卡托普利、心复康口服液对心衰大鼠心肌GLUT4的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本实验主要研究卡托普利、益气温阳活血化瘀中药心复康口服液对经腹主动脉部分缩窄致压力超负荷性充血性心力衰竭(congestive heart failure, CHF)的大鼠模型心肌组织葡萄糖代谢关键物质葡萄糖转运蛋白4((glucose transportcrs protein 4, GLUT4))的影响,探讨在充血性心力衰竭发生、发展过程中葡萄糖代谢中GLUT4蛋白表达改变的机制以及改善葡萄糖代谢途径治疗充血性心力衰竭的可能机制。
     方法:采用腹主动脉部分缩窄致压力超负荷性心肌肥厚制作充血性心力衰竭大鼠模型,将80只SD雄性大鼠随机平均分为假手术组(Sham operation, SH)、腹主动脉缩窄模型组(Coarctation of abdominal aorta, CAA)、卡托普利治疗组(Captopril intervention, CAP)、心复康口服液治疗组(Xin Fu Kang Koufuye, XFK)四组。在6周及10周时测量心衰大鼠心功能参数,用Westen Blot方法测定大鼠心肌GLUT4蛋白的表达灰度值,分别观察比较四组大鼠第6周、第10周心功能和GLUT4蛋白表达的变化。
     结果:1、心功能的变化:(1)6周时:CAA组较SH组HR、SAP、DAP、LVEDP、LVMI显著升高(P<0.01),+dp/dtmax、-dp/dtmax显著降低(P<0.01)。CAP组、XFK组较SH组HR、DAP、LVEDP显著升高(P<0.01),+dp/dtmax、-dp/dtmax显著降低(P<0.01)。CAP组、XFK组较CAA组HR、LVMI、DAP、LVEDP显著降低(P<0.01),+dp/dtmax、-dp/dtmax显著升高(P<0.01)。XFK组与CAP组相比,+dp/dtmax的改善优于CAP组(P<0.05),其余各项指标相比无差异(P>0.05)。(2)10周时:CAA组较SH组SAP、DAP、HR、LVEDP、LVMI显著升高,+dp/dtmax、-dp/dtmax显著降低(P<0.01)。CAP组、XFK组较SH组LVEDP显著升高(P<0.01),+dp/dtmax、-dp/dtmax较CAA组显著降低(P<0.01)。CAP组、XFK组较CAA组SAP、LVMI、HR、DAP、LVEDP显著降低(P<0.01),+dp/dtmax、-dp/dtmax较CAA组显著增高(P<0.01)。XFK组与CAP组相比各项心功能指标无差异(P>0.05)。(3)CAA组大鼠10周较6周时LVMI、LVEDP时升高(P<0.05),+dp/dtmax,-dp/dtmax下降(P<0.05)。CAP组、XFK组大鼠10周较6周时LVMI、LVEDP下降(P<0.05),+dp/dtmax显著升高(P<0.05),-dp/dtmax无明显变化。
     2、6周时GLUT4蛋白表达灰度值(GLUT4/GAPDH)的变化:(1)CAA组在6周时GLUT4蛋白表达的灰度值较SH组、CAP组及XFK组明显降低(P<0.01)。(2)CAP组6周时GLUT4蛋白的表达较SH组明显降低(P<0.01);但和XFK组比较GLUT4蛋白的表达没有明显差异(P>0.05)。(3) XFK组6周时GLUT4蛋白的表达较SH组明显降低(P<0.01)。
     3、10周时GLUT4蛋白表达灰度值(GLUT4/GAPDH)的变化:(1)CAA组在10周时GLUT4蛋白表达灰度值较SH组、CAP组及XFK组明显降低(P<0.01)。(2)CAP组10周时GLUT4蛋白表达较SH组明显降低(P<0.01),和XFK组没有显著性差异(P>0.05)。(3) XFK组10周时GLUT4蛋白表达与SH组没有明显差异(P>0.05)。
     结论:(1)高压力负荷性心力衰竭大鼠心功能损害时心肌组织葡萄糖转运蛋白4的表达降低。(2)ACEI类药物卡托普利对高压力负荷性心力衰竭大鼠心功能及葡萄糖转运蛋白4的表达具有明显的改善作用。(3)具有益气温阳、活血化瘀作用的心复康口服液对高压力负荷性心力衰竭大鼠心功能及葡萄糖转运蛋白4的表达具有明显的改善作用。
Objective: The paper focuses on the effect of captopril and traditional Chinese medicine Xin Fu Kang Koufuye on function of invigoration QI warming YANG and promoting blood circulation to removing blood stasis on Glucose Transporter Protein 4 of myocardium in pressure overload-induced left ventricular hypertrophy in rats. Also it discusses the change of expression for GLUT4 of the glucose metabolism in process of CHF as well as the mechanism for ameliorate of the glucose metabolism in CHF.
