,99 (7),1471-1478.
    [40]Yang, H. Y.; Kang, K. J.; Chung, J. E.; Shim, H., Construction of a large synthetic human scFv library with six diversified CDRs and high functional diversity. Molecules and Cells 2009,27 (2),225-235.
    [41]Wu, P.; Shui, W. Q.; Carlson, B. L.; Hu, N.; Rabuka, D.; Lee, J.; Bertozzi, C. R., Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proceedings of the National Academy of Sciences of the United States of America 2009,106 (9),3000-3005.
    [42]DiMascio, L.; Voermans, C.; Uqoezwa, M.; Duncan, A.; Lu, D. H.; Wu, J.; Sankar, U.; Reya, T., Identification of adiponectin as a novel hemopoietic stem cell growth factor. Journal of Immunology 2007,178 (6),3511-3520.
    [43]Ye, F.; Chen, H. Z.; Xie, X.; Ye, D. F.; Lu, W. G.; Ding, Z. M., Vascular endothelial growth factor (VEGF) and ovarian carcinoma cell supernatant activate signal transducers and activators of transcription (STATs) via VEGF receptor-2 (KDR) in human hemopoietic progenitor cells. Gynecologic Oncology 2004,94 (1),125-133.
    [44]Lv, S. Q.; Zhang, K. B.; Zhang, E. E.; Gao, F. Y.; Yin, C. L.; Huang, C. J.; He, J. Q.; Yang, H., Antitumor efficiency of the cytosine deaminase/5-fluorocytosine suicide gene therapy system on malignant gliomas:An in vivo study. Medical Science Monitor 2009,15 (1), BR13-BR20.
    [45]Tsuchiyama, T.; Nakamoto, Y.; Sakai, Y.; Mukaida, N.; Kaneko, S., Optimal amount of monocyte chemoattractant protein-1 enhances antitumor effects of suicide gene therapy against hepatocellular carcinoma by Ml macrophage activation. Cancer Science 2008,99 (10),2075-2082.
    [46]Paz, M. M.; Das, A.; Tomasz, M., Mitomycin C linked to DNA minor groove binding agents:Synthesis, reductive activation, DNA binding and cross-linking properties and in vitro antitumor activity. Bioorganic & Medicinal Chemistry 1999,7 (12),2713-2726.
    [47]Zhang, Z. C.; Zhang, J.; Yuan, C. L.; Wu, G. Y.; Qian, X. H., Intercalation, cytotoxicity, and molecular modeling of acenaphtho[1,2-b]pyrrole chromophores as a new family of antitumor agents. Chemical Research in Chinese Universities 2008,24 (4),449-453.
    [48]Li, Z. G.; Yang, Q.; Qian, X. H., Novel 2-aminothiazonaphthalimides as visible light activatable photonucleases:effects of intercalation, heterocyclic-fused area and side chains. Bioorganic & Medicinal Chemistry Letters 2005,15 (7),1769-1772.
    [49]Hurley, A. L.; Mohler, D. L., Organometallic photonucleases:Synthesis and DNA-cleavage studies of cyclopentadienyl metal-substituted dendrimers designed to increase double-strand scission. Organic Letters 2000,2 (18),2745-2748.
    [50]Hosokawa, M.; Okada, T.; Mikami, N.; Konishi, I.; Miyashita, K., Bio-functions of marine carotenoids. Food Science and Biotechnology 2009,18 (1),1-11.
    [51]Britton, G.; Liaaen-Jensen, S.; Pfander, H., Carotenoids handbook. Basel:Birkhauser Verlag 2004.
    [52]Gyemant, N.; Tanaka, M.; Molnar, P.; Deli, J.; Mandoky, L.; Molnar, J., Reversal of multidrug resistance of cancer cells in vitro:Modification of drug resistance by selected carotenoids. Anticancer Research 2006,26 (1A),367-374.
    [53]Glavas-Obrovac, L.; Piantanida, I.; Marczi, S.; Masic, L.; Timcheva, Ⅱ; Deligeorgiev, T. G., Minor structural differences of monomethine cyanine derivatives yield strong variation in their interactions with DNA, RNA as well as on their in vitro antiproliferative activity. Bioorganic & Medicinal Chemistry 2009,17 (13),4747-4755.
    [54]Rice-Evans, C. A.; Sampson, J.; Bramley, P. M.; Holloway, D. E., Why do we expect carotenoids to be antioxidant in vivo? Free Rad. Res.1997,26,381-398.
    [55]Rehman, A.; Bourne, L. C.; Halliwell, B.; Rice-Evans, C. A., Tomato consumption modulates oxidative DNA damage in humans. Biochem. Biophys. Res. Commun.1999, 262,828-831.
    [56]Levy, J.; Bosin, E.; Feldmen, B.; Giat, Y.; Miinster, A.; Danilenko, M.; Sharoni, Y., Lycopene is a more potent inhibitor of human cancer cell proliferation than either a-carotene or β-carotene. Nutr. Cancer 1995,24,257-266.
    [57]Park, Y. O.; Hwang, E. S.; Moon, T. W., The effect of lycopene on cell growth and oxidative DNA damage of Hep3B human hepatoma cells. Biofactors 2005,23 (3), 129-139.
    [58]Liaeen-Jensen, S., Carotenoids in chemosystematics. Basel: Birkhauser 1998, Carotenoids biosynthesis and metabolism, vol.3,217-247.
    [59]Yan, X.; Chuda, Y.; Suzuki, M.; Nagata, T., Fucoxanthin as the major antioxidant in hijikia fusiformis, a common edible sea weed. Biosci. Biotechnol. Biochem.1999,63, 605-607.
    [60]Miki, W., Biological functions and activities of animal carotenoids. Pure Appl. Chem. 1991,63,141-146.
    [61]Krinsky, N. I.; Mayne, S. T.; Sies, H., Carotenoids in health and disease. New York: Marcel Dekker 2004.
    [62]Maeda, H.; Hosokawa, M.; Sashima, T.; Funayama, K.; Miyashita, K., Fucoxanthin from edible seaweed, undaria pinnatifida, shows aniobesity effect through UCP1 expression in white adipose tissues. Biochem. Biophys. Res. Commun.2005,332, 392-397.
    [63]Shiratori, K.; Ohigashi, K.; Ilieva, I.; Jin, X.; Koyama, Y.; et al., Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp. Eye Res.2005, 81,271-277.
    [64]Okuzumi, J.; Nishino, H.; Murakoshi, M.; Iwashima, A.; Tanaka, Y.; Yamane, T.; et al., Inhibitory effects of fucoxanthin, a natural carotenoid, on N-myc expression and cell cycle progression in human malignant tumor cells. Cancer Lett.1990,55,75-81.
    [65]Hosokawa, M.; Wanezaki, S.; Miyauchi, K.; Kurihara, H.; Kohono, H.; Kawabata, J.; et al., Apoptosis-inducing effect of fucoxanthin on human leukemia cell HL-60. Food Sci. Technol. Res.1999,5,243-246.
    [66]Kotake-Nara, E.; Kushiro, M.; Zhang, H.; Sugawara, T.; Miyashita, K.; Nagao, A., Carotenoids affect proliferation of human prostate cancer cells. J. Nutr.2001,131, 3303-3306.
    [67]Tsushima, M.; Maoka, T.; Katuyama, M.; Kozuka, M.; Matsuno, T.; Tokuda, H.; et al., Inhibitory effect of natural carotenoids on epstein-barr virus activation activity of a tumor promoter in raji cells. A screening study for anti-tumor promoters. Biol. Pharm. Bull.1995,18,227-233.
    [68]Okuzumi, J.; Takahashi, T.; Yamane, T.; Kitao, T.; Inagaki, M.; Ohya, K.; et al., Inhibitory effects of fucoxanthin, a natural carotenoid, on N-ethyl-N'-nitro-N-nitro-soguanidine-induced mouse duodenal carcinogenesis. Cancer Lett.1993,68,159-168.
    [69]Miki, W.; Yamaguchi, K.; Konosu, S., Comparison of carotenoids in the ovaries of marine fish and shellfish. Comp. Biochem. Physiol. B.1982,71,7-11.
    [70]Tripathi, D. N.; Jena, G. B., Intervention of astaxanthin against cyclophosphamide-induced oxidative stress and DNA damage:A study in mice. Chemico-Biological Interactions 2009,180 (3),398-406.
    [71]Lorenz, R. T.; Cysewski, G. R., Commercial potential for haematococcus micro-algaeas a natural source of astaxanthin. Trends Biotechnol.2000,18 (4),160-167.
    [72]Goto, S.; Kogure, K.; Abe, K.; Kimata, Y.; Kitahama, K.; Yamashita, E.; Terada, H., Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim. Biophys. Acta 2001,1512 (2),251-258.
    [73]Pashkow, F. J.; Watumull, D. G.; Campbell, C. L., Astaxanthin:a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am. J. Cardiol.2008,101 (10A),58D-68D.
    [74]Hix, L. M.; Frey, D. A.; McLaws, M. D.; Osterlie, M.; Lockwood, S. F.; Bertram, J. S., Inhibition of chemically-induced neoplastic transformation by a novel tetrasodium diphosphate astaxanthin derivative. Carcinogenesis 2005,26(9),1634-1641.
    [75]Shen, H.; Kuo, C. C.; Chou, J.; Delvolve, A.; Jackson, S. N.; Post, J.; Woods, A. S.; Hoffer, B. J.; Wang, Y.; Harvey, B. K., Astaxanthin reduces ischemic brain injury in adult rats. FASEB J.2009, in press.
    [76]Kanakis, C. D.; Tarantilis, P. A.; Pappas, C.; Bariyanga, J.; Tajmir-Riahi, H. A.; Polissiou, M. G., An overview of structural features of DNA and RNA complexes with saffron compounds:Models and antioxidant activity. Journal of Photochemistry and Photobiology B-Biology 2009,95 (3),204-212.
    [77]Bathaie, S. Z.; Bolhasani, A.; Hoshyar, R.; Ranjbar, B.; Sabouni, F.; Moosavi-Movahedi, A. A., Interaction of saffron carotenoids as anticancer compounds with ctDNA, oligo(dG dC)(15), and oligo(dA dT)(15). DNA and Cell Biology 2007,26 (8), 533-540.
