聚烯烃修饰纳米微粒的设计、制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过聚合物共价/非共价修饰方法,分别将端芘基聚乙烯、超支化聚乙烯、线型短支链聚乙烯和聚苯乙烯四种聚烯烃接枝于多壁碳纳米管(MWNT)、有序介孔氧化硅(OMS)和纳米氧化钛(nm TiO_2)的表面,并对各类结构进行表征,研究它们在不同体系中的分散性能,以促进它们的相关应用。
     利用端芘基聚乙烯(PPE)对MWNT表面进行非共价改性,以提高MWNT的溶剂分散性能。首先将芘基引入后过渡金属催化剂Pd-Diimine的结构中,利用其在5℃、400 psi下催化乙烯“活性”聚合,制得窄分布并具有不同分子量PPE样品,然后利用制得的PPE分别在THF、庚烷和甲苯中通过超声对MWNT表面进行改性。运用GPC、GPC-LLS、~1HNMR、UV-Vis、荧光光谱、TGA、FTIR、TEM、WAXRD等对PPE的结构、体系内的非共价相互作用、MWNT的溶剂分散性能分别进行了表征,并建立了相关模型,分别就聚乙烯端基结构、分子量大小、溶剂类型及聚乙烯浓度的影响进行了讨论。结果表明:芘基已被引入聚乙烯链的一侧末端,所得PPE分子量大小可控且分布较窄(MWD:1.01-1.16),同时含有较高的短支链密度(86-90/1000 C);通过非共价相互作用,部分PPE已非共价接枝于MWNT表面,在THF中,同时存在π-π堆叠和CH-π作用,在庚烷中,主要为π-π堆叠作用,在甲苯中,两种作用均很微弱;经PPE改性后,MWNT在THF和庚烷中可实现单根稳定分散,其最大分散浓度分别可达812.9mg/L和230.8mg/L。
     利用超支化聚乙烯(HBPE)对MWNT表面进行非共价改性,以进一步提高MWNT的溶剂分散性能。首先利用催化剂Pd-Diimine的“链移走”机理,在35℃、1 atm(≈15 psi)下催化乙烯聚合制得HBPE样品,然后用其分别在THF、氯仿、庚烷和甲苯中通过超声对MWNT表面进行改性。运用TEM、HRTEM、~1HNMR、TGA、FTIR、UV-Vis、WAXRD等对MWNT的分散性能及体系内的非共价相互作用进行表征,并建立了相关模型,分别就聚乙烯链形态、聚乙烯浓度及溶剂类型的影响进行了讨论。结果表明:在THF、氯仿中,HBPE与MWNT间存在较强的非共价非特异性CH-π作用;借助上述作用,可将HBPE稳固地非共价接枝于MWNT表面,改性后的MWNT可在上述溶剂中实现高浓度稳定分散,其最大分散浓度分别达919mg/L(在THF中)和1235mg/L(在氯仿中);在上述溶剂中,HBPE对MWNT的分散促进作用明显优于线型短支链聚乙烯(LBPE);溶剂的类型对MWNT的分散性能有显著的影响,经HBPE改性后MWNT的分散性能满足顺序:氯仿>THF>甲苯或庚烷(在后两溶剂中,MWNT的分散浓度仅接近于20mg/L)。
     通过表面引发配位聚合机理,将线型短支链聚乙烯(LBPE)共价接枝于有序介孔氧化硅SBA15和MSUF的孔道表面,获得了有序多孔型有机/无机杂化材料PE-SBA15/PE-MSUF。首先利用偶联剂3-丙烯酰基氧基丙基三氯硅烷对SBA15/MSUF进行表面预处理以引入丙烯酰基,随后通过该基团与乙腈基Pd-Diimine催化剂进行成环反应,制得负载型催化剂Pd-SBA15/Pd-MSUF,进一步在5℃、400psi下催化乙烯使其在孔道表面引发聚合。通过氮气吸附测试、TGA、FTIR、DSC、ICP-MS等对改性前后SBA15/MSUF的结构进行了表征,同时对上述聚合的可控程度进行了考察。研究表明:借助于偶联剂,可将催化剂均匀地共价负载于SBA15/MSUF的孔道表面,所得负载型催化剂Pd-SBA15/Pd-MSUF仍保留有序多孔结构,两者的催化剂层厚分别为0.66nm和0.95nm;通过Pd-SBA15/Pd-MSUF催化乙烯聚合,可将LBPE均匀地共价接枝于孔道表面,通过对聚合时间的控制,可调节孔道表面聚乙烯层的厚度,使复合粉末PE-SBA15/PE-MSUF仍具有多孔结构;对于MSUF体系,当聚合时间达20min,所得复合粉末PE20min-MSUF仍具有一定的孔容和比表面积(分别为0.57cm~3/g和141.54m~2/g)。
     为提高nm ZiO_2在聚丙烯(PP)中的分散性能及抗紫外老化作用,利用聚苯乙烯(PS)对其表面进行共价接枝改性,并运用Friedel-Crafts(FC)烷基化反应原理对PP/(PS接枝nm TiO_2,PS-g-TiO_2)体系进行原位增容。在硅烷偶联剂改性的基础上,首先通过分散聚合工艺制得PS包覆的nm TiO_2微球(PS@TiO_2),通过纯化进一步制得PS-g-TiO_2,随后通过熔融复合工艺分别将PS@TiO_2、PS-g-TiO_2及不同浓度的FC催化剂(AlCl_3/St)加入PP中,制得一系列PP纳米复合材料。运用TGA、FTIR、XPS、TEM、SEM、DSC及紫外加速老化测试等手段对改性后nm TiO_2的结构、nm ZiO_2的分散性能及其抗紫外老化作用进行了表征。结果表明:部分PS已共价接枝于nm TiO_2表面;通过FC催化剂(AlCl_3/St)原位增容,可进一步提高PS-g-TiO_2在PP中的分散性能,当AlCl_3浓度达1.0wt%,nm TiO_2粒子可在PP基体中实现纳米级均匀分散,同时体系的界面相容性有显著提高;通过PS接枝改性并结合FC原位增容技术,可显著提高nm TiO_2在PP中的抗紫外老化作用,同时可赋予PP纳米复合材料以更佳的耐热性能。