     Methods: The method of coarctation of abdominal aorta (CAA) in male SD rats was taken to make high pressure overload-induced left ventricular hypertrophy model of CHF. 80 SD rats were randomly divided into four groups: Sham operation(SH), Coarctation of abdominal aorta model group (CAA), Captopril Tablets cure group(CAP) and Xin Fu Kang Koufuye group(XFK). And then measure the function of heart and grayscale of GLUT4 protein by Western Blot after six and ten weeks respectively and observe the change of them.
     Result: 1.The function of Heart: (1) In the time of 6 week: compare with SH group, HR, SAP, DAP, LVEDP and LVMI of CAA group increased(P<0.01), +dp/dtmax and -dp/dtmax decreased(P<0.01). Compare with SH group , HR, DAP, LVEDP of CAP and XFK group increased(P<0.01), +dp/dtmax and -dp/dtmax decreased(P<0.01). Compare with CAA group, HR, LVMI, DAP and LVEDP of CAP and XFK group decreased (P<0.01), +dp/dtmax and -dp/dtmax increased (P<0.01). Betwe- en CAP and XFK group, all the stat value is same (P>0.05) except +dp/dtmax(P<0.05). (2) In the time of 10 week: compare with SH group, SAP, DAP, HR, LVEDP and LVMI of CAA group increased, +dp/dtmax and -dp/dtmax decreased (P<0.01). Compare with SH group, LVEDP of CAP and XFK group decreased(P<0.01), +dp/dtmax and -dp/dtmax increased (P<0.01). Compare with CAA group, SAP, LVMI, HR, DAP and LVEDP of CAP and XFK group decreased(P<0.01), +dp/dtmax and -dp/dtmax increased(P<0.01). Between CAP and XFK group, all the stat value is same(P>0.05). (3) Compare with 6th, LVMI and LVEDP of CAA group in the 10th increased (P<0.05), +dp/dtmax and -dp/dtmax decreased (P<0.05). LVMI and LVEDP of CAP and XFK group in the 10th decreased (P<0.05), and +dp/dtmax increased(P<0.05) with -dp/dtmax not change.
     2.the Grayscale(GLUT4/GAPDH)of GLUT4 protein in the 6th week: (1) The study shows that CAA group GLUT4 protein ma- rkedly decreased compare with SH group, CAP group and XFK group (P<0.01). (2) In the CAP group the grayscale of GLUT4 protein markedly decreased compare with SH group (P<0.01) while indiscriminate compare with XFK group (P>0.05). (3) In the XFK group the grayscale of GLUT4 protein markedly decreased compare with SH group(P<0.01).
     3.the Grayscale(GLUT4/GAPDH) of GLUT4 protein in the 10th week: (1)The study shows that the grayscale of GLUT4 protein of CAA group markedly decreased compare with SH group, CAP group and XFK group (P<0.01). (2) In the CAP group the grayscale of GLUT4 protein markedly decreased compare with SH group(P<0.01) while indiscriminate compare with XFK gro- up(P>0.05). (3) In the XFK group the grayscale of GLUT4 pro- tein is indiscriminate compare with SH group(P>0.05).