    [78]Ashrafi, M.; Bathaie, S. Z.; Taghikhani, M.; Moosavi-Movahedi, A. A., The effect of carotenoids obtained from saffron on histone H1 structure and H1-DNA interaction. Int. J. Biol. Macromol.2005,36,246-252.
    [79]Abdullaev, F. I.; Aguirre-Espinosa, J. J., Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trial. Cancer Detect. Prevent. 2004,28,426-432.
    [80]Kanakis, C. D.; Tarantilis, P. A.; Tajmir-Riahi, H. A.; Polissiou, M. G., Interaction of tRNA with safranal, crocetin and dimethylcrocetin. J. Biomol. Struct. Dyn.2007,24, 537-545.
    [81]Suzuki, M.; Watanabe, K.; Fujiwara, S.; Kurasawa, T.; Wakabayashi, T.; Tsuzuki, M.; Iguchi, K.; Yamori, T., Isolation of peridinin-related norcarotenoids with cell growth-inhibitory activity from the cultured dinoflagellate of symbiodinium sp., a symbiont of the okinawan soft coral clavularia viridis, and analysis of fatty acids of the dinoflagellate. Chemical & Pharmaceutical Bulletin 2003,51 (6),724-727.
    [82]Chang, J.; Chen, W.; Hong, D.; Lin, J., The inhibition of DMBA-induced carcino-gensis by neoxanthin in hamster buccal pouch. Nutr. Cancer 1995,24,325-333.
    [83]Yoshida, T.; Maoka, T.; Das, S. K.; Kanazawa, K.; Horinaka, M.; Wakada, M.; Satomi, Y.; Nishino, H.; Sakai, T., Halocynthiaxanthin and peridinin sensitize colon cancer cell lines to tumor necrosis factor-related apoptosis-inducing ligand. Molecular Cancer Research 2007,5 (6),615-625.
    [84]Antunes, L. M. G.; Pascoal, L. M.; Bianchi, M. D. P.; Dias, F. L., Evaluation of the clastogenicity and anticlastogenicity of the carotenoid bixin in human lymphocyte cultures. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 2005, 585(1-2),113-119.
    [85]Krapcho, A. P.; Getahun, Z.; Avery, K. L.; Vargas, K. J.; Hacker, M. P.; Spinelli, S.; Pezzoni, G.; Manzotti, C., Synthesis and antitumor evaluations of symmetrically and unsymmetrically substituted 1,4-bis[(aminoalkyl)amino]anthracene-9,10-diones and 1,4-bis[(aminoalkyl)amino]5,8-dihydroxyanthracene-9,10-diones. Journal of Medicinal Chemistry 1991,34 (8),2373-2380.
    [86]Krapcho, A. P.; Petry, M. E.; Getahun, Z.; Landi, J. J.; Stallman, J.; Polsenberg, J. F.; Gallagher, C. E.; Maresch, M. J.; Hacker, M. P.; Giuliani, F. C.; Beggiolin, G.; Pezzoni, G.; Menta, E.; Manzotti, C.; Oliva, A.; Spinelli, S.; Tognella, S., 6,9-bis[(aminoalkyl)amino]benzo[g]isoquinoline-5,10-diones. A novel class of chromophore-modified antitumor anthracene-9,10-diones. Synthesis and antitumor evaluations. Journal of Medicinal Chemistry 1994,37 (6),828-837.
    [87]Hua, D. H.; Lou, K.; Havens, J.; Perchellet, E. M.; Wang, Y.; Perchellet, J. P.; Iwamoto, T., Synthesis and in vitro antitumor activity of substituted anthracene-1,4-diones. Tetrahedron 2004,60(45),10155-10163.
    [88]Albert, A., Selective Toxicity,5th ed. Chapman & Hall: London 1973.
    [89]Bischoff, G.; Hoffmann, S., DNA-binding of drugs used in medicinal therapies. Current Medicinal Chemistry 2002,9,312-348.
    [90]Waring, M. J.; Bailly, C., DNA-recognition by intercalators and hybrid molecules. Journal of Molecular Recognition 1994,7,109-122.
    [91]Antonini, I.; Polucci, P.; Magnano, A.; Martelli, S., Synthesis, antitumor cytotoxicity, and DNA-binding of novel N-5,2-di(omega-aminoalkyl)-2,6-dihydropyrazolo[3,4,5-kl] acridine-5-carbo xamides. Journal of Medicinal Chemistry 2001,44 (20),3329-3333.
    [92]Van Vliet, L. D.; Ellis, T.; Foley, P. J.; Liu, L. G.; Pfeffer, F. M.; Russell, R. A.; Warrener, R. N.; Hollfelder, F.; Waring, M. J., Molecular recognition of DNA by rigid [n]-polynorbornane-derived bifunctional intercalators:Synthesis and evaluation of their binding properties. Journal of Medicinal Chemistry 2007,50 (10),2326-2340.
    [93]Guddneppanavar, R.; Choudhury, J. R.; Kheradi, A. R.; Steen, B. D.; Saluta, G.; Kucera, G. L.; Day, C. S.; Bierbach, U., Effect of the diamine nonleaving group in platinum-acridinylthiourea conjugates on DNA damage and cytotoxicity. Journal of Medicinal Chemistry 2007,50 (9),2259-2263.
    [94]Ma, Z. D.; Saluta, G.; Kucera, G. L.; Bierbach, U., Effect of linkage geometry on biological activity in thiourea-and guanidine-substituted acridines and platinum-acridines. Bioorganic & Medicinal Chemistry Letters 2008,18 (13),3799-3801.
    [95]Chilin, A.; Marzaro, G.; Marzano, C.; Dalla Via, L.; Ferlin, M. G.; Pastorini, G.; Guiotto, A., Synthesis and antitumor activity of novel amsacrine analogs:The critical role of the acridine moiety in determining their biological activity. Bioorganic & Medicinal Chemistry 2009,17(2),523-529.
    [96]Lau, G. W.; Ran, H. M.; Kong, F. S.; Hassett, D. J.; Mavrodi, D., Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infection and Immunity 2004,72 (7),4275-4278.
    [97]Blankenfeldt, W.; Kuzin, A. P.; Skarina, T.; Korniyenko, Y.; Tong, L.; Bayer, P.; Janning, P.; Thomashow, L. S.; Mavrod, D. V., Structure and function of the phenazine biosynthetic protein PhzF from pseudomonas fluorescens. Proceedings of the National Academy of Sciences of the United States of America 2004,101 (47), 16431-16436.
    [98]Laursen, J. B.; Nielsen, J., Phenazine natural products:Biosynthesis, synthetic analogues, and biological activity. Chemical Reviews 2004,104 (3),1663-1685.
    [99]Spicer, J. A.; Gamage, S. A.; Rewcastle, G. W.; Finlay, G. J.; Bridewell, D. J. A.; Baguley, B. C.; Denny, W. A., Bis(phenazine-l-carboxamides):Structure-activity relationships for a new class of dual topoisomerase Ⅰ/Ⅱ-directed anticancer drugs. Journal of Medicinal Chemistry 2000,43 (7),1350-1358.
    [100]Kim, Y. S.; Park, S. Y.; Lee, H. J.; Suh, M. E.; Schollmeyer, D.; Lee, C. O., Synthesis and cytotoxicity of 6,11-dihydro-pyrido-and 6,11-dihydro-benzo[2,3-b]phenazine-6,11-dione derivatives. Bioorganic & Medicinal Chemistry 2003,11 (8),1709-1714.
    [101]Lee, H. J.; Kim, J. S.; Park, S. Y.; Suh, M. E.; Kim, H. J.; Seo, E. K.; Lee, C. O., Synthesis and cytotoxicity evaluation of 6,11-dihydro-pyridazoand 6,11-dihydro-pyrido[2,3-blphenazine-6,11-diones. Bioorganic & Medicinal Chemistry 2004,12 (7), 1623-1628.
    [102]Yang, P.; Yang, Q.; Qian, X. H.; Cui, J. N., Novel synthetic isoquinolino[5,4-ab] phenazines:Inhibition toward topoisomerase I, antitumor and DNA photo-cleaving activities. Bioorganic & Medicinal Chemistry 2005,13 (21),5909-5914.
    [103]Bradley, P. M.; Angeles-Boza, A. M.; Dunbar, K. R.; Turro, C., Direct DNA photo-cleavage by a new intercalating dirhodium(II/II) complex:Comparison to Rh-2(mu-O2CCH3)(4). Inorganic Chemistry 2004,43 (8),2450-2452.
    [104]Rajendiran, V.; Murali, M.; Suresh, E.; Sinha, S.; Somasundaram, K.; Palaniandavar, M., Mixed ligand ruthenium(II) complexes of bis(pyrid-2-yl)-/bis(benzimidazol-2-yl)-dithioether and diimines:Study of non-covalent DNA binding and cytotoxicity. Dalton Transactions 2008, (1),148-163.
    [105]Tan, C. P.; Liu, J.; Chen, L. M.; Shi, S.; Ji, L. N., Synthesis, structural characteristics, DNA binding properties and cytotoxicity studies of a series of Ru(III) complexes. Journal of Inorganic Biochemistry 2008,102 (8),1644-1653.
    [106]Ghosh, S.; Barve, A. C.; Kumbhar, A. A.; Kumbhar, A. S.; Puranik, V. G.; Datar, P. A.; Sonawane, U. B.; Joshi, R. R., Synthesis, characterization, X-ray structure and DNA photocleavage by cis-dichloro bis(diimine) Co(III) complexes. Journal of Inorganic Biochemistry 2006,100 (3),331-343.
    [107]Palanichamy, K.; Ontko, A. C., Synthesis, characterization, and aqueous chemistry of. cytotoxic Au(Ⅲ) polypyridyl complexes. Inorganica Chimica Acta 2006,359 (1), 44-52.
    [108]Peacock, A. F. A.; Habtemariam, A.; Moggach, S. A.; Prescimone, A.; Parsons, S.; Sadler, P. J., Chloro half-sandwich osmium(II) complexes:Influence of chelated N,N-ligands on hydrolysis, guanine binding, and cytotoxicity. Inorganic Chemistry 2007,46 (10),4049-4059.
    [109]Pettit, G. R.; Thornhill, A. J.; Moser, B. R.; Hogan, F., Antineoplastic agents.552. Oxidation of combretastatin A-1:trapping the o-quinone intermediate considered the metabolic product of the corresponding phosphate prodrug. Journal of Natural Products 2008,71 (9),1561-1563.