Four different types of polyolefins,including pyrene-end-capped polyethylene (PPE),hyperbranched polyethylene(HBPE),linear short-branched polyethylene(LBPE) and polystyrene(PS),were covalently/noncovalently grafted onto the surface of multi-walled carbon nanotubes(MWNT),organized mesoporous silica(OMS),and nano-sized titanium dioxide(nm TiO_2),respectively,to promote their applications as functional nanomaterials.The structure of the modified nanoparticles was characterized and their dispersibility in different system was investigated.
     The surface of MWNT was noncovalently modified with a range of narrow-distributed pyrene-end-capped polyethylenes(PPE)to improve its dispersibility in solvent.A pyrene group was first introduced into an acetonitrile Pd-Diimine complex, a typical late-transition-metal catalyst used for olefin coordination polymerization,and then a series of PPE samples were synthesized via "living" ethylene polymerization with the obtained pyrene-functionalized Pd-Diimine as a catalyst at a temperature of 5℃and an ethylene pressure of 400 psi.The functionalization of MWNT with PPE was subsequently carried out by ultrasonication in tetrahydrofuran(THF),heptane,and toluene,respectively.The structure of the prepared PPE samples,the interactions between PPE and MWNT,and the dispersibility of MWNT in solvent were characterized through GPC、GPC-LLS、~1HNMR、UV-Vis、Fluorescent spectra、TGA、FT-IR、TEM、WAXRD etc.The influence of various factors on dispersibility of MWNT was also discussed including end-group type of polyethylene,molecular weight of PPE, and solvent used etc.It was confirmed that each polyethylene chain is functionalized with an end-capped pyrene group and the pyrene-end-capped polyethylenes have controllable average molecular weight with narrow moleculhear weight distribution (MWD)of 1.01-1.16 and higher short-branch density of 86-90/1000 C.The stronger noncovalent interaction between PPE and MWNT was confirmed,which was attributed to bothπ-πstacking and CH-πinteraction in THF,whereas mainlyπ-πstacking in heptane.A few PPE chains had been noncovalently grafted to the surface of MWNT via above noncovalent interactions between PPE and MWNT,which led to a higher dispersibility of MWNT both in THF(up to 812.9 mg/L)and in heptane(up to 230.8 mg/L).
