研抛大型自由曲面微小机器人控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吉林大学智能精密制造专业团队提出了一种新的技术思想,即利用小型装备对大型自由曲面进行精整加工。本文以研抛大型自由曲面微小机器人机械结构为基础,设计并开发了研抛机器人的控制系统。
     研抛大型自由曲面微小机器人的整个控制系统分为运动控制系统、研抛压力控制系统及定位控制系统三部分。确定了该控制系统的硬件总体结构由上位计算机,Turbo PMAC2多轴运动卡及机器人定位系统组成。通过对研抛机器人控制系统具体功能的分析,提出了基于事件驱动的模块化体系结构。在该体系结构的基础上,将研抛机器人控制系统软件从层次上分为加工执行层和集中控制层。以Windows操作系统下的多线程技术为核心,完成了控制系统软件中人机交互、初始校准及集中控制模块等主体模块的开发。通过研究研抛加工的区域覆盖方法及机器人在研抛加工过程中的运动模式,提出了基于插补的研抛机器人轨迹跟踪控制方法,实现了微小研抛机器人对加工路径的有效跟踪。本文在研抛机器人压力控制系统硬件结构的基础上,建立了研抛压力输出的数学模型,采用基于PID控制算法的闭环方法实现了研抛加工的定压控制。从无/有研抛力输出两个方面对研抛机器人的动力学特性进行了分析,给出了机器人纵向运动模式和横向运动模式下的动力学模型,并以公式的形式描述了研抛力输出对机器人动力学特性的影响,为研抛大型自由曲面微小机器人的下一步深层次开发奠定了基础。实验证明本文设计并开发的微小研抛机器人控制系统可以有效实现研抛机器人的各种控制功能,完全能够满足利用移动机器人对大型自由曲面进行研抛加工的基本要求。
A new technical idea for polishing a large freeform surface with a micro device has been proposed by our intelligent precision manufacturing team of JiLin University. Under the guiding of this idea, a novel polishing robot was designed for large freeform surface. The purpose of this paper is to design and develop a control system for the designed robot combined with the mobile robot technologies.
     The control system structure is designed in this paper based on the mechanical structure of the polishing robot for a large freeform surface. The whole control system is divided into three parts: motion control system, polishing pressure control system and positioning system. The hardware structure is composed of host computer, Turbo PMAC2 multi-axis motion control card and robot positioning system.
     The structure composition and working principle are mastered by investigating the hardware performance of Turbo PMAC2. Based on the research of the executive mode of Turbo PMAC2’s motion program, a motion program of the polishing robot control system in Turbo PMAC2 is developed. Based on above works, a normal flow about application development of control system with Turbo PMAC2 is summarized in this paper:
     1. Choose the certain interface board fixed to Turbo PMAC2 according to the motors and their drivers’interfaces;
     2. Connect the hardware in your system according to the interface of the certain interface board chosen step 1);
     3. Set and save all the related I variables by debugging the motors and their drivers with certain Turbo PMAC2 software (the debugging principle is no load first then with load);
     4. Develop and debug motion program in PEWIN32PRO.
     This flow provides a direction to the application development of control system with Turbo PMAC2, shows the job steps clearly and decreases the preparing time of application development. It has a certain means of direction for the next application development of control system with Turbo PMAC2.
     According to the characters of polishing for large freeform surface, the motion area of polishing robot is known and without obstacle. Polishing robot can cover its polishing area by moving to and fro easily. The polishing paths of robot are labeled in this paper. All the labels are set into the data style of polishing path. Polishing robot can choose the certain motion mode by the label in the data style of polishing path. The labels make the development of control system software very conveniently. In anther way, according to the covering method of polishing area and the mechanical structure of polishing robot, in this paper, the motion model is divided into three parts: portrait motion, transverse motion and rotation motion. Based on the kinematics models of the three motion modes, a method of path tracking control based on interpolation is proposed by analyzing the path tracking problems about polishing robot in this paper. This method can not only process the points information of polishing path generated by path plan model, but also can solve the conflict between output of inverse kinematics which is velocity information and input of Turbo PMAC2 motion program which is quantitative information, and also, provides a basic frame of the development of control system software.