    [110]Song, Y. M.; Xu, J. P.; Ding, L.; Hou, Q.; Liu, J. W.; Zhu, Z. L., Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione. Journal of Inorganic Biochemistry 2009,103 (3), 396-400.
    [111]Sun, M.; Estrov, Z.; Ji, Y.; Coombes, K. R.; Harris, D. H.; Kurzrock, R., Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Molecular Cancer Therapeutics 2008,7 (3),464-473.
    [112]Subramaniam, D.; May, R.; Sureban, S. M.; Lee, K. B.; George, R.; Kuppusamy, P.; Ramanujam, R. P.; Hideg, K.; Dieckgraefe, B. K.; Houchen, C. W.; Anant, S., Diphenyl difluoroketone:A curcumin derivative with potent in vivo anticancer activity. Cancer Research 2008,68 (6),1962-1969.
    [113]Ohtsu, H.; Xiao; Z. Y.; Ishida, J.; Nagai, M.; Wang, H. K.; Itokawa, H.; Su, C. Y.; Shih, C.; Chiang, T. Y.; Chang, E.; Lee, Y. F.; Tsai, M. Y.; Chang, C. S.; Lee, K. H., Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. Journal of Medicinal Chemistry 2002,45 (23),5037-5042.
    [114]Lin, L.; Shi, Q.; Nyarko, A. K.; Bastow, K. F.; Wu, C. C.; Su, C. Y.; Shih, C. C. Y.; Lee, K. H., Antitumor agents.250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. Journal of Medicinal Chemistry 2006,49 (13), 3963-3972.
    [115]Amolins, M. W.; Peterson, L. B.; Blagg, B. S. J., Synthesis and evaluation of electron-rich curcumin analogues. Bioorganic & Medicinal Chemistry 2009,17 (1), 360-367.
    [116]Claramunt, R. M.; Bouissane, L.; Cabildo, M. P.; Cornago, M. P.; Elguero, J.; Radziwon, A.; Medina, C., Synthesis and biological evaluation of curcuminoid pyrazoles as new therapeutic agents in inflammatory bowel disease:Effect on matrix metalloproteinases. Bioorganic & Medicinal Chemistry 2009,17(3),1290-1296.
    [117]Fuchs, J. R.; Pandit, B.; Bhasin, D.; Etter, J. P.; Regan, N.; Abdelhamid, D.; Li, C. L.; Lin, J.; Li, P. K., Structure-activity relationship studies of curcumin analogues. Bioorganic & Medicinal Chemistry Letters 2009,19 (7),2065-2069.
    [118]Liang, G. A.; Shao, L. L.; Wang, Y.; Zhao, C. G.; Chu, Y. H.; Xiao, J.; Zhao, Y.; Li, X. K.; Yang, S. L., Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorganic & Medicinal Chemistry 2009,17(6),2623-2631.
    [119]Liu, Z. F.; Xie, Z. L.; Jones, W.; Pavlovicz, R. E.; Liu, S. J.; Yu, J. H.; Li, P. K.; Lin, J. Y.; Fuchs, J. R.; Marcucci, G.; Li, C. L.; Chan, K. K., Curcumin is a potent DNA hypomethylation agent. Bioorganic & Medicinal Chemistry Letters 2009,19 (3),706-709.
    [120]Arezki, A.; Brule, E.; Jaouen, G., Synthesis of the first ferrocenyl derivatives of curcuminoids. Organometallics 2009,28 (6),1606-1609.
    [121]Qian, J. H.; Qian, X. H.; Xu, Y. F., Selective and sensitive chromo-and fluorogenic dual detection of anionic surfactants in water based on a pair of "on-off-on" fluorescent sensors. Chemistry-a European Journal 2009,15 (2),319-323.
    [122]Huang, J. H.; Xu, Y. F.; Qian, X. H., A colorimetric sensor for Cu2+ in aqueous solution based on metal ion-induced deprotonation:Deprotonation/protonation mediated by Cu2+-ligand interactions. Dalton Transactions 2009, (10),1761-1766.
    [123]Zhang, Y.; Guo, X. F.; Si, W. X.; Jia, L. H.; Qian, X. H., Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethyl-amino chain as receptor. Organic Letters 2008,10 (3),473-476.
    [124]Duan, L. P.; Xu, Y. F.; Qian, X. H., Highly sensitive and selective Pd2+ sensor of naphthalimide derivative based on complexation with alkynes and thio-heterocycle. Chemical Communications 2008, (47),6339-6341.
    [125]Xu, Z. C.; Xiao, Y.; Qian, X. H.; Cui, J. N.; Cui, D. W., Ratiometric and selective fluorescent sensor for Cu-II based on internal charge transfer (ICT). Organic Letters 2005,7 (5),889-892.
    [126]Wang, J. B.; Xiao, Y.; Zhang, Z. C.; Qian, X. H.; Yang, Y. Y.; Xu, Q., A pH-resistant Zn(II) sensor derived from 4-aminonaphthalimide:Design, synthesis and intracellular applications. Journal of Materials Chemistry 2005,15 (27-28),2836-2839.
    [127]Guo, X. F.; Qian, X. H.; Jia, L. H., A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. Journal of the American Chemical Society 2004,126 (8),2272-2273.
    [128]Roldan, C. M.; Brana, M. F.; Castellano, J. M., Un procedimiento para la preparation industrial de naftalimidas sustituidas en el nitrogeno y en la posicion tres y sus derivados. Spanish Patent No.410.740 1973.
    [129]Brana, M. F.; Castellano, J. M.; Roldan, C. M., Synthesis and mode(s) of action of a new series of imide derivatives of 3-nitro-1,8-naphthalic acid. Cancer Chemotherapy and Pharmacology 1980,4,61-66.
    [130]Brana, M. F.; Sanz, A. M.; Castellano, J. M., Synthesis and cytostatic activity of benzo[de]isoquinoline-1,3-dione:Structure-activity relationships. European Journal of Medicinal Chemistry-Chimica Therapeutica 1981,16,207-212.
    [131]Diaz-Rubio, E.; Martin, M.; Lopez-Vege, J. M., Phase I study of mitonafide with a 3-day administration schedule:Early interruption due to severe central nervious system toxicity. Investigational New Drugs 1994,12,277-281.
    [132]Ratiain, M. J.; Mick, R.; Berezin, F., Phase I study of amonafide dosing based on acetyllator phenotype. Cancer Research 1993,53,2304-2308.
    [133]Hsiang, Y. H.; Jiang, J. B.; Liu, L. F., Topoisomerase Ⅱ-mediated DNA cleavage by 'amonafide and its structural analogs. Molecular Pharmacology 1989,36,371-376.
    [134]Feigon, J.; Denny, W. A.; Leupin, W.; Kearns, D. R., Interactions of antitumor drugs with natural DNA:proton NMR study of binding mode and kinetics. Journal of Medicinal Chemistry 1984,27 (4),450-465.
    [135]Brana, M. F.; Castellano, J. M.; Moran, M.; Emling, F.; Kluge, M.; Schlick, E.; Klebe, G.; Walker, N., Synthesis, structure and antitumor activity of new benzo[d,e]isoquino-line-1,3-diones. Arzneim Forsch 1995,45,1311-1318.
    [136]Zee-Cheng, R. K. Y.; Cheng, C. C., N-(Aminoalkyl)imide antineoplastic agents. Synthesis and biological activity. Journal of Medicinal Chemistry 1985,28 (9),1216-1222.
    [137]Sami, S. M.; Dorr, R. T.; Solyom, A. M.; Alberts, D. S.; Remers, W. A., Amino-substituted 2-[2-(dimethylamino)ethyl]-1,2-dihydro-3H-dibenz[de,h]isoquino-line-1,3-diones. Synthesis, antitumor activity, and quantitative structure-activity relationship. Journal of Medicinal Chemistry 1995,38 (6),983-993.
    [138]Sami, S. M.; Dorr, R. T.; Alberts, D. S.; Remers, W. A.,2-Substituted 1,2-dihydro-3H-dibenz[de,h]isoquinoline-1,3-diones. A new class of antitumor agent. Journal of Medicinal Chemistry 1993,36 (6),765-770.
    [139]Sami, S. M.; Dorr, R. T.; Alberts, D. S.; Solyom, A. M.; Remers, W. A., Analogues of amonafide and azonafide with novel ring systems. Journal of Medicinal Chemistry 2000,43(16),3067-3073.
    [140]Brana, M. F.; Cacho, M.; Garcia, M. A.; de Pascual-Teresa, B.; Ramos, A.; Acero, N.; Llinares, F.; Munoz-Mingarro, D.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M., Synthesis, antitumor activity, molecular modeling, and DNA binding properties of a new series of imidazonaphthalimides. Journal of Medicinal Chemistry 2002,45 (26), 5813-5816.
    [141]Brana, M. F.; Cacho, M.; Ramos, A.; Dominguez, M. T.; Pozuelo, J. M.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M.; Carrasco, C.; Bailly, C., Synthesis, biological evaluation and DNA binding properties of novel mono and bisnaphthalimides. Organic & Biomolecular Chemistry 2003,1 (4),648-654.
    [142]Brana, M. F.; Cacho, M.; Garcia, M. A.; de Pascual-Teresa, B.; Ramos, A.; Dominguez, M. T.; Pozuelo, J. M.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M.; Banez-Coronel, M.; Lacal, J. C., New analogues of amonafide and elinafide, containing aromatic heterocycles:Synthesis, antitumor activity, molecular modeling, and DNA binding properties. Journal of Medicinal Chemistry 2004,47 (6),1391-1399.
    [143]Van Quaquebeke, E.; Mahieu, T.; Dumont, P.; Dewelle, J.; Ribaucour, F.; Simon, G.; Sauvage, S.; Gaussin, J. F.; Tuti, J.; El Yazidi, M.; Van Vynckt, F.; Mijatovic, T. Lefranc, F.; Darro, F.; Kiss, R.,2,2,2-Trichloro-N-({2-[2-(dimethylamino)ethyl]-1,3-dioxo-2,3-dihydro-lH-benzo[de]isoquinolin5-yl} carbamoyl) acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity. Journal of Medicinal Chemistry 2007,50 (17),4122-4134.
