半离散AKNS系统的对称与代数结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究若干经典的半离散可积模型,系统地建立这些模型的无穷多对称及Lie代数结构.这些模型包括:
     ·4-位势Ablowitz-Ladik方程族.
     ·半离散AKNS方程族.
     ·可积半离散非线性Schr(o|¨)dinger方程.
     ·半离散mKdV方程.
     论文首先研究4-位势Ablowitz-Ladik等谱与非等谱方程族的对称.从4-位势Ablowitz-Ladik谱问题出发得到其方程族,并将方程族表示成un,t = LmH(0),其中L是递推算子, m不再只是自然数,而是定义在整个整数范围上.利用等谱流与非等谱流的零曲率表示构造出等谱与非等谱方程族的两组无限多的对称.这些对称生成的两个无穷维Lie代数是无中心的Kac-Moody-Virasoro代数.证明递推算子L是等谱方程族的遗传强对称,并给出非等谱方程族的一个强对称.此外,我们找到了4-位势Ablowitz-Ladik方程族、对称和Lie代数与2-位势的相关结果之间的关系: 4-位势第偶数个方程及其对称和代数结构对应着2-位势的情况,递推算子的平方L2对应着2-位势的递推算子.
     其次,论文考虑与Ablowitz-Ladik方程族有关的系统的对称,即构造半离散AKNS方程族、可积半离散非线性Schr(o|¨)dinger方程和半离散mKdV方程的对称.借助2-位势Ablowitz-Ladik系统,利用对二阶导数的中心差分离散的思想,通过拼接得到半离散AKNS等谱流、非等谱流和递推算子L.在连续极限下半离散AKNS等谱流和非等谱流成为AKNS系统的流,递推算子成为AKNS递推算子的平方.这些等谱流和非等谱流生成一个Lie代数,其代数结构对构造半离散AKNS系统及其约化系统的对称和Lie代数都起着关键的作用.而这个Lie代数与连续系统里的代数结构不同,不再是无中心的Kac-Moody-Virasoro代数.我们根据连续极限理论和引入“阶”的定义来解释这两者之间在连续极限过程中产生的代数变形.向量形式的可积半离散非线性Schr(o|¨)dinger方程族和半离散mKdV方程族可以分别通过对半离散AKNS系统强加约化Rn = -εQn·和Rn =-εQn得到.而(标量形式的)半离散非线性Schr(o|¨)dinger方程族的对称及Lie代数的生成必须满足Lie括号约化的封闭性.此外,通过选取新的等谱流和非等谱流以及递推算子L_0,可以得到另一类半离散AKNS方程族,进而通过约化得到新的半离散非线性Schr(o|¨)dinger和半离散mKdV方程族,作用连续极限后它们也可以分别连续到连续NLS和mKdV系统里的结果.
     最后讨论半离散AKNS方程族的双Hamilton结构及其连续极限.通过引入2-位势Ablowitz-Ladik方程族的多Hamilton结构以及递推算子分解中的逆辛算子θ和辛算子J,将θ和J进行不同的线性组合,我们得到半离散AKNS方程族的递推算子的多种逆辛-辛分解,进而给出其双Hamilton结构.而在连续极限的作用下,半离散AKNS方程族的双Hamilton结构可以连续到AKNS方程族的双Hamilton结构.
In this dissertation we mainly investigate symmetries and their Lie algebraic struc-tures for some classical integrable semi-discrete systems, which are
     ·four-potential Ablowitz-Ladik hierarchies.
     ·semi-discrete AKNS hierarchies.
     ·integrable semi-discrete nonlinear Schr¨odinger equation.
     ·semi-discrete mKdV equation.