     To further enhance its dispersibility in solvent,the surface of MWNT was noncovalently functionalized using HBPE,which could be conveniently synthesized from commercially abundant ethylene via one-step chain walking polymerization.The HBPE was first synthesized by ethylene polymerization with the acetonitrile Pd-Diimine complex as a catalyst at a temperature of 35℃and an ethylene pressure of 1 atm(≈15 psi),and then the surface modification of MWNT with HBPE was conducted by ultrasonication in THF,chloroform,heptane,and toluene,respectively.The dispersibility of MWNT in solvent and the interactions between HBPE and MWNT were characterized through a series of methods,including TEM、HRTEM、~1HNMR、TGA、FT-IR、UV-Vis、WAXRD etc.The influence of solvent type,HBPE chain topology,and mass ratio of HBPE to MWNT on MWNT dispersibility was discussed via a theoretical model.It was found that the HBPE could be steadily grafted to the surface of MWNT both in THF and chloroform by means of the stronger noncovalent nonspecific CH-πinteraction between HBPE and MWNT.The HBPE was found to effectively exfoliate MWNT bundles to form stable MWNT dispersions both in THF and chloroform at surprisingly high concentrations(up to 919 mg/L in THF and 1235 mg/L in chloroform).It was also found that solvent type had a notable influence on MWNT dispersibility,which increases according to the following sequence:toluene or heptane<THF<chloroform.
     To obtain inorganic/organic hybrid mesoporous materials,the surface of two kinds of organized mesoporous silica,SBA15 and MSUF,was functionalized with a linear short-branched polyethylene(LBPE) via surface-initiated "living" coordination polymerization technique.First the surface of SBA15/MSUF silica was treated with 3-acryloxypropyltrichlorosilane,as a coupling agent,to introduce acryloyl group,and then the acetonitrile Pd-Diimine catalyst was covalently immobilized onto pore surface of SBA15/MSUF silica by reacting with the surface-bonded acryloyl group.The obtained SBA15/MSUF silica-supported Pd-Diimine catalyst(Pd-SBA15/Pd-MSUF) was subsequently used to catalyze ethylene polymerization at a temperature of 5℃and an ethylene pressure of 400 psi to covalently graft LBPE chains from the pore surface of SBA15/MSUF silica.The structure of SBA15/MSUF silica,before and after modification,was characterized using TGA,FTIR,ICP-MS,nitrogen adsorption-desorption testing,and DSC,respectively.The controllability of above polymerization was also evaluated.It was found that the acetonitrile Pd-Diimine catalyst could be homogeneously and covalently immobilized on the pore surface of SBA15/MSUF silica by using the coupling agent,and the resulting catalyst-functionalized SBA15/MSUF silica(Pd-SBA15/Pd-MSUF)still retained organized porous structure,in which the thickness of catalyst layer was 0.66 nm and 0.95 nm for Pd-SBA15 and Pd-MSUF silica,respectively.The LBPE chains can be covalently bonded to the pore surface of SBA15/MSUF silica through the ethylene polymerization catalyzed by Pd-SBA15/ Pd-MSUF.The thickness of homogeneous LBPE layer could be adjusted by controlling polymerization time to give the LBPE-functionalized SBA15/MSUF silica(PE-SBA15/PE-MSUF)with accessible porosity.It was found that PE20 min-MSUF silica,a sample taken at 20 min during ethylene polymerization catalyzed by the Pd-MSUF silica,exhibited typical mesoporous structure with a pore volume of 0.57 cm~3/g and a BET of 141.54 m~2/g.