    [144]Brana, M. F.; Castellano, J. M.; Moran, M.; Vega, M. J. P. d.; Perron, D.; Conlon, D.; Bousquet, P. F.; Romerdahl, C. A.; Robinson, S. P., Bis-naphthalimides III:Synthesis and antitumor activity of N,N'-bis[2-(1,8-naphthalimido)-ethyl]alkanediamine. Anti-Cancer Drug Design 1996,11,297-309.
    [145]Bailly, C.; Brana, M. F.; Waring, J., Sequence-selective intercalation of antitumor bis-naphthalimides into DNA:Evidence for an approach via the major groove. European Journal of Biochemistry 1996,240,195-208.
    [146]Bousquet, P. F.; Brana, M. F.; Conlon, D., Preclinical evaluation of LU 79553:A novel bis-naphthalimide with potent antitumor activity. Cancer Research 1995,55, 1176-1189.
    [147]McRipley, R. J.; Burns-Horwitz, P. E.; Czerniak, P. M.; Diamond, R. J.; Diamond, M. A.; Miller, J. L. D.; Page, R. J.; Dexter, D. L.; Chen, S. F., Efficacy of DMP 840:A novel bis-naphthalimide cytotoxic agent with human solid tumor xenograft selectivity. Cancer Research 1994,54,159-164.
    [148]Antonini, I.; Volpini, R.; Dal Ben, D.; Lambertucci, C.; Cristalli, G., Design, synthesis, and biological evaluation of new mitonafide derivatives as potential antitumor drugs. Bioorganic & Medicinal Chemistry 2008,16 (18),8440-8446.
    [149]Kamal, A.; Srinivas, O.; Ramulu, P.; Ramesh, G.; Kumar, P. P., Synthesis of novel C2 and C2-C8 linked pyrrolo[2,1-c][1,4]benzodiazepine-naphthalimide hybrids as DNA-binding agents. Bioorganic & Medicinal Chemistry Letters 2003,13 (20),3577-3581.
    [150]Kamal, A.; Ramu, R.; Tekumalla, V.; Khanna, G. B. R.; Barkume, M. S.; Juvekar, A. S.; Zingde, S. M., Remarkable DNA binding affinity and potential anticancer activity of pyrrolo[2,1-c][1,4]benzodiazepine-naphthalimide conjugates linked through piperazine side-armed alkane spacers. Bioorganic & Medicinal Chemistry 2008,16 (15),7218-7224.
    [151]Flores, L. V.; Staples, A. M.; Mackay, H.; Howard, C. M.; Uthe, P. B.; Sexton, J. S.; Buchmueller, K. L.; Wilson, W. D.; O'Hare, C.; Kluza, J.; Hochhauser, D.; Hartley, J. A.; Lee, M., Synthesis and evaluation of an intercalator-polyamide hairpin designed to target the inverted CCAAT box 2 in the topoisomerase II alpha promoter. Chembiochem 2006,7(11),1722-1729.
    [152]Hariprakasha, H. K.; Kosakowska-Cholody, T.; Meyer, C.; Cholody, W. M.; Stinson, S. F.; Tarasova, N. I.; Michejda, C. J., Optimization of naphthalimide-imidazoacridone with potent antitumor activity leading to clinical candidate (HKH40A, RTA 502). Journal of Medicinal Chemistry 2007,50 (23),5557-5560.
    [153]Xie, L. J.; Xu, Y. F.; Wang, F.; Liu, J. W.; Qian, X. H.; Cui, J. N., Synthesis of new amonafide analogues via coupling reaction and their cytotoxic evaluation and DNA-binding studies. Bioorganic & Medicinal Chemistry 2009,17(2),804-810.
    [154]Ott, I.; Qian, X. H.; Xu, Y. F.; Vlecken, D. H. W.; Marques, I. J.; Kubutat, D.; Will, J.; Sheldrick, W. S.; Jesse, P.; Prokop, A.; Bagowski, C. P., A gold(I) phosphine complex containing a naphthalimide ligand functions as a TrxR inhibiting antiproliferative agent and angiogenesis inhibitor. Journal of Medicinal Chemistry 2009,52 (3),763-770.
    [155]Yang, Q.; Yang, P.; Qian, X. H.; Tong, L. P., Naphthalimide intercalators with chiral amino side chains:Effects of chirality on DNA binding, photodamage and antitumor cytotoxicity. Bioorganic & Medicinal Chemistry Letters 2008,18 (23),6210-6213.
    [156]Ott, I.; Xu, Y. F.; Liu, J. W.; Kokoschka, M.; Harlos, M.; Sheldrick, W. S.; Qian, X. H., Sulfur-substituted naphthalimides as photoactivatable anticancer agents:DNA interaction, fluorescence imaging, and phototoxic effects in cultured tumor cells. Bioorganic & Medicinal Chemistry 2008,16 (15),7107-7116.
    [157]Yin, H.; Xu, Y. F.; Qian, X. H.; Li, Y. L.; Liu, H. W., Novel N-oxide of naphthalimides as prodrug leads against hypoxic solid tumor: Synthesis and biological evaluation. Bioorganic & Medicinal Chemistry Letters 2007,17(8),2166-2170.
    [158]Qian, X. H.; Li, Z. G.; Yang, Q., Highly efficient antitumor agents of heterocycles containing sulfur atom:Linear and angular thiazonaphthalimides against human lung cancer cell in vitro. Bioorganic & Medicinal Chemistry 2007,15 (21),6846-6851.
    [159]Li, F.; Cui, J. N.; Guo, L. Y.; Qian, X. H.; Ren, W. M.; Wang, K. W.; Liu, F. Y., Molecular design, chemical synthesis, and biological evaluation of'4-1'pentacyclic aryl/heteroaryl-imidazonaphthalimides. Bioorganic & Medicinal Chemistry 2007,15 (15),5114-5121.
    [160]Yang, P.; Yang, Q.; Qian, X. H., Novel DNA bis-intercalators of isoquinolino[4,5-bc]acridines:design, synthesis and evaluation of cytotoxic activity. Tetrahedron 2005,61 (50),11895-11901.
    [161]Li, Z. G.; Yang, Q.; Qian, X. H., Novel heterocyclic family of phenyl naphthothiazole carboxamides derived from naphthalimides:Synthesis, antitumor evaluation, and DNA photocleavage. Bioorganic & Medicinal Chemistry 2005,13 (9),3149-3155.
    [162]Li, Z. G.; Yang, Q.; Qian, X. H., Synthesis, antitumor evaluation and DNA photo-cleaving activity of novel methylthiazonaphthalimides with aminoalkyl side chains. Bioorganic & Medicinal Chemistry Letters 2005,15 (12),3143-3146.
    [163]Li, Z. G.; Yang, Q.; Qian, X. H., Synthesis of thiazo-or thiadiazo-naphthalene carboxamides via mercuric intermediates and their antitumor and DNA photocleavage activities. Tetrahedron 2005,61 (27),6634-6641.
    [164]Li, Z. G.; Yang, Q.; Qian, X. H., Novel thiazonaphthalimides as efficient antitumor and DNA photocleaving agents:Effects of intercalation, side chains, and substituent groups. Bioorganic & Medicinal Chemistry 2005,13 (16),4864-4870.
    [165]Li, Z. G.; Yang, Q.; Qian, X. H., Synthesis, antitumor and DNA photocleaving activities of novel naphthalene carboxamides:effects of different thio-heterocyclic rings and aminoalkyl side chains. Tetrahedron 2005,61 (36),8711-8717.
    [166]Qian, X. H.; Li, Y. G.; Xu, Y. F.; Liu, Y.; Qu, B. Y., Highly-efficient DNA photocleavers with long wavelength absorptions:Thio-heterocyclic fused naphthalimides containing aminoalkyl side chains. Bioorganic & Medicinal Chemistry Letters 2004,14 (10),2665-2668.
    [167]Li, Y. G.; Xu, Y. F.; Qian, X. H.; Qu, B., Naphthalimide-thiazoles as novel photo-nucleases:molecular design, synthesis, and evaluation. Tetrahedron Letters 2004,45 (6),1247-1251.
    [168]Li, Y. G.; Xu, Y. F.; Qian, X. H.; Qu, B. Y., Thiadiazole:A new family of intercalative photonuclease with electron transfer and radical mechanisms. Bioorganic & Medicinal Chemistry Letters 2003,13 (20),3513-3515.
    [169]Thompson:, C. B., Apoptosis in the pathogenesis and treatment of disease. Science 1995,267,1456-1462.
    [170]Sun, S. Y.; Hail, N., Jr; Lotan, R., Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst.2004,96 (9),662-672.
    [171]Tang, G. Z.; Nikolovska-Coleska, Z.; Qiu, S.; Yang, C. Y.; Guo, J.; Wang, S. M., Acylpyrogallols as inhibitors of antiapoptotic Bcl-2 proteins. Journal of Medicinal Chemistry 2008,51 (4),717-720.
    [172]McDonald, E. R.; El-Deiry, W. S., Death Recept. Cancer Ther. 2005,1-41.
    [173]Danial, N. N.; Korsmeyer, S. J., Cell death:Critical control points. Cell 2004,116 (2), 205-219.
    [174]Nicholson, D. W., From bench to clinic with apoptosis-based therapeutic agents. Nature 2000,407(6805),810-816.
    [175]Ponder, B. A. J., Cancer genetics. Nature 2001,411 (6835),336-341.
    [176]Zhang, Z. C.; Jin, L. J.; Qian, X. H.; Wei, M. J.; Wang, Y. Y.; Wang, J.; Yang, Y. Y.; Xu, Q.; Xu, Y. T.; Liu, F., Novel Bcl-2 inhibitors:Discovery and mechanism study of small organic apoptosis-inducing agents. Chembiochem 2007,8 (1),113-121.
    [177]Vaux, D. L.; Cory, S.; Adams, J. M., Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988,335,440-442
    [178]Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. Cell 2000,100 (1),57-70.
    [179]Adams, J. M.; Cory, S., The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007,26,1324-1337.
    [180]Youle, R. J.; Strasser, A., The BCL-2 protein family: opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology 2007,9,47-59.
    [181]Kvansakul, M.; Yang, H.; Fairlie, W. D.; Czabotar, P. E.; Fischer, S. F.; Perugini, M. A.; Huang, D. C. S.; Colman, P. M., Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death and Differentiation 2008,15,1564-1571.
