波纹盘电流变传动机构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电流变技术是一门崭新的机电液一体化技术,基于电流变液的电控特性,该技术有可能给某些传统技术带来革命性变化。其技术的优势表现在:装置结构更简单,响应更迅速,控制更方便,并具有某种智能特性。近年来,随着研究的不断深入和突破,该技术正越来越引起国内外科学家和工程师们的广泛关注。
     众所周知,制约电流变技术在传动和制动方面应用的关键问题是:由于电流变材料较低的场致应力,电流变装置产生的传动力矩还不能满足工程应用要求,作者通过大量的文献资料研究,发现鲜有研究者从机构优化角度出发去解决这个问题。
     本文的研究目的就是,从机构优化的角度出发,研究如何通过改变传动盘电极表面形状以提高电流变传动器中由电流变效应引起的传递力矩(以下称电流变力矩)的问题。文中提出了一种波纹曲面圆盘以替代传统的平面圆盘,使得装置处于剪切挤压工作模式,与处于剪切模式下的双平盘电流变传动器相比,作者期望这样的设计能够大大提高电流变力矩。
     本文详细和系统地开展了下列科学研究工作:
     首先是制备电流变液。同时,在自行改造的NXS-11A圆筒型粘度仪上,测试了电流变材料特性包括剪切应力、动态粘度随外加电场、
Electrorheological(ER) technology is an innovative electromechanical-hydrau lic technology. Based on the electric-controlled performance of ER fluids, ER technology is expected to make revolutionary change to some traditional technology. The technology has significant advantages as following: simpler structure, quicker response, better controllability and intellectual technology. As the research has developed greatly these years, ER technology has being attracted more and more attentions from scientists and engineers in the world.As we know, the key problem to restrict ER technology to be used in drive and brake applications is that torque transmitted by ER device is not enough to meet the needs in engineering implementation due to low field-dependent stress of ER materials. Having surveyed and covered a vast amount of engineering literature, the present author has found that there is few researchers who worked to solve the problem by means of optimizing mechanism configuration.The objective of this work is to study how to improve transmitted torque caused by ER effect (named ER torque) of ER actuator by means of changing surface shape of drive disc electrode. In this dissertation, the ripple disc is proposed to replace traditional plate disc for operating in shear-squeeze-flow mode. This configuration is presumed to be able to enhance ER torque compared with ER actuator with double discs in which ER fluids are operated in shear-flow mode.To put it more systematically, the present dissertation has been accomplished in the following ways.As the first step, ER fluids were made and material characteristic dependencies, including shear stress, dynamic viscosity, on changes in the applied external electric field, shear rate were measured and examined in the reformed apparatus of NXS-11A
    cylindrical viscometer.As the second step, in order to investigate the difference of ER torque between shear-flow mode and shear-squeeze-flow mode, a special equipment named single-disc ER actuator and some ripple discs with different shape had been designed and manufactured. Experimental setups also consists of: torque transducer, data acquisition system based on the National Instruments programming package, source of high voltage (AC/DC voltage resource) and adjustable-speed motor, etc.As the third step, a conformal transformation approach was employed to derive expressions to calculate the electric parameters including capacity, electric field in the plate-ripple disc of ER actuator configured by a driving plate disc and a driven ripple disc. On the other hand, the flow of ER fluids between plate disc and ripple disc was discussed in detail. The resulting analytical model is capable of predicting the relationships between the transmitted torque, including ER torque, and the characteristic parameters of ER fluids as well as configuration parameters of the mechanism.As the fourth step, a series of experiments for examining ER torque transmitted by the plate-ripple disc and the double-plate disc of ER actuators had been carried out. Many experiments data had been given for comparison with our calculations based on the analytical model in previous section. As a consequence, under the same conditions of ER fluids, mean fluid gap size, loading electric voltage, rotational speed of discs, we can make a conclusion that the plate-ripple disc can provide multiple ER torque than the double-plate disc of ER actuators. Good agreement was achieved between predicted results and measured results. Furthermore, the variation of the ER torque with electric field and rotational speed of discs was obtained in the work. In addition, ER power (power caused by ER effect), leakage current and leakage power had also been investigated.
    ER transmission system is a nonlinear and time-variant system and neural network, which is known to be very effective for the uncertain control system, was employed to model ER device. However, this algorithm is not capable of expressing the characteristic of ER device. At the end of the work, a new algorithm incorporating genetic al
引文
[1] 黄宜坚,朱石沙,李之达等.电流变学[M].长沙:湖南师大出版社,1996.
    [2] Winslow W. M. J. Appl. Phys[J]. 1949, 20: 1137~1140.
    [3] Hasley TC. Science[J]. 1992, 258: 761~766.
    [4] Hasley TC, Toor W. Phys. Rev. Lett[J], 1990, 65: 2820~2823.