     We first investigate symmetries of the isospectral and non-isospectral four-potentialAblowitz-Ladik hierarchies. We derive isospectral and non-isospectral equation hierarchiesfrom the four-potential Ablowitz-Ladik spectral problem, and we express them in theform of un,t = LmH(0), where m is an arbitrary integer (instead of a nature number)and L is the recursion operator. Then by means of the zero-curvature representationsof the isospectral and non-isospectral ?ows, we construct two sets of symmetries for theisospectral equation hierarchy as well as non-isospectral equation hierarchy, respectively.The symmetries, respectively, form two centerless Kac-Moody-Virasoro algebras. Therecursion operator L is proved to be hereditary and a strong symmetry for the isospectralequation hierarchy. We also find a strong symmetry operator for each non-isospectral four-potential Ablowitz-Ladik equation. Besides, we make clear for the relation between four-potential and two-potential Ablowitz-Ladik hierarchies together with their symmetriesand algebraic structures. The even order members in the four-potential Ablowitz-Ladikhierarchies together with their symmetries and algebraic structures can be reduced totwo-potential case. The reduction keeps invariant for the algebraic structures and therecursion operator for two potential case becomes L2.
     Then we consider symmetries for some systems which are related to the Ablowitz-Ladik hierarchy. We derive symmetries for the semi-discrete AKNS hierarchy, integrablesemi-discrete nonlinear Schro¨dinger hierarchy and semi-discrete mKdV hierarchy. Byvirtue of a central-di?erence discretization for the second order derivative in the con-tinuous NLS equation, we present semi-discrete AKNS isospectral ?ows which consist of positive as well as negative order two-potential AL isospectral flows, non-isospectralflows and their recursion operator, respectively. In continuous limit these flows go to thecontinuous AKNS ?ows and the recursion operator goes to the square of the AKNS re-cursion operartor. These semi-discrete AKNS flows form a Lie algebra which plays a keyrole in constructing symmetries and their algebraic structures for both the semi-discreteAKNS hierarchy and its reduction cases. Structures of the obtained algebras are dif-ferent from those in continuous cases which usually are centerless Kac-Moody-Virasorotype. These algebra deformations are explained through continuous limit and“degree”interms of lattice spacing parameter h. As reduced cases, the vector form of the integrablesemi-discrete nonlinear Schro¨dinger hierarchy and semi-discrete mKdV hierarchy can beobtained under the reduction of R_n = -εQ*n and R_n = -εQ_n, respectively. However,for the scalar form of the integrable semi-discrete nonlinear Schro¨dinger hierarchy, theirsymmetries and Lie algebra must guarantee the closeness of algebraic structure. Besides,we construct another semi-discrete AKNS hierarchy and discuss reduction cases, whichalso go to the continuous AKNS system and reduction system under continuous limit.
     Finally, we discuss the bi-Hamiltonian structures and its continuous limit of the semi-discrete AKNS hierarchy. Using the multi-Hamiltonian structures and implectic operatorθand symplectic operator J of the two-potential Ablowitz-Ladik hierarchy, we presentseveral implectic-symplectic factorization of the recursion operator for the semi-discreteAKNS hierarchy with di?erent linear combinations ofθand J. This enables us to discussbi-Hamiltonian structures of the semi-discrete AKNS hierarchy. In continuous limit thesebi-Hamiltonian structures go to the bi-Hamiltonian structure of the continuous AKNSsystem.
引文
[1] J.S. Russell, Report of the committee on wave, Report on the 14th meeting of BritishAssociation for the advancement of science, John Murray, London, (1844) 311-390.
    [2] D.J. Korteweg, G. de Vries, On the change of form of long waves advanceing in a rectangularcanal, and on a new type of long stationary wave, Philos. Mag. Ser., 39, (1985) 422-443.
    [3] E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems, I. Los, Alamo Rep, LA-1940,(1955) 977-988.
    [4] M. Toda, Vibration of a Chain with Nonlinear Interaction, J. Phys. Soc. Jpn., 22, (1967)431-436.
    [5] M. Toda, Theory of Nonlinear Lattices, Soliton State Science, Springer-Verlag, New York,(1981).