     Conclusion: (1)The expression of glucose transporter protein 4 is decreased with the harmfulness of heart function by high pressure overload-induced CHF. (2) Captopril can enhance and improve the heart function and the expression of GLUT4 of myocardial of Rat by high pressure overload-induced CHF. (3) Xin Fu Kang Koufuye on function of invigoration QI warming YANG and promoting blood circulation to removing blood stasis can enhance and improve the heart function and the expression of GLUT4 of myocardial of Rat by high pressure overload-induced CHF.
引文
1 陈灏珠(主译). 心脏病学(第 7 版). 人民卫生出版社, 2007, 483-496
    2 苏苹, 郭庆畲, 尹昭. 心力衰竭的代谢与治疗. 医学综述, 2007,4(13):299-301
    3 戴闺柱. 心力衰竭诊断与治疗研究进展. 中华心血管病杂志, 2003,31(9):641-645
    4 宋涛, 李臣文, 赵文秀, 等. 心肌缺血的能量代谢及代谢药物治疗. 实用心脑肺血管病杂志, 2006,10(14):766-768
    5 胡元会, 车维新, 曹雪滨, 等. 心复康口服液对大鼠实验性心衰模型心肌细胞 Ca2+-ATPase 及琥珀酸酶活性的影响. 中医药学报, 2000,15(2):34-37
    6 Anversa P, Olivetti G, Melissari M, et al. Morphometric Stu- dy of myocardial hypertrophy induced by abdominal aortic stenosis. Lab Invest, 1979,40:341-349
    7 周一平. 用 Excel 软件进行药物毒理实验的随机分组. 医药沙龙, 2005,29(9):425-427
    8 钱之玉. 药理学实验与指导. 中国医药科技出版社, 1996,107-109
    9 于海荣, 刘艳华, 刘豫安, 等. 实验教学中不同途径行家兔左心室插管术的比较.承德医学院学报, 2001,19(2):146 -147
    10 杨安峰, 王平. 大鼠的解剖和组织. 科学出版社, 1985, 124-126
    11 汪家政, 范明. 蛋白质技术手册. 科学出版社, 2000,77- 89
    12 Margaret C, Cam, Roger W. Brownsey, Brian Rodrigues Lack of In Vivo Effect of Vanadium on GLUT4 Translo- cation in White Adipose Tissue of Streptozotocin-Diabetic Rats. Metabolism, 2001,6(50):674-680
    13 Klip A, Ramlal T, Young DA, et al. Insulin-induced translo- cation of glucose transporters in rat hindlimb muscles. Fe- bslett, 1987,224:224-230
    14 Tsirka AE, Gruetzmacher EM, Kelley DE. Myocardial gen- e expression of glucose transporter 1 and glucose transport- er 4 in response to uteroplacental insufficiency in the rat. J- ournal of Endocrinology, 2001,169:373-380
    15 Luca GM, Maria A, Augeles MM. Effects of Chronic Und- er nutrition on Glucose Uptake and Glucose Transporter Prot-eins in Rat Heart Endocrinology.143(11):4295-4303
    16 Gavete ML, Martin MA, Alvarez C. Maternal Food Restri- ction Enhances Insulin-Induced GLUT-4 Translocati-on and Insulin Signaling Pathway in Skeletal Muscle from Suckling Rats. Endocrinology, 146(8):3368-3378
    17 Daniel ZT, Rosamiria GP, Franroise AJ. Effects of insulin on glucose transport and glucose transporters in rat heart. Biochem, 1988,250:277-283
    18 Collison M, James DJ, Graham D. Reduced insulin-stimul- ated GLUT4 bioavailability in stroke-prone spontaneously hypertensive rats. Diabetologia, 2005,48:539-546
    19 Ravichandran R, Yuying C, wang H. Protection of ischemi- c hearts by high glucose is mediated, in part, by GLUT-4. Am J Physiol Heart Circ Physiol, 2001,281:290-297
    20 郭晓君. 蛋白质电泳试验技术. 科学出版社, 1999,123- 146
    21 周先碗, 胡晓倩. 生物化学仪器分析与试验技术. 化学工业出版社, 2003,171-182