     A pressure output model is built based on the hardware structure of pressure control system. In this paper, a normal PID control is used to keep the polishing pressure of robot in a stable value. All the parameters in this model is confirmed by consulting references and investigating in the field. Then, one group preliminary parameters of PID controller are confirmed by a simulation of PID control is presented in Matlab, KP=36.2, KI=0.23, KD=0.139. In additional, the kinetics of polishing robot is analyzed in two aspects of without polishing pressure and with polishing pressure in this paper. Two robot kinetics models of portrait motion and transverse motion are built in this paper that for describing the influence of the polishing pressure to the robot kinetics, which lays a foundation for the advanced research of polishing robot.
     By analyzing the concrete functions of the robot control system, an event driving modeling structure of the control system software is proposed in this paper. According to this structure, the control system software of the polishing robot is divided into machining accomplish level and centralized control level, then, the whole frame of control system software is built. In this foundation, by researching on the two technologies of communication and synchronization of multi-thread technology in Windows OS, the development of polishing robot control system software is finished.
     Finally, for testing the performance of polishing robot control system designed and developed in this paper, some certain experiments are approached.
     All the motors’parameters of robot in Turbo PMAC2 are confirmed and saved by repeated debugging the Turbo PMAC2 according to the method presented in this paper;
     The performance of the polishing robot control system is described by using the method of time recording. The experiment result shows that the sampling period of positioning system is the main influence factor to the interpolation period which is a key parameter in the method of path tracking control based on interpolation;
     A polishing path tracking experiment is approached according to the polishing area coverage path presented in this paper. The experiment result proves that the method of path tracking control based on interpolation and the event driving modeling structure of the control system software presented in this paper can realized the polishing path tracking control. The error data is basically fit the precision of positioning system, which proves that the precision of positioning system is the main influence factor of polishing path tracking;
     An experiment of polishing pressure control system is approached through analyzing the basic theory that curvature variation of freeform surface infects the polishing pressure output of polishing robot. The experiment result shows that closed loop control with basic PID controller can achieve the basic requirement of polishing pressure control, but it can still not thoroughly eliminated the influence. A more advanced controller should be used to solve this problem;
     An polishing experiment is approached in Paper[101] based on the control system of polishing robot developed in this paper. The experiment is quoted in this paper. An optimum combination of three polishing parameters is acquired from the experiment: polishing motor velocity~1000rmp, programmed feedrate~120mm/min, polishing pressure ~15N. The experiment result shows that polishing a ductile iron piece by the optimum combination of three polishing parameters can make a surface quality with a surface roughness Ra=0.2μm.
     All the experiments described above prove that the control system of polishing robot designed and developed in this paper can realize all the control function of polishing robot, which has achieved the requirement of polishing large freeform surface by using mobile robot.
引文
[1]蔡鹤皋.机器人将是21世纪技术发展的热点[J].中国机械工程, 2000, 11(2): 85-95.
    [2]顾震宇.全球工业机器人产业现状与趋势[J].机电一体化, 2006, 2: 6-9.
    [3]王世敬,温筠.现代机械制造技术及其发展趋势[J].石油机械, 2002, 30(11): 21-24.
    [4] Zhiwei Yang, Fengfeng Xi, Bin Wu. A shape adaptive motion control system with application to robotic polishing [J]. Robotics and Computer-Integrated Manufacturing, 2005, 2(21): 355-367.
    [5] Mizugaki Y, Sakamoto M, Kamijo K. Development of a metal-mold Polishing Robot System with Contact Pressure Control Using CAD/CAM Data [J]. Ann. CIRP, 1990, 39(1):523-526.
    [6] M.Kunieda, T.Nakagawa, H. Hiramatsu, T.Higuch.Magnetically Pressed Polishing Tool for a Die Finishing Robot [C]. Proc. of 24th Int. IMTDR Conf. 1983, (8):295-303.
    [7] Yoshimi Takeuchi, Naoki Asakawa , Ge Dong fang . Automation of Polishing Work by an Industrial Robot [J]. JSME International Journal Series C, 1992,58(1):289-294.
    [8] Fusaomi Nagata, Tetsuo Hase, Zenku Haga, Masaaki Omoto, Keigo Watanabe. CAD/CAM-based Position/force Controller For a Mold Polishing Robot [J]. Mechatronics, 2007, (17):207-216.
    [9]王都.模具工业发展中的几个问题[J].航空制造技术-第八届国际模具技术和设备展专辑, 2000, (3): 12-32.
    [10]郎志,李成群,贠超.机器人柔性抛光系统研究[J].机械工程师, 2006, (6):26-28.
    [11]洪云飞,李成群,贠超.用于复杂空间曲面加工的机器人磨削系统[J].中国机械工程, 2006, 17(8):150-153.