    [6] N.J. Zabusky, M.D. Kruskal, Interaction of“soliton”in a collisionless plasma and therecurrence of initial states, Phys. Rev. Lett., 15, (1965) 240-243.
    [7] M.J. Ablowitz, J.F. Ladik, Nonlinear differential-di?erence equations, J. Math. Phys., 16,(1975) 598-603.
    [8] R. Hirota, Nonlinear partial difference equations. I. A di?erence analogue of the Korteweg-de Vries equation, J. Phys. Soc. Jpn., 43, (1977) 1424-1433.
    [9] E. Date, M. Jimbo, T. Miwa, Method for generating discrete soliton equations. I, J. Phys.Soc. Jpn., 51, (1982) 4116-4127.
    [10] B.A. Kuperschmidt, Discrete Lax Equations and Di?erential-di?erence Calculus,Ast′erisque, No.123, (1985).
    [11] M.J. Ablowitz, J.F. Ladik, Nonlinear differential-di?erence equations and Fourier analysis,J. Math. Phys., 17, (1976) 1011-1018.
    [12] M.J. Ablowitz, J.F. Ladik, A nonlinear difference scheme and inverse scattering, Stud.Appl. Math., 55, (1976) 213-229.
    [13] M.J. Ablowitz, J.F. Ladik, On solution of a class of non-linear partial difference equations,Stud. Appl. Math., 57, (1976) 1-12.
    [14] M.J. Ablowitz, Y. Ohta, A.D. Trubach, On discretizations of the vector non-linearSchro¨dinger equation, Phys. Lett. A, 253, (1999) 287-304.
    [15] R. Hirota, Nonlinear partial difference equations. II. Discrete-time Toda equation, J. Phys.Soc. Jpn., 43, (1977) 2074-2078.
    [16] R. Hirota, Nonlinear partial difference equations. III. Discrete Sine-Gordon equation, J.Phys. Soc. Jpn., 43, (1977) 2079-2086.
    [17] R. Hirota, Nonlinear partial difference equations. IV. B¨acklund transformations for thediscrete-time Toda equation, J. Phys. Soc., Jpn., 45, (1978) 321-327.
    [18] R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys. Soc. Jpn., 50, (1981)3785-3791.
    [19] R. Hirota, Discretization of the potential modified KdV equation, J. Phys. Soc. Jpn., 67,(1998) 2234-2236.
    [20] T. Miwa, On Hirota’s difference equations, Proc. Jpn. Acad. A, 58, (1982) 9-12.
    [21] F.W. Nijhoff, G.D. Pang, A time discreted version of the Calogero-Moser model, Phys.Lett. A, 191, (1994) 101-107.
    [22] Y.B. Suris, The problem of integrable discretization: Hamiltonian approach, Edited byBass, Oesterle′and Weinstein, Progress in Mathematics, Berlin, 219, (2003).
    [23] M. Bruschi, O. Ragnisco, Nonlinear differential-difference equations, associated B¨acklundtransformations and Lax technique, J. Phys. A: Math. Gen., 14, (1981) 1075-1081.
    [24] D. Levi, Nonlinear differential difference equations as B¨acklund transformations, J. Phys.A: Math. Gen., 14, (1981) 1083-1098.
    [25] D. Gieseker, The Toda hierarchy and the KdV hierarchy, Commun. Math. Phys., 181,(1996) 587-603.
    [26] M. Adler, P. Moerbeke, Generalized orthogonal polynomials, discrete KP and Riemann-Hilbert problems, Commun. Math. Phys., 207, (1999) 589-602.
    [27] Y. Cheng, On discrete Ablowitz-Ladik eigenvalue problem, Sci. Sinica Ser. A, 29, (1986)582-591.
    [28] Y.B. Zeng, S. Rauch-Wojciechowski, Restricted ffows of Ablowitz-Ladik hierarchy and theircontinuous limits, J. Phys. A: Math. Gen., 28, (1995) 113-134.