    22 Pauly DF, Pepine CJ. Ischemic heart disease: Metabolic a- pproaches to management. Clin, 2004,27(8):439—441
    23 Rudolf J, Wiesner, Heimo E,et al. Dissociation of Left Ventricular Hypertrophy, ?-Myosin Heavy Chain Gene Expression, and Myosin Isoform Switch in Rats After Ascending Aortic Stenosis. Circulation,1997,95:1253-1259
    24 周 凯, 陈沅, 田杰, 等. 慢性压力负荷性心衰幼鼠实验模型建立及其病理生理探讨重庆医科大学学报, 2004, 29(2):169-172
    25 胡咏梅, 李法琦, 罗羽慧, 等. 腹主动脉缩窄大鼠模型制作及临床意义. 重庆医科大学学报, 2004,29(3):322 -324
    26 朱彤莹, 黄国英, 顾勇. 两种心衰模型大鼠心功能的比较. 中国实验动物学报, 2002,10(1):51-53
    27 李梅秀, 田国忠, 欧叶涛. 大鼠阿霉素慢性心衰模型的制备与心衰指标的判定. 解剖学研究, 2005,27(3): 176-178
    28 李玉玲, 杨建业, 唐俊明. 阿霉素诱导大鼠心衰模型不同方案的比较. 中国比较医学杂志, 2006,16:93-96
    29 张冬颖, 羽慧,杨辉. 冠状动脉结扎与腹主动脉缩窄所致慢性心力衰竭大鼠模型比较. 中国微循环, 2005,9(3): 171-173
    30 Smith HJ, Nuttall AA. Experimental models of heart failure. Cardiovasc Res, 1985,19(4):181-186
    31 Baker KM, Chernin MI, Wixson SK, et al. Reninangiotens- in system involvement in pressure-overload cardiac hyper- trophy in rats. Am J Physiol Heart Circ Physiol, 1990,259: 324-332
    32 Lorell BH. Cardiac renin-angiotensin system: role in devel- opment of pressure-overload hypertrophy. Can J Cardiol, 1995,11:7-12
    33 Lopaschuk GD, Collins-Nakai RL, Itoi T. Developmental changes in energy substrate use by the heart. Cardiovasc Res, 1992,26:1172-1180
    34 Allard MF, Schonekess BO, Henning SL, et al. Contributi- on of oxidative metabolism and glycolysis to ATP product- ion in hypertrophied hearts. Heart Circ Physiol,36:742-750
    35 Sack MN, Rader TA, Park SH, et al. Fatty acid oxidation enzyme gene expression is downregulated in the failingheart.Circulation,1996,94:2837-2842
    36 Renee VC, Anne G, Vladimir V. Energy metabolismin heart failure. The physiological Society,2003,555(1):1-13
    37 Stanley WC, Recchia FA, Lopaschuk GD. Myocardial sub- strate metabolism in the normal and failing heart. Physiol Rev,2005,85:1093-1129
    38 Lopaschuk GD ,Stanley WC. Glucose metabolism in the ischemic heart. Circulation,1997,95:313-315
    39 Nandakumar S, Gary D. Lopaschuk AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Progress in Lipid Research, 2003,42:238-256
    40 Stanley WC, Lopaschuk GD, Hall JL, et al. Regulation of myocardial carbohydrate metabolism under normal and isc- haemic conditions,potential for pharmacological interventi- ons. Cardiovasc Res,33:243-257
    41 Roden M. How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Society, 2004,19:92 -96
    42 冯兵, 徐静, 刘伟. 肥大心肌细胞能量代谢途径变化及药物干预效应研究. 重庆医学, 2006,35(8): 699-702
    43 Jan WS, Hans JG, Sander G. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Cell Biology,1991,88:7815-7819
    44 Roland G, Adelle CF,David EJ. Insulin Increases Cell Surf- ace GLUT4 Levels by Dose Dependently DischargingGLUT4 into a Cell Surface Recycling Pathway. Molecular and Cellular Biology,2004,24:6456-6466
    45 Cortright RN, Dohm GL. Mechanisms by which insulin and muscle contraction stimulate glucose transport. Can J Appl Physiol,1997,22:519-530