    [12]金仁成,李水进,唐小琦,周云飞.研磨机器人系统及其运动控制[J].机械科学与技术, 2000, 4(7): 568-570.
    [13]郭彤颖,曲道奎,徐方.机器人研磨抛光工艺研究[J].新技术新工艺, 2006, (1): 84-85.
    [14]任俊,张海鸥,王桂兰.面向熔射快速制模的机器人辅助曲面自动抛光系统的研究[J]. CMET锻压装备与制造技术, 2006, (4):88-91.
    [15]王瑞芳,徐方.机器人研磨抛光工艺研究与实现[J].新技术新工艺, 2008, (9):19-22.
    [16] Ji Zhao, Jianming Zhan, et al.. Ta. An Oblique Ultrasonic Polishing Method by Robot for Free-form Surfaces[J]. International Journal of Machine Tools & Manufacture, 2000, 40(6):795–808.
    [17]赵继,詹建明等.机器人弹性超声研磨自由曲面的过程识别与优化[J].机械工程学报, 2000, 36(1): 71-74.
    [18]祝佩兴,赵继等.机器人超声-电火花复合加工模具曲面的干涉与实验研究[J].中国机械工程, 2000, 11(10): 1173-1175.
    [19]詹建明,赵继等.机器人超声研抛自由曲面的精加工系统[J].中国机械工程, 2000, 11(8):853-854.
    [20] Zhao Ji, Zhan Jianming et al.. Force control and its effects on the polishing results in the robot ultrasonic polishing. Proceedings of 1999 Int. Conf. On Advanced Manufacturing Technology[C], June, 1999, Xi’an, Chian, 1999:113-117.
    [21] Yu Miao, Zhao Ji et al.. Collision prediction in robotic ultrasonic polishing of moulds with curved surfaces[C]. CIRP International Symposium, August, 1997: 935-938.
    [22]王先逵,吴丹,刘成颖.精密加和超精密加工技术综述[J].中国机械工程, 1999, 10(5): 570-576.
    [23]三好隆志.金型の磨き加工—现状と今后の课题型技术. JSPE, 1991, 6(9): 70-76.
    [24]朱涛,谈大龙.微机器人技术在超精密加工中的应用研究[J].机械工程师, 2003, (1):3-5.
    [25] Abdelhafid OMARI, et al.. Development of a High Precision Mounting Robot System with Fine Motion Mechanism [J]. JSPE, 2001, 67(7):1101-1107.
    [26] Kunieda M, Nakagawa T, Higuchi T. Robot-polishing of Curved Surface with Magnetically Pressed Polishing Tool [J]. JSPE, 1988, 54 (1) :125-131.
    [27] Mizugaki Y, Sakamoto M , Sata T. Fractal Path Generation for a Metal - mold Polishing Robot System and Its Evaluation by the Operability [J]. Ann CIRP, 1992, 41 (1):531-534.
    [28] Takeuchi Y, Askawa N , Ge D F. Automation of Polishing Work by an Industrial Robot (system of Polishing robot) [J]. JSME Int, J. Ser, 1993, 36(4):556-561.
    [29]高鹏,袁哲俊,姚英学,高栋.弹性薄膜-电致伸缩微进给机构研究[J].制造技术与机床, 1997, (2): 34-36.
    [30] Cho U, Eom D G, Lee D Y et al.. A Flexible Polishing Robot System for Die and Mould[C]. Proceedings of 23rd International Symposium on Industrial Robots, 1992: 449-456.
    [31]赵学堂,张永俊.模具光整加工技术新进展[J].中国机械工程, 2002, 22(13): 1977-1981.
    [32] Hon - yuen Tam , Osmond Chi - hang Lui , Alberert C K Mok. Robotics Polishing of Free - form Surfaces Using Scanning Paths [J]. Journal of Material s Processing Technology, 1999, (95): 191-200.
    [33]许小村,袁哲俊,郑文斌.汽车拉延模浮动式研磨抛光的优势[J]. CMET锻压装备与制造技术, 2005, (3): 101-102.
    [34]陈贵亮.大型曲面自主研抛作业微小机器人技术研究[D].长春:吉林大学机械科学与工程学院, 2009.
    [35]蔡自兴.机器人学[M].北京:清华大学出版社, 2000.
    [36]李磊,叶涛,谭民等.移动机器人技术研究现状与未来[J].机器人, 2002, 24(5): 475-480.