    [29] X.B. Hu, H.W. Tam, Application of Hirota’s bilinear formalism to a two-dimensional latticeby Leznov, Phys. Lett. A, 276, (2000) 65-72.
    [30] X.B. Hu, H.W. Tam, B¨acklund transformations and Lax pairs for differential-differenceequations, J. Phys. A: Math. Gen., 34, (2001) 10577-10584.
    [31] Z.X. Zhou, Darboux transformations and exact solutions of two-dimensional Cl( 1)and Dl(+2)1Toda equations, J. Phys. A: Math. Gen., 39, (2006) 5727-5737.
    [32] E.G. Fan, A lattice hierarchy and its continuous limits, Phys. Lett. A, 372, (2008) 6368-6374.
    [33] Z.N. Zhu, H.C. Huang, Some new nonlinear differential-difference integrable hierarchies, J.Phys. Soc. Jpn., 67, (1998) 3393-3402.
    [34] Z.N. Zhu, H.C. Huang, Integrable discretizations for Toda-type lattice soliton equations, J.Phys. A: Math. Gen., 32, (1999) 4171-4182.
    [35] Z.N. Zhu, W.M. Xue, Two new integrable lattice hierarchies associated with a discreteSchr¨odinger nonisospectral problem and their infinitely many conservation laws, Phys. Lett.A, 320, (2004) 396-407.
    [36] Z.N. Zhu, The (2+1)-dimensional nonisospectral relativistic Toda hierarchy related to thegeneralized discrete Painlev′e hierarchy, J. Phys. A: Math. Theor., 40, (2007) 7707-7719.
    [37] D.J. Zhang, T.K. Ning, J.B. Bi, D.Y. Chen, New symmetries for the Ablowitz-Ladik hier-archies, Phys. Lett. A, 359, (2006) 458-466.
    [38] A.S. Fokas, Symmetries and integrability, Stud. Appl. Math., 77, (1987) 253-299.
    [39] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, NewYork, (1993).
    [40] G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations,Springer-Verlag, New York, (2002).
    [41] D.Y. Chen, D.J. Zhang, Lie algebraic structures of (1+1)-dimentional Lax integrable sys-tems, J. Math. Phys., 37, (1996) 5524-5538.
    [42] M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform-Fourieranalysis for nonlinear problems, Stud. Appl. Math., 53, (1974) 249-315.
    [43] Y.S. Li, G.C. Zhu, New set of symmetries of the integrable equations, Lie algebra andnon-isospectral evolution equations: II. AKNS system, J. Phys. A: Math. Gen., 19, (1986)3713-3725.
    [44] D.J. Kaup, A.C. Newell, An exact solution for a derivative nonlinear Schr¨odinger equation,J. Math. Phys., 19, (1978) 797-801.
    [45] Y.S. Li, D.W. Zhuang, Nonlinear evolution equations associated with the eigenvalue prob-lems with energy-dependent potentials, Acta Math. Sin., 25, (1982) 464-474.
    [46] A.S. Fokas, R.L. Anderson, On the use of isospectral eigenvalue problems for obtaininghereditary symmetries for Hamiltonian systems, J. Math. Phys., 23, (1982) 1066-1073.
    [47] B. Fuchssteiner, Mastersymmetries, higher order time-dependent symmetries and conserveddensities of nonlinear evolution equations, Prog. Theor. Phys., 70, (1983) 1508-1522.
    [48] G.Z. Tu, The Lie algebraic structure of symmetries generated by hereditary symmetries, J.Phys. A: Math. Gen., 21, (1988) 1951-1957.
    [49] W.X. Ma, K symmetries andτsymmetries of evolution equations and their Lie algebras,J. Phys. A: Math. Gen., 23, (1990) 2707-2716.
    [50] D.Y. Chen, H.W. Zhang, Lie algebraic structure for the AKNS system, J. Phys. A: Math.Gen., 24, (1991) 377-383.