    46 Hayashi T, Hirshman MF, Kurth EJ, et al. Evidence for 5-AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes, 1998, 47:1369-1373
    47 Fryer LG, Foufelle F, Barnes K, et al. Characterization of of glucose transport in skeletal muscle cells. Biochem J, 2002,363:167-174
    48 Hirock T, Takashi HA, Kenjiro K. Protective Effect of the Angiotensin-Converting Enzyme inhibitor Captopril on po- stischemic Myocardial Damage in perfused Rat Heart. Japanese circulation Jaurnal,1997,61:687-694
    49 Divisova J, Vavrinkova H, Tutterova M, et al. Effect of ACE Inhibitor Captopril and L-Arginine on the Metabo- lism And on Ischemia-Reperfusion Injury of the Isolated Rat Heart. Physiol Res, 2001,50:143-152
    50 Katayama S, Inaba M, Maruno Y, et al. Glucose intolerance in spontaneously hypertensive and Wistar-Kyoto rats: enha- nced gene expression and synthesis of skeletal muscle glu- cose trans -porter 4. Hypertens Res,1997,20(4):279-286
    51 陈德昌. 现代实用本草(上册). 人民卫生出版社, 1996, 681-691
    52 程桂荣, 易胜中. 黄芪预处理大鼠心肌保护效应的实验研究. 高血压杂志, 2001,9(4):316-318
    53 陈世宏, 叶耘, 尚正录. 黄芪保心汤抗心肌缺血与血管内皮保护作用研究. 中药药理与临床, 2005,21(5):43-44
    54 曹宏先. 黄芪注射液治疗冠心病 80 例临床分析. 中医药, 1997,(5):15
    55 胡元会, 车维新, 曹贵民, 等. 心复康口服液对大鼠实验心衰模型心肌 Ca2+定位及 Ca2+-ATPase 活性的影响. 中国中医学基础杂志, 1999,5(10):27-30
    56 曹雪滨, 李培建, 黄河玲, 等. 心复康口服液对大鼠实验性心肌性心肌缺血的保护作用. 中国药科大学学报, 1998,29(Suppl):196-198
    57 宋春宇, 毕会民. 葛根素对大鼠胰岛素刺激下骨骼肌细胞 膜 GLUT4 蛋 白 含 量 的 影 响 . 中 国 中 药 杂志,2004,2:172 -175
    58 李娟娟, 毕会民. 葛根素对胰岛素抵抗大鼠脂肪细胞葡萄糖转运蛋白 4 的影响. 中国临床药理学与治疗学, 2004,9(8):885-888
    59 张雷, 陈立梅, 倪红霞. 葛根素影响链脲佐菌素诱导糖尿病大鼠脂肪细胞葡萄糖转运蛋白 4 的表达. 中国临床康复. 2006,39:135-138
    60 Guang CH, Fu-er LU, Dan J. Effect of Huanglian Jiedu Skeletal Muscle Tissues of Insulin Resistant Rats. Chin J Integr Med, 2007Mar,13(1):41-45
    61 毛先睛, 欧阳静萍, 吴勇. 中药黄芪多糖对糖尿病大鼠心肌GLUT4表达的影响. 武汉大学学报(医学版), 26(4): 457-459
    62 陈立梅, 王尔孚. 汉防己甲素影响糖尿病大鼠各组织葡萄糖转运蛋白 4 蛋白表达的意义. 中国临床康复, 2006, 19:86-88
    63 王彬, 王宗仁, 李军昌, 等. 芪丹通脉片对大鼠缺血/再灌注损伤心肌细胞GLUT4的影响.心脏杂志, 2007,19(3): 255-257
    1 Mueckler M. Family of glucose-transporter genes, Implica- tions for glucose homeostasis and diabetes. Diabetes, 1990, 39:6-11
    2 Wood IS, Trayhurn P. Glucose transporters (GLUT and SG- LT):expanded families of sugar transport proteins. Br J Nutr, 2003,89:3-9
    3 Joost HG, Thorens B. The extended GLUT-family of sugar/ polyol transport facilitators:nomenclature,sequence charac- teristics, and potential function of its novel members. Mol Membr Biol, 2001,18(4):247-256
    4 Santalucia T, Camps M, Castello A, et al. Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology, 1992,130:837-846
    5 Katz EB, Burcelin R, Tsao TS, et al. The metabolic cones-quences of altered glucose transporter expression in trans- genic mice . Mol Med, 1996,74:639-652
    6 Li SH, McNeilj H. In vivo effects of vanadium on GLUT4 translocation in cardiac tissue of STZ-diabetic rats. Molec- ular and Biochemistry, 2001,217:127-132