    [182]Huang, D. C. S.; Strasser, A., BH3-only proteins-Essential initiators of apoptotic cell death. Cell2000,103 (6),839-842.
    [183]Sattler, M.; Liang, H.; Nettesheim, D.; Meadows, R. P.; Harlan, J. E.; Eberstadt, M.; Yoon, H. S.; Shuker, S. B.; Chang, B. S.; Minn, A. J.; Thompson, C. B.; Fesik, S. W., Structure of Bcl-XL-Bak peptide complex: Recognition between regulators of apoptosis. Science 1997,275,983-986.
    [184]Willis, S.N.; Fletcher, J. I.; Kaufmann, T.; Delft, M. F. V.; Chen, L.; Czabotar, P. E.; Ierino, H.; Lee, E. F.; Fairlie, W. D.; Bouillet, P.; Strasser, A.; Kluck, R. M.; Adams, J. M.; Huang, D. C. S., Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007,315,856-859.
    [185]Certo, M.; Moore, V. D. G.; Nishino, M.; Wei, G.; Korsmeyer, S.; Armstrong, S. A.; Letai, A., Mitochondria primed by death signals determine cellular addiction to antiapoptotic Bcl-2 family members. Cancer Cell 2006,9 (5),351-365.
    [186]Reed, J. C., Curr. Opin. Oncol.1999,11,68-75.
    [187]Park, C. M.; Oie, T.; Petros, A. M.; Zhang, H.; Nimmer, P. M.; Henry, R. F.; Elmore, S. W., Design, synthesis, and computational studies of inhibitors of BcI-xL. Journal of the American Chemical Society 2006,128 (50),16206-16212.
    [188]Elmore, S. W.; Oost, T. K.; Park, C., Annu. Rep. Med. Chem.2005,40,245.
    [189]Chen, L.; Willis, S. N.; Wei, A.; Smith, B. J.; Fletcher, J. I.; Hinds, M. G.; Colman, P. M.; Day, C. L.; Adams, J. M.; Huang, D. C. S., Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Molecular Cell 2005,17(3),393-403.
    [190]Petros, A. M.; Wang, Y.; Olejniczak, E. T.; Meadows, R. P.; Mack, J.; Swift, K. Matayoshi, E. D.; Zhang, H.; Fesik, S. W.; Thompson, C. B., Rationale for Bcl-XL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Science 2000,9 (12),2528-2534.
    [191]Walensky, L. D.; Kung, A. L.; Escher, I.; Malia, T. J.; Barbuto, S.; Wright, R. D.; Wagner, G.; Verdine, G. L.; Korsmeyer, S. J., Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 2004,305,1466-1470.
    [192]Walensky, L. D.; Pitter, K.; Morash, J.; Oh, K. J.; Barbuto, S.; Fisher, J.; Smith, E.; Verdine, G. L.; Korsmeyer, S. J., A stapled Bid BH3 helix directly binds and activates Bax. Molecular Cell 2006,24 (2),199-210.
    [193]Sadowsky, J. D.; Fairlie, W. D.; Hadley, E. B.; Lee, H. S.; Umezawa, N.; Nikolovska-Coleska, Z.; Wang, S. M.; Huang, D. C. S.; Tomita, Y.; Gellman, S. H., (alpha/beta+alpha)-peptide antagonists of BH3 domain/Bcl-XL recognition:Toward general strategies for foldamer-based inhibition of protein-protein interactions. Journal of the American Chemical Society 2007,129 (1),139-154.
    [194]Kutzki, O.; Park, H. S.; Ernst, J. T.; Orner, B. P.; Yin, H.; Hamilton, A. D., Development of a potent Bcl-xL antagonist based on alpha-helix mimicry. Journal of the American Chemical Society 2002,124 (40),11838-11839.
    [195]Yin, H.; Hamilton, A. D., Terephthalamide derivatives as mimetics of the helical region of Bak peptide target Bcl-xL protein. Bioorganic & Medicinal Chemistry Letters 2004,14(6),1375-1379.
    [196]Davis, J. M.; Truong, A.; Hamilton, A. D., Synthesis of a 2,3';6',3"-terpyridine scaffold as an a-helix mimetic. Organic Letters 2005,7 (24),5405-5408.
    [197]Lessene, G. L.; Baell, J., Alpha-helical mimetics. US20081538022008.
    [198]Degterev, A.; Lugovskoy, A.; Cardone, M.; Mulley, B.; Wagner, G.; Mitchison, T. Yuan, J., Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nature Cell Biology 2001,3,173-182.
    [199]Wang, J. L.; Liu, D.; Zhang, Z. J.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proceedings of the National Academy of Sciences of the United States of America 2000,97 (13),7124-7129.
    [200]Enyedy, I. J.; Ling, Y.; Nacro, K.; Tomita, Y.; Wu, X. H.; Cao, Y. Y.; Guo, R. B.; Li, B. H.; Zhu, X. F.; Huang, Y.; Long, Y. Q.; Roller, P. P.; Yang, D. J.; Wang, S. M., Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. Journal of Medicinal Chemistry 2001,44 (25),4313-4324.
    [201]Tzung, S. P.; Kim, K. M.; Basanez, G.; Giedt, C. D.; Simon, J.; Zimmerberg, J.; Zhang, K. Y. J.; Hockenbery, D. M., Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nature Cell Biology 2001,3,183-191.
    [202]Chan, S. L.; Lee, M. C.; Tan, K. O.; Yang, L. K.; Lee, A. S. Y.; Flotow, H.; Fu, N. Y.; Butler, M. S.; Soejarto, D. D.; Buss, A. D.; Yu, V. C., Identification of chelerythrine as an inhibitor of Bcl-xL Function.J. Biol. Chem.2003,278 (23),20453-20456.
    [203]Kitada, S.; Leone, M.; Sareth, S.; Zhai, D.; Reed, J. C.; Pellecchia, M., Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. Journal of Medicinal Chemistry 2003,46 (20),4259-4264.
    [204]Leone, M.; Zhai, D.; Sareth, S.; Kitada, S.; Reed, J. C.; Pellecchia, M., Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2 family proteins. Cancer Res 2003,63 (23),8118-8121.
    [205]Li, J.; Viallet, J.; Haura, E. B., A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemotherapy and Pharmacology 2008,61 (3),525-534.
    [206]Verstovsek, S.; Raza, A.; Schimmer, A. D.; Viallet, J.; Kantarjian, H., A phase II trial of the small molecule pan-Bcl-2 family inhibitor obatoclax mesylate (GX15-070) administered by a 24-h continuous infusion every 2 weeks to patients with chronic idiopathic myelofibrosis (CIMF). Blood 2001,110,1040A.
    [207]Castro, J. E., et al., A phase II, open label study of AT-101 in combination with rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. evaluation of two dose regimens. Blood 2007,110,917A-918A.
    [208]Tang, G. Z.; Ding, K.; Nikolovska-Coleska, Z.; Yang, C. Y.; Qiu, S.; Shangary, S.; Wang, R. X.; Guo, J.; Gao, W.; Meagher, J.; Stuckey, J.; Krajewski, K.; Jiang, S.; Roller, P. P.; Wang, S. M., Structure-based design of flavonoid compounds as a new class of small-molecule inhibitors of the anti-apoptotic Bcl-2 proteins. Journal of Medicinal Chemistry 2007,50 (14),3163-3166.
    [209]Arnold, A. A.; Aboukameel, A.; Chen, J. Y.; Yang, D. J.; Wang, S. M.; Al-Katib, A.; Mohammad, R. M., Preclinical studies of apogossypolone:a new nonpeptidic pan small molecule inhibitor of Bcl-2, Bcl-xL and Mcl-1 proteins in follicular small cleaved cell lymphoma model. Molecular Cancer 2008,7.
    [210]Schreiber, S. L., Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000,287,1964-1969.
    [211]Castro, C. C., et al., Compounds and methods for inhibiting the interaction of Bcl proteins with binding partners. WO2008060569 2008.
    [212]Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J.; Belli, B. A.; Bruncko, M.; Deckwerth, T. L.; Dinges, J.; Hajduk, P. J.; Joseph, M. K.; Kitada, S.; Korsmeyer, S. J.; Kunzer, A. R.; Letai, A.; Li, C.; Mitten, M. J.; Nettesheim, D. G.; Ng, S.; Nimmer, P. M.; O'Connor, J. M.; Oleksijew, A.; Petros, A. M.; Reed, J. C.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli, K. J.; Wang, B. L.; Wendt, M. D.; Zhang, H. C.; Fesik, S. W.; Rosenberg, S. H., An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005,435 (7042),677-681.
    [213]Petros, A. M.; Dinges, J.; Augeri, D. J.; Baumeister, S. A.; Betebenner, D. A.; Bures, M. G.; Elmore, S. W.; Hajduk, P. J.; Joseph, M. K.; Landis, S. K.; Nettesheim, D. G.; Rosenberg, S. H.; Shen, W.; Thomas, S.; Wang, X.; Zanze, I.; Zhang, H.; Fesik, S. W., Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. Journal of Medicinal Chemistry 2006,49 (2),656-663.
    [214]Wendt, M. D.; Shen, W.; Kunzer, A.; McClellan, W. J.; Bruncko, M.; Oost, T. K.; Ding, H.; Joseph, M. K.; Zhang, H. C.; Nimmer, P. M.; Ng, S. C.; Shoemaker, A. R.; Petros, A. M.; Oleksijew, A.; Marsh, K.; Bauch, J.; Oltersdorf, T.; Belli, B. A.; Martineau, D.; Fesik, S. W.; Rosenberg, S. H.; Elmore, S. W., Discovery and structure-activity relationship of antagonists of B-cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. Journal of Medicinal Chemistry 2006,42(3),1165-1181.
    [215]Shoemaker, A. R.; Oleksijew, A.; Bauch, J.; Belli, B. A.; Borre, T.; Bruncko, M.; Deckwirth, T.; Frost, D. J.; Jarvis, K.; Joseph, M. K.; Marsh, K.; McClellan, W.; Nellans, H.; Ng, S.; Nimmer, P.; O'Connor, J. M.; Oltersdorf, T.; Qing, W.; Shen, W.; Stavropoulos, J.; Tahir, S. K.; Wang, B.; Warner, R.; Zhang, H.; Fesik, S. W.; Rosenberg, S. H.; Elmore, S. W., A small-molecule inhibitor of Bcl-xL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer Res 2006,66 (17),8731-8739.