    [37]徐国华,谭民.移动机器人的发展现状及其趋势[J].机器人技术与应用, 2001, (3): 7-14
    [38]张明路,丁承君,段萍.移动机器人的研究现状与趋势[J].河北工业大学学报, 2004, 33(2): 110-115
    [39]孙柏林.无人平台在军事领域里的应用[J].自动化博览, 2003, (s1): 145-149.
    [40]伐谋.美国的智能机器人计划[J].机器人技术与应用, 1996, (3):2-4.
    [41] Roland Siegwart, Pierre Lamon, Thomas Estier, Michel Lauria, Ralph Piguet. Innovative design for wheeled locomotion in rough terrain [J]. Robotics and Autonomous Systems, 2002, 40: 151–162.
    [42] P. Gonzalez de Santos, J.A. Cobano, E. Garcia, J. Estremera, M.A. Armada. A six-legged robot-based system for humanitarian demining missions[J]. Mechatronics, 2007,17:417–430.
    [43]闫清东,魏丕勇,马越.小型无人地面武器机动平台发展现状和趋势[J].机器人, 2004,26(4):373-379.
    [44] Leibstone M. Defence strategy enhancements and the FCS model[J]. Military Technology ,2003 ,27 (7) :73 - 78.
    [45] Gage D W. A brief history of unmanned ground vehicle (UGV) development efforts[J]. Unmanned Systems Magazine, 1995, 13(3):1-9.
    [46]辛贾.美国陆军的未来战术移动机器人计划[J].机器人技术与应用, 2001, (4):33-35.
    [47]张朋飞,何克忠等.多功能室外智能移动机器人实验平台-THMR-V[J].机器人, 2002, 24(2): 97-101.
    [48]杨和进.新型壁面移动机器人越障机构的研究[D].哈尔滨:哈尔滨工业大学机电工程学院, 2007.
    [49]谈士力,王建成,苏建良等.球形壁面爬行机器人研制[J].机器人, 2002, 24(6):517-520.
    [50] Brook R A. A Robust Layered Control System for Mobile Robot[J]. IEEE J Robotics and Automation, 1986, 2(1): 14-23.
    [51] Akram B G. Controlling Reactive Behavior with Consistent World Modeling andReasoning[J]. Application of Artificial Intelligence X: Machine Vision and Robotics, 1992, 1708: 701-712.
    [52] Kanayama Y, Kimura Y, etc. A Stable Tracking Control Method for an Autonomous Mobile robot[C]. Proc. IEEE Int. Conf. on Robotics and Automation, 1990, 384-389.
    [53] Chung J, Byeong-Soon R, Hyun S Y. Integrated Control Architecture based on Behavior and Plan for Mobile Robot Navigation[J]. Robotica, 1998, 98(16):387-399.
    [54] Jiraw in ut R, Prakoonw it S, Cecelja F, et al. Visual odom eter for pedestrian navigation[J]. IEEE Transactions on Instrum entation and Measurement, 2004, 52(4):1166-1173.
    [55]潘良晨,陈卫东.室内移动机器人的视觉定位方法研究[J].机器人, 2006, 28(5):504-509.
    [56] Dellaertt F, Thrun S, Thorpe C Mosaicing a Large Number of Widely Dispersed, Noisy, and Distorted Images a Bayesian Approach[R]. USA: Camegie Mellon University, 1999.
    [57]迟健男,徐心和.移动机器人即时定位与地图创建问题研究[J].机器人, 2004, 26(1):92-96.
    [58]郑向阳,熊蓉,顾大强.移动机器人导航和定位技术[J].机电工程, 2003, 20(5):35-37.
    [59]卢韶芳,刘大维.自主式移动机器人导航研究现状及其相关技术[J].农业机械学报, 2002(3), 33(2):112-116.
    [60]冯建农,柳明,吴捷.自主移动机器人智能导航研究进展[J].机器人, 1997, 19(6):468-473.
    [61] Youjing Cui, Shuzhi Sam Ge. Autonomous vehicles positioning with GPS in urban canyon environments[C]. IEEE Transactions on Robotics and Automation, 2003, 19(1):15-25.
    [62] Manaber Omae, Takehiko Fujioka. DGPS-Based Position Measurement and Steering Control for Automatic Driving[C]. Proceedings of the American Control Conference, 1999, 3686-3690.
    [63]欧阳正柱,何克忠. GPS在智能移动机器人中的应用.微计算机信息[J], 2001, 17(11):56-58.