    [51] K.M. Tamizhmani, W.X. Ma, Master symmetries from Lax operators for certain latticesoliton hierarchies, J. Phys. Soc. Jpn., 69, (2000) 351-361.
    [52] W.X. Ma, B. Fuchssteiner, Algebraic structure of discrete zero curvature equations andmaster symmetries of discrete evolution equations, J. Math. Phys., 40, (1999) 2400-2418.
    [53] D.Y. Chen, H.W. Xin, D.J. Zhang, Lie algebraic structures of some (1+2)-dimensional Laxintegrable systems, Chaos Solitons Fractals, 15, (2003) 761-770.
    [54]张大军, (1+1)-维Lax可积系统的递推算子之遗传强对称性质[硕士学位论文],上海大学, (1996).
    [55]张大军,离散孤子方程的Hamilton结构、守恒律及mKdV-SineGordon方程的孤子解[博士学位论文],上海大学, (2002).
    [56] D.J. Zhang, D.Y. Chen, Hamiltonian structure of discrete soliton systems, J. Phys. A:Math. Gen., 35, (2002) 7225-7241.
    [57] D.J. Zhang, S.T. Chen, Symmetries for the Ablowitz-Ladik hierarchy: I. Four-potentialcase, Stud. Appl. Math., 125, (2010) 393-418.
    [58]屠规彰,一族新的可积系及其Hamilton结构,中国科学, 12, (1988) 1243-1252.
    [59] G.Z. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure ofintegrable systems, J. Math. Phys., 30, (1989) 330-338.
    [60] G.Z. Tu, A trace identity and its applications to the theory of discrete integrable systems,J. Phys. A: Math. Gen., 23, (1990) 3903-3922.
    [61]马文秀,一个新的Liouville可积系的广义Hamilton方程族及其约化,数学年刊(A),13, (1992) 115-123.
    [62] W.X. Ma, R.G. Zhou, A coupled AKNS-Kaup-Newell soliton hierarchy, J. Math. Phys., 40,(1999) 4419-4428.
    [63] Y.F. Zhang, A generalized Boite-Pempinelli-Tu (BPT) hierarchy and its bi-Hamiltonianstructure, Phys. Lett. A, 317, (2003) 280-286.
    [64] Y.F. Zhang, A trick loop algebra and a corresponding Liouville integrable hierarchy ofevolution equation, Chaos Solitons Fractals, 21, (2004) 445-456.
    [65] E.G. Fan, Integrable systems of derivative nonlinear Schro¨dinger type and their multi-Hamiltonian structure, J. Phys. A: Math. Gen., 34, (2001) 513-519.
    [66] Z.N. Zhu, H.C. Huang, A new Lax integrable hierarchy and its Hamiltonian form, J. Phys.Soc. Jpn., 67(3), (1998) 778-783.
    [67] Z.N. Zhu, H.C. Huang, W.M. Xue, The bi-Hamiltonian structures of some new Lax in-tegrable hierarchies associated with 3×3 matrix spectral problems, Phys. Lett. A, 235,(1997) 227-232.
    [68] X.B. Hu, A powerful approach to generate new integrable systems, J. Phys. A: Math. Gen.,27, (1994) 2497-2514.
    [69] X.B. Hu, An approach to generate supperextensions of integrable system, J. Phys. A: Math.Gen., 30, (1997) 619-623.
    [70] W.X. Ma, J.S. He, Z.Y. Qin, A supertrace identity and its applications to superintegrablesystems, J. Math. Phys., 49, (2008) 033511.
    [71] B. Fuchssteiner, A.S. Fokas, Symplectic structures, their B¨acklund transformations andhereditary symmetries, Physica D, 4, (1981) 47-66.
    [72]陈登远,孤子引论,科学出版社,北京, (2006).
    [73] M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schr¨odingerSystems, Cambridge University Press, Cambridge, (2004).