    [5] W·巴克,流体阻力系统[M],1973.
    [6] W·A. Bruough, J·D·Stringer. The Utilisation of Electroviscous Effect in a Fluid Power System[J], Hydualic&Air Engineering, 1977.
    [7] C. F. Zukoski, Electrorheological(ER) Fluids, A Research Needs Assessment, Final Report, U. S. Department of Energy, (1993): 5.3-1.
    [8] 庞雪蕾,唐芳琼,电流变液体的研究进展[J].化学进展,2004,16(6):849~857.
    [9] Yin J. B, Zhao X. P. Phys. D: Appl. Phys[J], 2001, 34: 2063~2067.
    [10] Zhang Y. L, LU K. Q, Rao G. H, et al. Appl. Phys. Lett[J], 2002, 80: 888~890.
    [11] Cho M. S, Cho Y. H, Choi H. J. et al. Langmuir[J], 2003, 19: 5875~5881.
    [12] Tanaka K, Takahashi A, Akiyama R, et al. Phys. Rev. E[J], 1999, 59:5693"---5696.
    [13] Wu C. W, Conrad H. J. Phys. D: Appl. Phys[J], 1998, 31: 3312~3315.
    [14] WeiJia Wen, XianXiang Huang, Shihe Yang, KunQuan Lu Ping Sheng, The giant electrorheologieal effect in suspensions of nanopartieles[Z], Published online: 5 October 2003; doi: 10.1038/nmat993, nature materials | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials
    [15] 周鲁卫,叶聚丰.电流变液的研究进展及应用前景[J],物理.1994,23,4:212~218.
    [16] 魏辰官,张少华.电流变技术及其工程应用[J],中国机械工程.1996,7,1:46~53.
    [17] 陈淑梅,魏宸官(指导老师).电流变效应机理及其应用研究[D],北京理工大学博士论文,2004,1.
    [18] Chunrong Luo, Hong Tang, Xiangyang Gao, et al. The stress-strain relationship and the dynamic yield stress in ER fluids under a modified conduction model[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PC-04.
    [19] J. G. Cao, L. W. Zhou, Dielectric Behaviors of Spinning ER Particles under both Electric and Shear Fields[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PC-03.
    [20] X. Z. Zhang, X. L. Gong, P. Q. Zhang, Equivalent Dielectric Constant Model of Electrorhe ological Materials[C], Ninth International Conference on Eiectroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PC-19.
    [21] Zhiyong Wang, Rong Shen, Xuezhao Wang et al. The measurement of field-induced interact ion force between two spheres[C], Ninth International Conference on Electroheological (ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PC-17.
    [22] Heping Zhao, Zhengyou Liu, Xiaoyun Wang et al. Analysis of polarization forces and conductivity effects in the electroheological solid[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PC-15.
    [23] Y. H. Ma, L. M. Guo, L. Zhong et al. Dynamic Multi-Speckle DWS in ER Fluid[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PC-05.
    [24] Jie Peng, Keqing Zhu. Oscillatory Squeeze Flow of Electrorheological Fluid with Transitional Electric Field[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PC-11.
    [25] H. See, J. S. Field, B. Pfister. The response of electrorheological fluid under oscillatory squeeze flow[J], Non-Newtonian Fluid Mech. 1999, 84: 149~158.
    [26] Chen Yaying, Zhu Yu. Research on Design and Performance of Friction-free Electrorheol ogical Fluid Damper[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PA-02.
    [27] Y. M. Han, J. Y. Jung, S. B. Choi, et al. Sliding Mode Control of ER Seat Suspension Consider ing Human Vibration Model[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PA-12.
    [28] Ken'ichi Koyanagi, Junji Furusho. Direct-Drive Motor System with Particle-Type ER Fluid Damper[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorh eological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PA-18.
    [29] W. H. Kuo, T. N. Wu, J. Guo et al. Design and Testing of a Multielectrode Electrorheologial Damper[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorh eological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PA-19.
    [30] H. J. Song, S. B. Choi, K. S. Kim et al. Control Performance of ER Engine Mount Subjected to Temperature Variations[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PA-30.
    [31] Sproston J. L; Stevens N. G. Experimental study of electrorheological torque transmission[C], IEE Colloquium (Digest), 1985, 14: 2.1~2.4.
    [32] Sakaguchi Masamichi, Zhang Guoguang, Furusho Junji. Modeling and motion control of an actuator unit using ER clutches[C], Proceedings-IEEE International Conference on Robotics and Automation, 2000, 2: 1347~1353.
    [33] Lee HG, Choi SB. Dynamic properties of an ER fluid under shear and flow modes[J], Materials & design, 2002, 23(1): 69~76.
    [34] Sakaguchi Masamichi, Furusho Junji. Development of high-performance actuators using ER fluids[J], Journal of Intelligent Material Systems and Structures, 2000, 10(8): 666~670.