    [64]赵亦林.车辆定位与导航系统.北京:电子工业出版社[M].1994.
    [65]王栋耀,马旭东,戴先中.基于声纳的移动机器人沿墙导航控制[J].机器人, 2004, 26(4):346-350.
    [66]董再励,王光辉,田彦等.自主移动机器人激光全局定位系统研究[J].机器人, 2000, 22(3):207-210.
    [67]王宏,张钹.基于地图的室外移动机器人路径规划与导航系统[J].机器人, 1994,16(1):24-29.
    [68] Risto Miikkulainen, David Filliat, Jean-Arcady Meyer. Map-based navigation in mobile robots: I. A review of localization strategies[J]. Cognitive Systems Research, 2003,(4):243-282.
    [69] Risto Miikkulainen, David Filliat, Jean-Arcady Meyer. Map-based navigation in mobile robots: II. A review of localization strategies[J]. Cognitive Systems Research, 2003,(4):283-317.
    [70] Andreas Kurz. Constructing maps for mobile robot navigation based on ultrasonic range data[C]. IEEE transactions on Systems, Man and Cybernetics-partB: Cybernetics, 1996, 26(2):233-242.
    [71]孟凯,孙茂相,孙金根.基于主动路标的全方位移动机器人定位系统.沈阳工业大学学报[J], 2000, 22(2):148-151.
    [72]朱常琳,郭光辉.运动视觉在移动机器人导航与定位中的应用.兰州铁道学院学报(自然科学版)[J], 2000, 19(6):70-73.
    [73]张明路,关柏青,丁承君.基于彩色视觉和模糊控制的移动机器人路径跟踪.中国机械工程[J], 2002, 13(8):12-15.
    [74] Stephen Se, David G. Lowe, James J. Little. Vision-based global localization and mapping for mobile robots[C]. IEEE Transactions on Robotics, 2005, 21(3):364-375.
    [75] Stephen Se, David G. Lowe, James J. Little. Vision-based global localization and mapping for mobile robots[C]. IEEE Transactions on Robotics, 2005,21(3):364-375.
    [76] J.M.PORTA, J.J.VERBEEK, B.J.A.KROSE. Active appearance-based robot localization using stereo vision. Autonomous Robots[J], 2005,18:59-80.
    [77] Eric T.Baumgartner, Steven B.Skaar. An autonomous vision-based mobile robot[R]. IEEE Transactions on Automatic Control, 1994, 39(3):493-502.
    [78]李世华,田玉平.非完整移动机器人的轨迹跟踪控制[J].控制与决策, 2002, 17(3):301-305.
    [79] Kanayama YJ, Fahroo F., Anew line tracking method for nonholonomic vehicles. Proceedings of IEEE International Conference on Robotics and Automation. 1997[C], (4):2908-2913.
    [80] Kanayana YJ, Fahroo F., Acircle tracking method for nonholonomic vehicles. Robot Control[J], 1997,(2):531-538.
    [81] Zhong-ping Jiang, Henk Nijmeijer. A recursive technique for tracking control of nonholonomic systems in chained form[C]. IEEE Transactions on Automatic Control, 1999, 44(2):265-279.
    [82]晁红敏,胡跃明,吴忻生.高阶滑模控制在非完整移动机器人鲁棒输出跟踪中的应用.控制理论与应用[J],2002,19(2):253-257.
    [83] Yulin Zhang, Jae H. Chung, Steven A. Velinsky. Variable structure control of a differentially steered wheeled mobile robot[J]. Journal of Intelligent and Robotic Systems, 2003, 36:301-314.
    [84] Ti-Chung Lee, Kai-Tai Song, Ching-Hung Lee et al. Tracking control of mobile robots using saturation feedback controller[C]. Proceedings of the 1999 IEEE International Conference on Robotics and Automation, 1999:2639-2644.
    [85]蔡自兴.智能控制(第2版)[M].北京:电子工业出版社, 2004.
    [86]蔡自兴.智能控制及移动机器人研究进展[J].中南大学学报, 2005, 36(5):721-726.
    [87] Han Dapeng, Wei Qing, A Design Method Via Modularization for Controllers of Mobile Robots [J]. Microcomputer Information, 21(5): 3-4.
    [88] austriamicrosystems. AS504010BIT PROGRAMMABLE MAGNETIC ROTARY ENCODER: DATA TRANSMISSION OVER LONG CABLES Manual[EB/OL]. [2005-10-27] http://www.austriamicrosystems.com.