    [74] M. Gekhtman, I. Nenciu, Multi-Hamiltonian structures for the finite defocusing Ablowitz-Ladik equation, Commun. Pure Appl. Math., 62, (2009) 147-182.
    [75] N.M. Ercolani, G.I. Lozano, A bi-Hamiltonian structure for the integrable discrete non-linear Schro¨dinger system, Physica D, 218(2), (2006) 105-121.
    [76] X.G. Geng, Darboux transformation of the discrete Ablowitz-Ladik eigenvalue problem,Acta Math. Sci., 9, (1989) 21-26.
    [77] V.E. Vekslerchik, Implementation of the B¨acklund transformations for the Ablowitz-Ladikhierarchy, J. Phys. A, 39, (2006) 6933-6953.
    [78] X.G. Geng, H.H. Dai, J.Y. Zhang, Decomposition of the discrete Ablowitz-Ladik hierarchy,Stud. Appl. Math., 118, (2007) 281-312.
    [79] X.G. Geng, H.H. Dai, Nonlinearization of the Lax pairs for discrete Ablowitz-Ladik hier-archy, J. Math. Anal. Appl., 327, (2007) 829-853.
    [80] X.G. Geng, H.H. Dai, C.W. Cao, Algebro-geometric constructions of the discrete Ablowitz-Ladik ffows and applications, J. Math. Phys., 44, (2003) 4573-4588.
    [81] K.W. Chow, R. Conte, N. Xu, Analytic doubly periodic wave patterns for the integrablediscrete nonlinear Schro¨dinger (Ablowitz-Ladik) model, Phys. Lett. A, 349, (2006) 422-429.
    [82] D.J. Zhang, D.Y. Chen, The conservation laws of some discrete soliton systems, ChaosSolitons Fractals, 14, (2002) 573-579.
    [83] H.Y. Ding, Y.P. Sun, X.X. Xu, A hierarchy of nonlinear lattice soliton equations, its in-tegrable coupling systems and infinitely many conservation laws, Chaos Solitons Fractals,30, (2006) 227-234.
    [84] F. Gesztesy, H. Holden, J. Michor, G. Teschl, Local conservation laws and the Hamiltonianformalism for the Ablowitz-Ladik hierarchy, Stud. Appl. Math., 120, (2008) 361-423.
    [85] M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Nonlinear evolution equations of physicalsignificance, Phys. Rev. Lett., 31, (1973) 125-127.
    [86] D.J. Zhang, S.T. Chen, Symmetries for the Ablowitz-Ladik hierarchy: II. Integrable discretenonlinear Schro¨dinger equations and discrete AKNS hierarchy, Stud. Appl. Math., 125,(2010) 419-443.
    [87] A.A. Vakhnenko, Y.B. Gaididei, On the motion of solitons in discrete molecular chains,Theor. Math. Phys., 68, (1986) 873-880.
    [88] M. Salerno, A.C. Scott, Quantum theories for two discrete nonlinear Schr¨odinger equations,Nonlinearity, 4, (1991) 853-860.
    [89] S.C. Chiu, J.F. Ladik, Generating exactly soluble nonlinear discrete evolution equations bya generalized Wronskian technique, J. Math. Phys., 18, (1977) 690-700.
    [90] R. Hern′andez Heredero, D. Levi, P. Winternitz, Symmetries of the discrete nonlinearSchro¨dinger equation, Theore. Math. Phys., 127, (2001) 729-737.
    [91] V.E. Vekslerchik, An O(3,1) nonlinearσ-model and the Ablowitz-Ladik hierarchy, J.Phys. A: Math. Gen., 27, (1994) 6299-6313.
    [92] R. Hern′andez Heredero, D. Levi, The discrete nonlinear Schr¨odinger equation and its Liesymmetry reductions, J. Nonl. Math. Phys., 10, Suppl.2, (2003) 77-94.
    [93] D.N. Christodoulides, R.I. Joseph, Discrete self-focusing in nonlinear arrays of coupledwaveguides, Opt. Lett., 13(9), (1988) 794-796.