    7 Rea S, James DE. Moving GLUT4: the biogenesis and traf- ficking of GLUT4 storage vesicles. Diabetes, 1997,46: 1667-1677
    8 Li D, Randhawa VK, Patel N, et al. Hyperosmolarity redu- ces GLUT4 endocytosis and increases its exocytosis from a VAMP2-independent pool in l6 muscle cells. Biol Chem, 2001,276:22883-22891
    9 Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Cell Biol, 2002,3:267-277
    10 James DE, Strube M, Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transpo- rter. Nature, 1989,338:83-87
    11 Carte E, Gregor YD, Andre G. Stimulation of glucose trans- port in skeletal muscle by hypoxia. Appl Physiol. 1991,70 (4):1593-1600
    12 Lawrence H. Young MD, Yin R, et al. Low-Flow Ischem- ia Leads to Translocation of Canine Heart GLUT-4 and G- LUT-1 Glucose Transporters to the Sarcolemma In Vivo. Circulation, 1997,95:415-422
    13 殷仁富, 陈金明, 吴宗贵. 胰岛素促进犬缺血心肌 GLU- T4易位和葡萄糖摄取. 第二军医大学学报, 2001,22(2):112-114
    14 Margareta K, Hans T, Santiago P. Insulin induces translo- cation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes. The Faseb Journal, 2002, 16(2): 249-251
    15 Silvia E, Ngoc N, Markus S. Contribution of a-Adrenergic and b-Adrenergic Stimulationto Ischemia-Induced Glucose Transporter(GLUT)4 and GLUT1 Translocation in the Iso- lated Perfused Rat Heart. Circulation, 1999,25:1407-1415
    16 James L, Park K, Robert D. GLUT4 Facilitative Glucose Transporter Specifically and Differentially Contributes to Agonist-Induced Vascular Reactivity in Mouse Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25:1596-1602
    17 Sun D, Nguyen N, Degrado TR. Ischemia induces translo- cation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation, 1994,89:793-798
    18 Cortright RN, Dohm GL. Mechanisms by which insulin an- d muscle contraction stimulate glucose transport. Can J Appl Physiol, 1997,22(6):519-530
    19 Mora S, Pessin JE. An adipocentric view of signaling and intracellular trafficking. Diabetes Metab, 2002,18:345–356
    20 Hayashi T, Hirshman MF, Kurth EJ, et al. Evidence for 5-AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes, 1998,47:1369-1373
    21 Fryer LG, Foufelle F, Barnes K, et al. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. Biochem J, 2002,363(1):167-174
    22 Fasshauer M, Klein J, Ueki K, et al. Essential role of translocation and glucose uptake in brown adipocytes. Biol Chem, 2000,275:25494-25501
    23 Seung Y, Park K, Wan L. The depletion of cellular mitoc- hondrial DNA causes insulin resistance through the altera- tion of insulin receptor substrate-1 in rat myocytes. Diabe- tes Research and Clinical Practice, 2007,77S:S165-S171
    24 Farese RV, Sajan MP, Standaert ML. Atypical protein kin- ase C in insulin action and insulin resistance. Biochem Soc, 2005,33:350-353
    25 Alicia M, Mc C, Jeffrey S. et al. GLUT4’s itinerary in heal- th and disease . Indian J Med Res, 2007, 125: 373-388