    [89] Festo AG & Co. valve Manual[EB/OL]. [2004: 37version] http://www.Festo.com.
    [90] Maxon. Maxon motor control manual. [2006(11): 279] http://www.maxon.com.
    [91] DELTATAU Data System,Inc.Turbo PMAC2 User Manual. [2003-4-15] http://www.deltatau.com.
    [92]潘炼东,黄心汉.基于PMAC的机器人控制器设计[J].华中理工大学学报, 2000, 28(4): 69-71.
    [93] DELTATAU Data System,Inc. Turbo PMAC2 ACC-8E Manual. [2003-1-27] http://www.deltatau.com.
    [94] DELTATAU Data System,Inc. Turbo PMAC2 Hardware Manual. [2003-2-26] http://www.deltatau.com.
    [95]林义忠.自主轮式移动机器人信号检测与智能控制[D].西安:西安理工大学机械学院, 2005.
    [96] DELTATAU Data System,Inc. Turbo PMAC2 PEWIN32 PRO Manual. [2003-1-28] http://www.deltatau.com.
    [97] DELTATAU Data System,Inc. Turbo PMAC User Manual. [1998] http://www.deltatau.com.
    [98] DELTATAU Data System,Inc. Turbo PMAC/PMAC2 Software Manual. [2002-2-19] http://www.deltatau.com.
    [99] Choset H. Coverage of known spaces: The Boustrophedon Cellular Decomposition [J]. Autonomous Robots, 2000, 9(3): 247-253.
    [100] Guiliang Chen, Ji Zhao1, Lei Zhang, et al. Researching of a Wheeled Small Polishing Mobile Robot for Large Freeform Surface and its Kinematic [C]. Proceedings of the 8th International Conference on Frontiers of Design and Manufacturing, 2008: 341-345.
    [101]陈贵亮.研抛大型复杂曲面自主作业微小移动机器人的研究[D].长春:吉林大学机械科学与工程学院, 2009.
    [102] KoiehiYoshizawa, HidekiHashimoto ,Masayoshi Wada et al. Path traeking control of mobile robots using a quadratic curve [C]. Proceedings of Intelligent Vehicles Symposium, 1996: 58-63.
    [103] Yulin Zhang, Daehie Hong, Jae H. Chung et al. Dynamic model based robust tracking control of a differentially steered wheeled mobile robot [C]. Proceedings of the American Control Conference, 1998: 850-855.
    [104]汪木兰.数控原理与系统[M].北京:机械工业出版社, 2004.
    [105] Huang Wenmei, State Varable Feedback Control for Pneumatical Positioning Systems [J]. Journal of Hunan University (Natural Science), 1990, 17(1): 11-18.
    [106] Shearer J L. Study of pneumatic Process in the Continuous Control of Motion with Compress Air [J]. Trans ASME, 1956, (2): 233-242.
    [107]杨武松.微小研抛机器人气动柔顺控制系统研究[D].长春:吉林大学机械科学与工程学院, 2008.
    [108]刘金琨.先进PID控制MATLAB仿真(第2版)[M].北京:电子工业出版社, 2004.
    [109]陶永华,伊怡欣,葛芦生.新型PID控制系统其应用[M].北京:机械工业出版社, 2002.
    [110]范永,谭民.机器人控制器的现状及展望[J].机器人, 1999, 21(1): 75-80.
    [111] Arras, K.O., Castellanos, J.A., Siegwart, R. Feature-Based Multi-Hypothesis Localization and Tracking for Mobile Robots Using Geometric Constraints[C]. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’2002), Washington, DC, May 11-15, 2002.
    [112]宋轶群,杜华生等.一种全自主移动机器人控制系统研究[J].机械与电子, 2004(8): 48-50.
    [113]蔡自兴,周翔等.基于功能/行为集成的自主式移动机器人进化控制体系结构[J].机器人, 2000(3): 169-175.
    [114]张毅.移动机器人技术及应用[M].北京:电子工业出版社, 2007.
    [115] Brook R A. A Robust Layered Control System for Mobile Robot[J]. IEEE J Robotics andAutomation, 1986, 2(1): 14-23.
    [116]覃征等编著.软件体系结构[M].西安:西安交通大学出版社,2002.
    [117] Dix A., Finlay J., Abowd G, Beale R. Human-Computer Interaction [M]. Prentice Hall, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700