    [35] Takesue N, Furusho J, Inoue A. Influence of electrode configuration and liquid crystalline polymer type on electrorheological effect[J], Journal of applied physics, 2003, 94(8): 5367~5373.
    [36] Whittle Martin, Bullough William A. ER linear reciprocating drive: Performance limits[J], American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 1995, 235: 13~20.
    [37] Johnson Andrew R, Bullough William A, Makin John. Optimisation and control of a high speed electrorheological traversing mechanism[C], Proceedings of SPIE-The International Society for Optical Engineering, 2000, 3985: 456~467
    [38] Stevens N. G, Sproston J. L. Stanway R. Influence of pulsed D. C. input signals on electrorheological fluids[J], Journal of Electrostatics, 1985, 17(2): 181~191.
    [39] Johnson A. R, Makin J, Bullough W. A, Firoozian R, Hosseini-Sianaki A. Fluid durability in a high speed electrorheological clutch[J], Journal of Intelligent Material Systems and Structures, 1993, 4(4): 527~532.
    [40] Whittle Martin, Bullough William A. ER linear reciprocating drive: Performance limits[C], American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 1995, 235: 13~20.
    [41] Oravsky V. Quasistatic efficiency of a concentric ER clutch[J], Journal of Intelligent Material Systems and Structures, 1996, 7(5): 534~540.
    [42] S. L. Burgess, S. D. R Wilson. Unsteady shear flow of a viscoplastic material[J], Non-Newtonian Fluid Mech, 1997, 72: 87~100.
    [43] Johnson Andrew R, Bullough William A, Tozer Richard, et al. Thermal equilibrium in a dynamic electrorheological fluid model of a high speed traversing/positioning mechanism[C], Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3668(1): 495~506.
    [44] Johnson Andrew R, Bullough William A, Tozer Richard, et al. Optimisation and control of a high speed electrorheological traversing mechanism[C], Proceedings of SPIE-The International Society for Optical Engineering, 2000, 3985.
    [45] Oravsky Vladimir. Heat transfer from an ESF radial plate clutch surface Part Ⅱ-Theory[C], Journal of Intelligent Material Systems and Structures, 2003, 14(2): 125~129.
    [46] Nakamura Taro, Saga Norihiko, Nakazawa Masaru. Thermal effects of a homogeneous ER fluid device[J], Journal of Intelligent Material Systems and Structures 2003, 14(2): 87~91.
    [47] Shimada K, Fujita T. Device to regulate rotational speed using a rotating regulator with electrorheological fluid[J], Experimental Mechanics, 2000, 40(2): 231~240.
    [48] Shimada K, Nishida H, Electrorheological rotating disk clutch mechanism under AC electric field: Part Ⅰ-Torque and current density[J], Journal of intelligent material systems and structures, 2002, 13(7-8): 491~496.
    [49] Shimada K, Nishida H, Electrorheological rotating disk clutch mechanism under AC electric field: Part Ⅱ-Efficiency metrics[J], Journal of intelligent material systems and structures, 2002, 13(7-8): 497~502.
    [50] Ursescu A, Eckart W, Marschall H, Hutter K. Inhomogeneous electric field generated by two long electrodes placed along parallel infinite walls separating different dielectric media[J], Journal of engineering mathematics, 2004, 49(1): 57~75.
    [51] Han Sang-Soo, Choi Seung-Bok, Kim Jae-Hwan. Position control of a flexible gantry robot arm using smart material actuators[J], Journal of Robotic Systems, 2002, 16(10): 581~595.
    [52] Sakaguchi M, Furusho, J; Takesue, N, Passive force display using ER brakes and its control experiments[C], Proceedings-Virtual Reality Annual International Symposium, 2001: 7~12
    [53] Furusbo J, Sakaguchi M, Takesue, N, Koyanagi K. Development of ER brake and its application to passive force display[J], Journal of intelligent material systems and structures, 2002, 13 (7-8): 425~429.
    [54] Furusho Junji, Kikucbi Takehito, Oda Kunihiko. Isokinetic exercise training and evaluation System using particle-type ER fluid[C], Nippon Kikai Gakkai Ronbunshu, C Hen/ Transactions of the Japan Society of Mechanical Engineers, Part C, 2002, 68(8): 2418~2424.
    [55] Tan K. P, Bullough W. A, Stanway R, Sims N, Johnson A. R, Tozer, R. C. A simple one dimensional robot joint based on the ER linear reversing mechanism[J], Journal of Intelligent Material Systems and Structures, 2002, 13(7-8): 533~537.
    [56] Choi Seung-Bok, Han Sang-Soo. Position Control System Using ER Clutch and Piezoactuator [J], Smart Structures and Materials 2003: Smart Structures and Integrated Systems, 2003, 5056: 424~431.