    [216]Bruncko, M.; Oost, T. K.; Belli, B. A.; Ding, H.; Joseph, M. K.; Kunzer, A.; Martineau, D.; McClellan, W. J.; Mitten, M.; Ng, S. C.; Nimmer, P. M.; Oltersdorf, T.; Park, C. M.; Petros, A. M.; Shoemaker, A. R.; Song, X. H.; Wang, X. L.; Wendt, M. D.; Zhang, H. C.; Fesik, S. W.; Rosenberg, S. H.; Elmore, S. W., Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. Journal of Medicinal Chemistry 2007,50 (4),641-662.
    [217]Lee, E. F.; Czabotar, P. E.; Smith, B. J.; Deshayes, K.; Zobel, K.; Colman, P. M.; Fairlie, W. D., Crystal structure of ABT-737 complexed with BcI-xL:Implications for selectivity of antagonists of the Bcl-2 family. Cell Death and Differentiation 2007,14, 1711-1713.
    [218]Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D., Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry 2002,45 (12),2615-2623.
    [219]Vaux, D. L., ABT-737, proving to be a great tool even before it is proven in the clinic. Cell Death and Differentiation 2008,15,807-808.
    [220]Tse, C.; Shoemaker, A. R.; Adickes, J.; Anderson, M. G.; Chen, J.; Jin, S.; Johnson, E. F.; Marsh, K. C.; Mitten, M. J.; Nimmer, P.; Roberts, L.; Tahir, S. K.; Xiao, Y.; Yang, X.; Zhang, H.; Fesik, S.; Rosenberg, S. H.; Elmore, S. W., ABT-263:A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008,68 (9),3421-3428.
    [221]van Delft, M. F.; Wei, A. H.; Mason, K. D.; Vandenberg, C. J.; Chen, L.; Czabotar, P. E.; Willis, S. N.; Scott, C. L.; Day, C. L.; Cory, S.; Adams, J. M.; Roberts, A. W.; Huang, D. C. S., The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006,10 (5),389-399.
    [222]Pervaiz, S., Reactive oxygen-dependent production of novel photochemotherapeutic agents. FASEB J.2001,15 (3),612-617.
    [223]-Ryan, G. J.; Quinn, S.; Gunnlaugsson, T., Highly effective DNA photocleavage by novel "rigid" Ru(bpy)3-4-nitro-and-4-amino-1,8-naphthalimide conjugates. Inorganic Chemistry 2008,47 (2),401-403.
    [224]Brana, M. F.; Cacho, M.; Gradillas, A.; Pascual-Teresa, B. d.; Ramos, A., Intercalators as anticancer drugs. Current Pharmaceutical Design 2001,7(17),1745-1780.
    [225]Bailly, C.; Carrasco, C.; Joubert, A.; Bal, C.; Wattez, N.; Hildebrand, M. P.; Lansiaux, A.; Colson, P.; Houssier, C.; Cacho, M.; Ramos, A.; Brana, M. F., Chromophore-modified bisnaphthalimides:DNA recognition, topoisomerase inhibition, and cytotoxic properties of two mono-and bisfuronaphthalimides. Biochemistry 2003,42 (14),4136-4150.
    [226]Ghosh, U.; Bhattacharyya, N. P., Benzamide and 4-amino 1,8 naphthalimide treatment inhibit telomerase activity by down-regulating the expression of telomerase associated protein and inhibiting the poly(ADP-ribosyl)ation of telomerase reverse transcriptase in cultured cells. FEBS Journal 2005,272,4237-4248.
    [227]Souza, M. M.; Correa, R.; Filho, V. C.; Grabchev, I.; V. Bojinov,4-Nitro-1,8-naphtha-limides exhibit antinociceptive properties. Pharmazie 2002,56 (6),430-431.
    [228]Liu, Y.; Xu, Y. F.; Qian, X. H.; Liu, J. W.; Shen, L. Y.; Li, J. H.; Zhang, Y. X., Novel fluorescent markers for hypoxic cells of naphthalimides with two heterocyclic side chains for bioreductive binding. Bioorganic & Medicinal Chemistry 2006,14 (9), 2935-2941.
    [229]Brana, M. F.; Ramos, A., Naphthalimides as anticancer agents:Synthesis and biological activity. Current Medicinal Chemistry-Anti-Cancer Agents 2001,1 (3), 237-255.
    [230]Malviya, V. K.; Liu, P. Y.; Alberts, D. S., Evaluation of amonafide in cervical cancer: Phase II. American Journal of Clinical Oncology 1992,15,41-44.
    [231]Thompson, J.; Pratt, C. B.; Stewart, C. F.; Avery, L.; Bowman, L.; Zamboni, W. C.; Pappo, A., Phase I study of DMP840 in pediatric patients with refractory solid tumors. Invest. New Drugs 1998,16,45-49.
    [232]Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T., Anticancer and antiviral sulfonamides. Current Medicinal Chemistry 2003,10 (11),925-953.
    [233]Lehnert, M., Clinical multidrug resistance in cancer: A multifactorial problem. European Journal of Cancer 1996,32 (6),912-920.
    [234]Loo, T. W.; Clarke, D. M., Blockage of drug resistance in vitro by disulfiram, a drug used to treat alcoholism. J. Natl. Cancer Inst.2000,92(11),898-902.
    [235]Krtolica, A., Stem cell:Balancing aging and cancer. The International Journal of Biochemistry & Cell Biology 2005,37 (5),935-941.
    [236]Zhu, H.; Huang, M.; Yang, F.; Chen, Y.; Miao, Z. H.; Qian, X. H.; Xu, Y. F.; Qin, Y. X.; Luo, H. B.; Shen, X.; Geng, M. Y.; Cai, Y. J.; Ding, J., R16, a novel amonafide analogue, induces apoptosis and G2/M arrest via poisoning topoisomerase II Molecular Cancer Therapeutics 2007,6 (2),484-495.
    [237]Hsiang, Y.; Jiang, J.; Liu, L., Topoisomerase Ⅱ-mediated DNA cleavage by amonafide and its structural analogs. Mol Pharmacol 1989,36 (3),371-376.
    [238]Ratain, M. J.; Mick, R.; Berezin, F.; Janisch, L.; Schilsky, R. L.; Vogelzang, N. J.; Lane, L. B., Phase I study of amonafide dosing based on acetylator phenotype. Cancer Res.1993,53 (10),2304-2308.
    [239]Wu, A. B.; Xu, Y. F.; Qian, X. H., Novel naphthalimide-amino acid conjugates with flexible leucine moiety as side chain:Design, synthesis and potential antitumor activity. Bioorganic & Medicinal Chemistry 2009,17(2),592-599.
    [240]Dias, N.; Goossens, J. F.; Baldeyrou, B.; Lansiaux, A.; Colson, P.; Di Salvo, A.; Bernal, J.; Turnbull, A.; Mincher, D. J.; Bailly, C., Oxoazabenzo[de]anthracenes conjugated to amino acids:Synthesis and evaluation as DNA-binding antitumor agents. Bioconjugate Chemistry 2005,16 (4),949-958.
    [241]Paul, A.; Vicent, M. J.; Duncan, R., Using small-angle neutron scattering to study the solution conformation of N-(2-Hydroxypropyl)methacrylamide copolymer: Doxoru-bicin conjugates. Biomacromolecules 2007,8 (5),1573-1579.
    [242]Vinklarek, J.; Palackova, H.; Honzicek, J.; Holubova, J.; Holcapek, M.; Cisarova, I., Investigation of vanadocene(IV) a-amino acid complexes:Synthesis, structure, and behavior in physiological solutions, human plasma, and blood. Inorganic Chemistry 2006,45 (5),2156-2162.
    [243]Rodriguez, M.; Imbach, J. L.; Martinez, J., Synthesis and antitumor evaluation of some nitrosourea and nitrogen mustard amino acid derivatives. Journal of Medicinal Chemistry 1984,27 (9),1222-1225.
    [244]Rao, K. S. P. B.; Collard, M. P. M.; Dejonghe, J. P. C.; Atassi, G.; Hannart, J. A.; Trouet, A., Vinblastin-23-oyl amino acid derivatives:Chemistry, physicochemical data, toxicity, and antitumor activities against P388 and L1210 leukemias. Journal of Medicinal Chemistry 1985,28 (8),1079-1088.
    [245]McMorris, T. C.; Yu, J.; Ngo, H.-T.; Wang, H.; Kelner, M. J., Preparation and biological activity of amino acid and peptide conjugates of antitumor hydroxymethyl-acylfulvene. Journal of Medicinal Chemistry 2000,43 (19),3577-3580.
    [246]Hutchinson, I.; Jennings, S. A.; Vishnuvajjala, B. R.; Westwell, A. D.; Stevens, M. F. G., Antitumor benzothiazoles.16.1 Synthesis and pharmaceutical properties of antitumor 2-(4-aminophenyl)benzothiazole amino acid prodrugs. Journal of Medicinal Chemistry 2002,45 (3),744-747.
    [247]Arrowsmith, J.; Jennings, S. A.; Clark, A. S.; Stevens, M. F. G., Antitumor imidazotetrazines.41.1 Conjugation of the antitumor agents mitozolomide and temozolomide to peptides and lexitropsins bearing DNA major and minor groove-binding structural motifs. Journal of Medicinal Chemistry 2002,45 (25),5458-5470.
    [248]Horvat, S.; Mlinaric-Majerski, K.; Glavas-Obrovac, L.; Jakas, A.; Veljkovic, J.; Marczi, S.; Kragol, G.; Roscic, M.; Matkovic, M.; Milostic-Srb, A., Tumor-cell-targeted methionine-enkephalin analogues containing unnatural amino acids:Design, synthesis, and in vitro antitumor activity. Journal of Medicinal Chemistry 2006,49 (11),3136-3142.
    [249]Song, L.; Bevins, R.; Anderson, B. D., Kinetics and mechanisms of activation of a-amino acid ester prodrugs of camptothecins. Journal of Medicinal Chemistry 2006, 49 (14),4344-4355.
    [250]Li, Y.; Zhang, Z.; Ju, Y.; Zhao, C., Lett. Org. Chem.2007,4,414.