    [94] A.J. Sievers, S. Takeno, Intrinsic localized modes in anharmonic crystals, Phys. Rev. Lett.,61, (1988) 970-973.
    [95] P. Marquii, J.M. Bilbaut, M. Remoissenet, Observation of nonlinear localized modes in anelectrical lattice, Phys. Rev. E, 51, (1995) 6127-6133.
    [96] Ch. Claude, Yu.S. Kishvar, O. Kluth, K.H. Spatscheck, Moving modes in localized nolnlin-ear lattices. Phys. Rev. B, 47(21), (1993) 14228-14232.
    [97] J.C. Eilbeck, P.S. Lombdahl, A.C. Scott, The discrete self-trapping equation, Physica D,16, (1985) 318-338.
    [98] A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Temperature correlations of quantumspins, Phys. Rev. Lett., 70(11), (1993) 1704-1706.
    [99] M. Toda, M. Wadati, A soliton and two solitons in an exponential lattice and relatedequations, J. Phys. Soc. Jpn., 34, (1973) 18-25.
    [100] K.M. Case, M. Kac, A discrete version of the inverse scattering problem, J. Math. Phys.,14, (1974) 594-603.
    [101] M.J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, SIAM, Philadel-phia, (1981).
    [102] C. Morosi, L. Pizzocchero, On the continuous limit of integrable lattices: II. Volterrasystem and sp(N) theories, Rev. Math. Phys., 10, (1998) 235-270.
    [103] C. Morosi, L. Pizzocchero, On the continuous limit of integrable lattices: III. Kupershmidtsystems and sl(N + 1) KdV theories, J. Phys. A: Math. Gen., 31, (1998) 2727-2746.
    [104] M. Kac, P. van Moerbeke, On some periodic Toda lattices, Proc. Natl. Acad. Sci. USA,72, (1975) 1627-1629.
    [105] K.M. Case, On discrete inverse scattering problems. II, J. Math. Phys., 14, (1974) 916-920.
    [106] J.A. Gear, Strong interactions between solitary waves belonging to different wave modes,Stud. Appl. Math., 72, (1985) 95-124.
    [107] Z.N Zhu, H.Q Zhao, X.N Wu, On the continuous limits and integrability of a new coupledsemidiscrete mKdV system, J. Math. Phys., 52, (2011) 043508.
    [108] Y.B. Zeng, S. Rauch-Wojciechowski, Continuous limits for the Kac-van Moerbeke hierar-chy and for their restricted ffows, J. Phys. A: Math. Gen., 28, (1995) 3825-3840.
    [109] M. Schwarz, Korteweg-de Vries and nonlinear equations related to the Toda lattice, Adv.in Math., 44, (1982) 132-154.
    [110] C. Morosi, L. Pizzocchero, On the continuous limit of integrable lattices: I. The Kac-Moerbeke system and KdV theory, Commun. Math. Phys., 180, (1996) 505-528.
    [111] X.L. Sun, D.J. Zhang, X.Y. Zhu, D.Y. Chen, Symmetries and Lie algebra of the differentialdifference Kadomtsev-Petviashvili hierarchy, Mod. Phys. Lett. B, 24(10), (2010) 1033-1042.
    [112] B. Fuchssteiner, Application of hereditary symmetries to nonlinear evolution equations,Nonlinear Anal., 3(11), (1979) 849-862.
    [113] C. Tian, Symmetries, in Soliton Theory and Its Applications, Springer-Verleg, Berlin,(1996).
    [114] H. Wu, D.J. Zhang, Strong symmetries of non-isospectral Ablowitz-Ladik equations, Chin.Phys. Lett., 28(2), (2011) 020203.
    [115] T.K. Ning, D.Y. Chen, D.J. Zhang, The exact solutions for the nonisospectral AKNShierarchy through the inverse scattering transform, Physica A, 339, (2004) 248-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700