    [57] Mavroidis C. Development of advanced actuators using shape memory alloys and electrorheological fluids[J], Research in nondestructive evaluation, 2002, 14(1): 1~32.
    [58] Abu-Jdayil Basim, Brunn Peter O. Effect of electrode morphology on the behaviour of electrorheological fluids in torsional flow[J], Journal of Intelligent Material Systems and Structures, 2002, 13: 3~11.
    [59] G. Georgiades, S. O. Oyadiji. Effects of electrode geometry on the performance of electrorheolo gical fluid valves[J], Journal of Intelligent Material Systems and Structures, 2003, 14(2): 105~111.
    [60] M. S. Cho, Y. L. Kim, S. B. Choi et al. Control Performance of Vehicle ABS Featuring ER Valve Pressure Modulator[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PA-04.
    [61] G. Georgiades, S. O. Oyadiji. Characteristics of Pin Electrode ER Valves[C], Ninth Internatio nal Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensi ons, Aug.29-Sept.3, 2004 Beijing, China, abstract: PA-10.
    [62] Radcliffe Clark J, Lloyd John R, Andersland Ruth M, Hargrove Jeffrey B. State feedback control of electrorheological fluids[C], Proceedings of the ASME Dynamic Systems and Control Division, 1996, 58: 655~661.
    [63] Brookfield D. J, Dlodlo Z. B. Robot torque and position control using an electrorheological actuator[C], Proceedings of the Institution of Mechanical Engineers. Part Ⅰ, Journal of Systems & Control Engineering, 1998, 212(13): 229~238.
    [64] Nakamura T, Saga N. Nakazawa M. Impedance control of a single shaft-type clutch using homogeneous electrorheological fluid[J], Journal of Intelligent Material Systems and Structures, 2002, 13(7-8): 465~469.
    [65] Nakamura T, Saga N, Nakazawa M. Variable viscous control of a homogeneous ER fluid device considering its dynamic characteristics[J], Mechatronics, 2004, 14 (1): 55~68.
    [66] Choi SB, Sung KG, Lee JW. The neural network position-control of a moving platform using electrorheological valves[J], Journal of dynamic systems measurement and control-transactions of the asme, 2002, 124 (3): 435~442.
    [67] Choi SB, Bang JH, Cho MS, Lee YS. Sliding mode control for anti-lock brake system of passenger vehicles featuring electrorheological valves[C], Proceedings of the institution of mechanical engineers part d-journal of automobile engineering, 2002, 216(11): 897~908
    [68] Takehito Kikuchi, Junsuke Fujiwara, Akio Inoue. Polishing Using ER Slurry on one-sided Patterned Electrodes[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PA-16
    [69] Jingzhou Lu, Qingbin Li. Dynamic Performance of Cantilever Composite Mortar Beams with Electrorheological Fluid[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PA-25
    [70] Zhang Yongliang, Yu Junyi. Study on properties of electrorheological fluid and its application in machining vibration control[C], Ninth International Conference on Electroheological(ER) Fluids and Magnetorheological(MR) Suspensions, Aug.29-Sept.3, 2004 Beijing, China, abstract: PA-43
    [71] Avi (Allen) Fisch, Jason Nikitczuk, Brian Weinberg, Juan Melli-Huber, Constantinos Mavroidis. Development of an electrorheological fluidic actuator and haptic systems for vehicular instrument[C], Proceedings of IMECE2003, 2003 ASME International Mechanic al Engineering Congress and Exposition, 2003.11.15.
    [72] 杨进民,黄宜坚(指导老师),盘式电流变传动机构的设计与实验分析[D],华侨大学硕士论文,2003,6月.
    [73] 郑民伟.非平行板电容器电容和电场的一种计算,大学物理,2001,20(2):17~18.
    [74] 黄豪彩,黄宜坚(指导老师),电流变传动系统动力学模型与控制方法研究[D],华侨大学硕士论文,2004,6月.
    [75] 袁曾任著,人工神经元网络及其应用[M],清华大学出版社,1999,1:66~67.
    [76] 路文江,汤富领,刘树群等.遗传算法与神经网络模型的结合[J],微型电脑应用,1998(1):29~32.
    [77] 魏宸官,电流变技术[M],北京理工大学出版社,2000.1.
    [78] 钟颖,汪秉文,基于遗传算法的BP神经网络时间序列预测模型[J],系统工程与电子技术,2002,24(4):9~11.
    [79] 戈玲,吴新余,优化反向传播神经网络的自适应遗传算法[J],南京邮电学院学 报,1998,18(3):1~4
    [80] 王保中,康立山,何巍.基于实数编码遗传算法的多层神经网络BP算法[J],武汉大学学报(自然科学版),1998,44(3):289~291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700