    [251]Auclair, C.; Voisin, E.; Banoun, H.; Paoletti, C.; Bernadou, J.; Meunier, B., Potential antitumor agents:Synthesis and biological properties of aliphatic amino acid 9-hydro-xyellipticinium derivatives. Journal of Medicinal Chemistry 1984,27 (9),1161-1166.
    [252]Margiotta, N.; Papadia, P.; Lazzaro, F.; Crucianelli, M.; de Angelis, F.; Pisano, C.; Vesci, L.; Natile, G., Platinum-based antitumor drugs containing enantiomerically pure a-trifluoromethyl alanine as ligand. Journal of Medicinal Chemistry 2005,48 (24), 7821-7828.
    [253]Norton, J. T.; Witschi, M. A.; Luong, L.; Kawamura, A.; Ghosh, S.; Stack, M. S.; Sim, E.; Avram, M. J.; Appella, D. H.; Huang, S., Synthesis and anticancer activities of 6-amino amonafide derivatives. Anti-Cancer Drug 2008,19,23-36.
    [254]Zuse, A.; Schmidt, P.; Baasner, S.; Bohm, K. J.; Muller, K.; Gerlach, M.; Gunther, E. G.; Unger, E.; Prinz, H., Sulfonate derivatives of naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-anthracenone as highly active antimicrotubule agents:Synthesis, anti-proliferative activity, and inhibition of tubulin polymerization. Journal of Medicinal Chemistry 2007,50 (24),6059-6066.
    [255]Qian, X. H.; Huang, T.; Wei, D.; Zhu, D.; Fan, M.; Yao, W., Interaction of naphthyl heterocycles with DNA:effects of thiono and thio groups. J. Chem. Soc., Perkin Trans. 22000,715-718.
    [256]Zolese, G.; Falcioni, G.; Bertoli, E.; Galeazzi, R.; Wozniak, M.; Wypych, Z.; Gratton, E.; Ambrosini, A., Proteins:Struct. Funct. Genet.2000,40,39.
    [257]Kragh-Hansen, U., Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev.1981,33,17-53.
    [258]Wu, T.; Wu, Q.; Guan, S.; Su, H.; Cai, Z., Biomacromolecules 2007,8,1899.
    [259]Khosravi, A.; Moradian, S.; Gharanjig, K.; Afshar Taromi, F., Synthesis and spectroscopic studies of some naphthalimide based disperse azo dyestuffs for the dyeing of polyester fibres. Dyes and Pigments 2006,69 (1-2),79-92.
    [260]Lakowicz, J. R., Principles of Fluorescence Spectroscopy,3rd ed.; Springer, Science Business Media Publisher:New York, USA,2006.
    [261]de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling recognition events with fluorescent sensors and switches. Chemical Reviews 1997,97(5),1515-1566.
    [262]Kuroda, M.; Mimaki, Y.; Sashida, Y.; Hirano, T.; Oka, K.; Dobashi, A.; Li, H. Y.; Harada, N., Novel cholestane glycosides from the bulbs of ornithogalum saundersiae and their cytostatic activity on leukemia HL-60 and MOLT-4 cells. Tetrahedron 1997, 53(34),11549-11562.
    [263]Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R., New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst.1990,82 (13),1107-1112.
    [264]Xiao, S.; Lin, W.; Wang, C.; Yang, M., Synthesis and biological evaluation of DNA targeting flexible side-chain substituted [beta]-carboline derivatives. Bioorganic & Medicinal Chemistry Letters 2001,11 (4),437-441.
    [265]Guan, H.; Chen, H.; Peng, W.; Ma, Y.; Cao, R.; Liu, X.; Xu, A., Design of β-carboline derivatives as DNA-targeting antitumor agents. European Journal of Medicinal Chemistry 2006,41 (10),1167-1179.
    [266]Xie, L. J.; Qian, X. H.; Cui, J. N.; Xiao, Y.; Wang, K. W.; Wu, P. C.; Cong, L. Y., Novel angular furoquinolinones bearing flexible chain as antitumor agent:Design, synthesis, cytotoxic evaluation, and DNA-binding studies. Bioorganic & Medicinal Chemistry 2008,16(18),8713-8718.
    [267]Xi, Z.; Jones, G. B.; Qabaja, G.; Wright, J.; Johnson, F.; Goldberg, I. H., Synthesis and DNA binding of spirocyclic model compounds related to the neocarzinostatin chromophore. Organic Letters 1999,1 (9),1375-1377.
    [268]Chakrabarty, A.; Mallick, A.; Haldar, B.; Das, P.; Chattopadhyay, N., Binding interaction of a biological photosensitizer with serum albumins:A biophysical study. Biomacromolecules 2007,8 (3),920-927.
    [269]Willets, K. A.; Ostroverkhova, O.; He, M.; Twieg, R. J.; Moerner, W. E., Novel fluorophores for single-molecule imaging. Journal of the American Chemical Society 2003,125 (5),1174-1175.
    [270]Voropai, E. S.; Samtsov, M. P.; Kaplevskii, K. N.; Maskevich, A. A.; Stepuro, V. I.; Povarova, O. I.;. Kuznetsova, I. M.; Turoverov, K. K.; Fink, A. L.; Uverskii, V. N., Spectral properties of thioflavin T and its complexes with amyloid fibrils J. Appl. Spectrosc.2003,70,868-874.
    [271]Suzuki, Y.; Yokoyama, K., Design and synthesis of intramolecular charge transfer-based fluorescent reagents for the highly-sensitive detection of proteins. Journal of the American Chemical Society 2005,127(50),17799-17802.
    [272]Reichmann, M. E.; Rice, S. A.; Thomas, C. A.; Doty, P., A further examination of the molecular weight and size of desoxypentose nucleic acid. Journal of the American Chemical Society 1954,75(11),3047-3053.
    [273]Hurley, L. H., DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2002,2 (3),188-200.
    [274]Tao, Z. F.; Lin, N. H., Chkl inhibitors for novel cancer treatment. Anti-Cancer Agents in Medicinal Chemistry 2006,6 (4),377-388.
    [275]Lowe, S. W.; Lin, A. W., Apoptosis in cancer. Carcinogenesis 2000,21 (3),485-495.
    [276]Tazzari, P. L.; Tabellini, G.; Ricci, F.; Papa, V.; Bortul, R.; Chiarini, F.; Evangelisti, C.; Martinelli, G.; Bontadini, A.; Cocco, L.; McCubrey, J. A.; Martelli, A. M., Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor perifosine in acute myelogenous leukemia cells. Cancer Res 2008,68 (22),9394-9403.
    [277]Xing, C. G.; Wang, L. Y.; Tang, X. H.; Sham, Y. Y., Development of selective inhibitors for anti-apoptotic Bcl-2 proteins from BHI-1. Bioorganic & Medicinal Chemistry 2007,15 (5),2167-2176.
    [278]He, Q. X.; Zhu, X. S.; Shi, M.; Zhao, B. X.; Zhao, J.; Zhang, S. L.; Miao, J. Y., Novel morpholin-3-one derivatives induced apoptosis and elevated the level of p53 and Fas in A549 lung cancer cells. Bioorganic & Medicinal Chemistry 2007,15 (11),3889-3895.
    [279]Pojarov, M.; Kaufmann, D.; Gastpar, R.; Nishino, T.; Reszka, P.; Bednarski, P. J.; von Angerer, E., [(2-Phenylindol-3-yl)methylene]propanedinitriles inhibit the growth of breast cancer cells by cell cycle arrest in G2/M phase and apoptosis. Bioorganic& Medicinal Chemistry 2007,15 (23),7368-7379.
    [280]Zhang, H. Z.; Claassen, G.; Crogran-Grundy, C.; Tseng, B.; Drewe, J.; Cai, S. X., Discovery and structure-activity relationship of N-phenyl-lH-pyrazolo[3,4-b]quinolin-4-amines as a new series of potent apoptosis inducers. Bioorganic & Medicinal Chemistry 2008,16 (1),222-231.
    [281]Dodo, K.; Minato, T.; Noguchi-Yachide, T.; Suganuma, M.; Hashimoto, Y., Antiproliferative and apoptosis-inducing activities of alkyl gallate and gallamide derivatives related to (-)-epigallocatechin gallate. Bioorganic & Medicinal Chemistry 2008,16(17),7975-7982.
    [282]Lee, S. K.; Kim, H. N.; Kang, Y. R.; Lee, C. W.; Kim, H. M.; Han, D. C.; Shin, J.; Bae, K.; Kwon, B. M., Obovatol inhibits colorectal cancer growth by inhibiting tumor cell proliferation and inducing apoptosis. Bioorganic & Medicinal Chemistry 2008,16 (18), 8397-8402.
    [283]Shah, B. A.; Kumar, A.; Gupta, P.; Sharma, M.; Sethi, V. K.; Saxena, A. K.; Singh, J.; Qazi, G. N.; Taneja, S. C., Cytotoxic and apoptotic activities of novel amino analogues of boswellic acids. Bioorganic & Medicinal Chemistry Letters 2007,17 (23),6411-6416.
    [284]Wang, L. Y.; Kong, F.; Kokoski, C. L.; Andrews, D. W.; Xing, C. G., Development of dimeric modulators for anti-apoptotic Bcl-2 proteins. Bioorganic & Medicinal Chemistry Letters 2008,18(1),236-240.
    [285]Frey, V.; Viaud, J.; Subra, G.; Cauquil, N.; Guichou, J. F.; Casara, P.; Grassy, G.; Chavanieu, A., Structure-activity relationships of Bak derived peptides:Affinity and specificity modulations by amino acid replacement. European Journal of Medicinal Chemistry 2008,43 (5),966-972.
    [286]Tian, Z. Y.; Xie, S. Q.; Du, Y. W.; Ma, Y. F.; Zhao, J.; Gao, W. Y.; Wang, C. J., Synthesis, cytotoxicity and apoptosis of naphthalimide polyamine conjugates as antitumor agents. European Journal of Medicinal Chemistry 2009,44 (1),393-399.
    [287]Petros, A. M.; Dinges, J.; Augeri, D. J.; Baumeister, S. A.; Betebenner, D. A.; Bures, M. G.; Elmore, S. W.; Hajduk, P. J.; Joseph, M. K.; Landis, S. K.; Nettesheim, D. G.; Rosenberg, S. H.; Shen, W.; Thomas, S.; Wang, X. L.; Zanze, I.; Zhang, H. C.; Fesik, S. W., Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. Journal of Medicinal Chemistry 2006,49 (2),656-663.