    26 Welsh GI, Hers I, Berwick DC, et al. Role of protein kinase B in insulinregulated glucose uptake. Biochem Soc Trans, 2005,33:346-349
    27 Bae SS, Cho H, Mu J, et al. Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. Biol Chem, 2003,78:49530-49536
    28 Farah SL, Thong PJ, Bila N, et al. The Rab GTPase-Activ- ating Protein AS160 Integrates Akt, Protein Kinase C, and AMP- Activated Protein Kinase Signals Regulating GLUT-4 Traffic. Diabetes, 2007,56:414–423
    29 Cristinel P, Miine A, Hiroyuki S, et al. AS160, the Akt su- bstrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem, 2005, 391:87-93
    30 Lorena E, Adrian L, Jose A. Chavez Full intracellular rete- ntion of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metabolism, 2005,2:263-272
    31 Hodgkinson CP, Mander A, Sale GJ. Identification of 80K-H as a protein involved in GLUT4 vesicle trafficking. Biochem, 2005, 388:785-793
    32 Yamada E, Okada S, Saito T, et al. Akt2 phosphorylates Synip to regulate dockingand fusion of GLUT4-containing vesicles. Cell Biol, 2005,168:921-928
    33 Bentley C. GLUT4 and Company: SNAREing Role-s in In- sulin-regulated Glucose Uptake trends in Endocrinology and Metabolism. TEM, 2000,9(11):356-361
    34 Watson RT, Kanzaki M, Pessin JE, et a1. Regulated memb- rane trafficking of the insulin-responsive glucose transpor- ter 4 in adipocytse. Endocr Rev, 2004,25(2):177-204
    35 Francoise K, Bo Jin, Jing Y. Insulin signaling meets vesicle traffic of GLUT4 at a plasma- membrane-activated fusio- n step. Cell Metabolism , 2005,2:179-189
    36 Lidia S, Eva T, Purifica CM. Characterization of Two Dis- tinct Intracellular GLUT4 Membrane Populations in Mus- cle Fiber. Differential Protein Composition and Sensitivityto Insulin.The Endocrine Society, 1997,7(138):3006-3015
    37 Kazuho Kawase, Takeshi Nakamura, Akiyuki Takaya.GTP Hydrolysis by the Rho Family GTPase TC10 Promotes Ex- ocytic Vesicle Fusion. Developmental Cell, 2006,11:411- 421
    38 Tsung-YJ, Ye H, Juan I, et al. Insulin-stimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase. Biochem, 2007,402:279-290
    39 Medina RA, Southworth R, Garlick P. Lactate-induced tra- nslocation of GLUT1 and GLUT4 is not mediated by the phosphatidylinositol-3-kinase pathway in the rat heart. Basic Research in Cardiology, 2002,2(97):168-176
    40 Veronica S, Roxana C, Veronica G. Partici-pation of gluc- ose transporters on atrial natriuretic peptide-induced gluc- ose uptake by adult and neonatal cardiomyocytes under ox- ygenation and hypoxia. European Journal of Pharmacology, 2007,568:83-88
    41 Guruprasad R, Patta R, Lixuan T, et a1. Chromium picolin- ate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions. Mutation Resear- ch, 2006,610:93-100
    42 William G, Roach L, Jose A, et al. Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activat- ing protein Tbc1d1. Biochem, 2007,403:353-358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700