    [288]Dawson, M. I.; Xia, Z.; Liu, G.; Fontana, J. A.; Farhana, L.; Patel, B. B.; Arumugarajah, S.; Bhuiyan, M.; Zhang, X. K.; Han, Y. H.; Stallcup, W. B.; Fukushi, J. I.; Mustelin, T.; Tautz, L.; Su, Y.; Harris, D. L.; Waleh, N.; Hobbs, P. D.; Jong, L.; Chao, W. R.; Schiff, L. J.; Sani, B. P., An adamantyl-substituted retinoid-derived molecule that inhibits cancer cell growth and angiogenesis by inducing apoptosis and binds to small heterodimer partner nuclear receptor:Effects of modifying its carboxylate group on apoptosis, proliferation, and protein-tyrosine phosphatase activity. Journal of Medicinal Chemistry 2007,50 (11),2622-2639.
    [289]Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Farruggia, G.; Zini, M.; Stefanelli, C.; Masotti, L., Substituted E-3-(2-chloro-3-indolylmethylene)-1,3-dihydro-indol-2-ones with antitumor activity. Effect on the cell cycle and apoptosis. Journal of Medicinal Chemistry 2007,50 (14),3167-3172.
    [290]Magedov, I. V.; Manpadi, M.; Van slambrouck, S.; Steelant, W. F. A.; Rozhkova, E.; Przheval'skii, N. M.; Rogelj, S.; Kornienko, A., Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllo-toxin analogues accessible by a one-step multicomponent synthesis. Journal of Medicinal Chemistry 2007,50 (21),5183-5192.
    [291]Yin, H.; Lee, G. I.; Sedey, K. A.; Kutzki, O.; Park, H. S.; Omer, B. P.; Ernst, J. T.; Wang, H. G.; Sebti, S. M.; Hamilton, A. D., Terphenyl-based bak BH3 alpha-helical proteomimetics as low-molecular-weight antagonists of Bcl-xL. Journal of the American Chemical Society 2005,127(29),10191-10196.
    [292]Park, C. M.; Oie, T.; Petros, A. M.; Zhang, H. C.; Nimmer, P. M.; Henry, R. F.; Elmore, S. W., Design, synthesis, and computational studies of inhibitors of Bcl-xL. Journal of the American Chemical Society 2006,128 (50),16206-16212.
    [293]Brana, M. F.; Gradillas, A.; Gomez, A.; Acero, N.; Llinares, F.; Munoz-Mingarro, D.; Abradelo, C.; Rey-Stolle, F.; Yuste, M.; Campos, J.; Gallo, M. A.; Espinosa, A., Synthesis, biological activity, and quantitative structure-activity relationship study of azanaphthalimide and arylnaphthalimide derivatives. Journal of Medicinal Chemistry 2004,47 (9),2236-2242.
    [294]Noel, G.; Godon, C.; Fernet, M.; Giocanti, N.; Megnin-Chanet, F.; Favaudon, V., Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Molecular Cancer Therapeutics 2006,5 (3),564-574.
    [295]Hu, X.; Sun, J.; Wang, H. G.; Manetsch, R., Bcl-XL-templated assembly of its own protein:Protein interaction modulator from fragments decorated with thio acids and sulfonyl azides. Journal of the American Chemical Society 2008,130 (42),13820-13821.
    [296]Papadopoulos, K. P.; Goel, S.; Beeram, M.; Wong, A.; Desai, K.; Haigentz, M.; Milan, M. L.; Mani, S.; Tolcher, A.; Lalani, A. S.; Sarantopoulos, J., A phase I open-label, accelerated dose-escalation study of the hypoxia-activated prodrug AQ4N in patients with advanced malignancies. Clinical Cancer Research 2008,14,7110-7115.
    [297]Hecker, S. J.; Erion, M. D., Prodrugs of phosphates and phosphonates. Journal of Medicinal Chemistry 2008,51,2328-2345.
    [298]Kamb, A.; Wee, S.; Lengauer, C., Why is cancer drug discovery so difficult? Nature Reviews Drug Discovery 2007,6,115-120.
    [299]Tietze, L. F.; Bell, H. P.; Chandrasekhar, S., Natural product hybrids as new leads for drug discovery. Angew. Chem. Int. Ed.2003,42,3996-4028.
    [300]Sjoblom, T.; Jones, S.; Wood, L. D.; Parsons, D. W.; Lin, J.; Barber, T. D.; Mandelker, D.; Leary, R. J.; Ptak, J.; Silliman, N.; Szabo, S.; Buckhaults, P.; Farrell, C.; Meeh, P.; Markowitz, S. D.; Willis, J.; Dawson, D.; Willson, J. K.; Gazdar, A. F.; Hartigan, J.; Wu, L.; Liu, C.; Parmigiani, G.; Park, B. H.; Bachman, K. E.; Papadopoulos, N.; Vogelstein, B.; Kinzler, K. W.; Velculescu, V. E., The consensus coding sequences of human breast and colorectal cancers. Science 2006,314,268-274.
    [301]Hariprakasha, H. K.; Kosakowska-Cholody, T.; Meyer, C.; Cholody, W. M.; Stinson, S. F.; Tarasova, N. I.; Michejda, C. J., Optimization of naphthalimide-imidazoacridone with potent antitumor activity leading to clinical candidate (HKH40A, RTA 502). Journal of Medicinal Chemistry 2007,50,5557-5560.
    [302]Nakagawa-Goto, K.; Nakamura, S.; Bastow, K. F.; Nyarko, A.; Peng, C.; Lee, F.; Lee, F.; Lee, K., Antitumor agents.256. Conjugation of paclitaxel with other antitumor agents:Evaluation of novel conjugates as cytotoxic agents. Bioorganic & Medicinal Chemistry Letter 2007,17,2894-2898.
    [303]Man, C. Y.; Cheung, I. T. F.; Cameron, P. A.; Rainer, T. H., Comparison of oral prednisolone/paracetamol and oral indomethacin/paracetamol combination therapy in the treatment of acute goutlike arthritis:A double-blind, randomized, controlled trial. Ann. Emerg. Med.2007,49,670-677.
    [304]Rodriguez, L. A.; Varas, C.; Patrono, C., Epidemiology 2000,11,382-387.
    [305]Flynn, B. L.; Theesen, K. A., Ann. Pharmacother.1999, (33),840-849.
    [306]Jones, M. K.; Wang, H. T.; Peskar, B. M.; Levin, E.; Itani, R. M.; Sarfeh, I. J.; Tarnawski, A. S., Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: Insight into mechanisms and implications for cancer growth and ulcer healing. Nature Medicine 1999,5,1418-1423.
    [307]Rosenbaum, C.; Baumhof, P.; Mazitschek, R.; Muller, O.; Giannis, A.; Waldmann, H., Synthesis and biological evaluation of an indomethacin library reveals a new class of angiogenesis-related kinase inhibitors. Angew. Chem. Int. Ed.2004,43,224-228.
    [308]Hawcroft, G.; D'Amico, M.; Albanese, C.; Markham, A. F.; Pestell, R. G.; Hull, M. A., Indomethacin induces differential expression of β-catenin, y-catenin and T-cell factor target genes in human colorectal cancer cells. Carcinogenesis 2002,23,107-114.
    [309]He, T.; Chan, T. A.; Vogelstein, B.; Kinzler, K. W., PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 1999,99,335-345.
    [310]Weerapreeyakul, N.; Anorach, R.; Khuansawad, T.; Yenjai, C.; Isaka, M., Synthesis of bioreductive esters from fungal compounds. Chem. Pharm. Bull.2007,55 (6),930-935.
    [311]Hamann, P. R.; Hinman, L. M.; Beyer, C. F.; Lindh, D.; Upeslacis, J.; Flowers, D. A.; Bernstein, I., An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. choice of linker. Bioconjugate Chemistry 2002,13,40-46.
    [312]Hamann, P. R.; Hinman, L. M.; Beyer, C. F.; Greenberger, L. M.; Lin, C.; Lindh, D.; Menendez, A. T.; Wallace, R.; Durr, F. E.; Upeslacis, J., An anti-MUCl antibody-calicheamicin conjugate for treatment of solid tumors. choice of linker and overcoming drug resistance. Bioconjugate Chemistry 2005,16,346-353.
    [313]Tomic-Vatic, A.; EyTina, J.; Chapman, J.; Mahdavian, E.; Neuzil, J.; Salvatore, B. A., Vitamin E amides, a new class of vitamin E analogues with enhanced proapoptotic activity. International Journal of Cancer 2005,117,118-193.
    [314]Velazquez, C. A.; Chen, Q. H.; Citro, M. L.; Keefer, L. K.; Knaus, E. E., Second-generation aspirin and indomethacin prodrugs possessing an O2-(Acetoxymethyl)-1-(2-carboxypyrrolidin-l-yl)diazenium-1,2-diolate nitric oxide donor moiety: Design, synthesis, biological evaluation, and nitric oxide release studies. Journal of Medicinal Chemistry 2008,51,1954-1961.
    [315]Timofeevski, S. L.; Prusakiewicz, J. J.; Rouzer, C. A.; Marnett, L. J., Isoform-selective interaction of cyclooxygenase-2 with indomethacin amides studied by real-time fluorescence, inhibition kinetics, and site-directed mutagenesis. Biochemistry 2002,41, 9654-9662.
    [316]Kalgutkar, A. S.; Crews, B. C.; Rowlinson, S. W.; Marnett, A. B.; Kozak, K. R.; Remmel, R. P.; Marnett, L. J., Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors:Facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proceedings of the National Academy of Sciences of the United States of America 2000,97 (2),925-930.
    [317]Kalgutkar, A. S.; Marnett, A. B.; Crews, B. C.; Remmel, R. P.; Marnett, L. J., Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors. Journal of Medicinal Chemistry 2000,43,2860-2870.
    [318]Luong, C.; Miller, A.; Barnett, J.; Chow, J.; Ramesha, C.; Browner, M. F., Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nature Structural Biology 1996,3,927-933.
    [319]Qian, X. H.; Zhu, Z. H.; Chen, K. C., A study on the ullmann condensation reaction of 4-chloro-1,8-naphthalic anhydride with N,N-dimethylformamide. Journal fur Praktische Chemie/Chemiker-Zeitung 1992,334,161-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700