     To improve the dispersibility of nm TiO_2 in polypropylene(PP),polystyrene was grafted to the surface of nm TiO_2 and the in situ compatibilization between the resulting polystyrene-grafted nm TiO_2(PS-g-TiO_2)and polypropylene(PP)was carried out by means of Friedel-Crafts(FC)alkylation reaction.A dispersion polymerization of styrene (St)was first conducted in the presence of nm TiO_2 particles modified with a silane coupling agent,3-acryloxypropyltrichlorosilane(MPS),to prepare the PS-encapsulated nm TiO_2 microspheres(PS@TiO_2),and then the PS-grafted nm TiO_2 was obtained by purifying the resulting PS@TiO_2 microspheres with toluene to remover free PS.The prepared PS@TiO_2 microspheres and PS-g-TiO_2 particles were subsequently added into PP,respectively,along with FC catalyst(AlCl_3/St)of different concentration by melting blending process to give a series of PP nanocomposites.The structure of modified nm TiO_2 was characterized through TGA、FTIR、XPS、TEM、EA,and its dispersibility in PP matrix,and the resistance to UV aging of corresponding PP nanocomposites were compared using TEM,SEM,TGA,DSC,and UV artificially accelerating aging testing, etc.It was revealed that a few PS chains were covalently linked to the surface of nm TiO_2 particles.For the PP/PS@TiO_2 system,nm TiO_2 particles were found to exist selectively within PS phase of 100-120 nm due to the poor compatibilization between PP matrix and grafted PS.The dispersibility of PS-g-TiO_2 particles in PP could be further improved by using FC catalyst.For the PP/PS-g-TiO_2/AlCl_3/St system,when AlCl_3 concentration reached 1.0 wt%,the PS-g-TiO_2 particles were dispersed homogeneously within the whole PP matrix in nanoscale,with a considerably enhanced interfacial adhesion.Surface modification of nm TiO_2 by grafting with PS,as well as in situ compatibilization using FC catalyst,can impart the corresponding PP nanocomposite with highly enhanced resistance to UV aging and better thermal stability.
引文
[1]Gleiter H.On the structure of grain boundaries in metals[J],material science and engineering.1982,52(2):91-131.
    [2]徐祖顺,易昌凤.聚合物纳米粒子[M].第一版.北京:化学工业出版社,2006.
    [3]李群.纳米材料的制备与应用技术[M].第一版.北京:化学工业出版社,2008.
    [4]Prashant Singh,Kamlesh Kumaric,Anju Katyal,Rashmi Kalrad R C.Synthesis and characterization of silver and gold nanoparticles in ionic liquid[J].Spectrochimica Acta Part A.2009,73(5):218-220.
    [5]R.R.Zaky,M.M.Hessien,A.A.El-midany,M.H.Khedr,E.A.Abdel-Aal,K A El-Barawy.Preparation of silica nanoparticles from semi-burned rice straw ash[J].Powder Technology.2008,185(1):31-35.
    [6]Daniel Amara,Israel Felnerb,Israel Nowik and Shlomo Margel.Synthesis and characterization of Fe and Fe_3O_4 nanoparticles by thermal decomposition of triiron dodecacarbonyl[J].Colloids and Surfaces A:Physicochem.Eng.Aspects.2009,339(1):106-110.
    [7]R.regmi,R.tackett G L.Suppression of low-temperature magnetic states in Mn_3O_4nanoparticles[J].Journal of Magnetism and Magnetic Materials.2009,321:2296-2299.
    [8]Hyun-jeong Eom J C.Oxidative stress of CeO_2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell,Beas-2B[J].Materials Letters.2009,187:77-83.
    [9]Xin Li,Shiyan Chen,Weili Hu,Shuaike Shi,Wei Shen,Xiang Zhang H W.In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers[J].Carbohydrate Polymers.2009,76:509-512.
    [10]Zhang X,Wang G.Luminescent CuS nanotubes as silver ion probes[J].Spectrochimica Acta Part A.2009,72:1071-1075.
    [11]Tzong-ming Wu,Hsiang-ling Chang,Yen-Wen Lin.Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity[J].Composites Science and Technology.2009,69:639-644.
    [12]Ming Ge,Changsheng Guo,Lei Li,Baoquan Zhang,Yinchang Feng,Yuqiu Wang.Preparation of CeO novel sponge-like rods by emulsion liquid membrane system and its catalytic oxidation property[J].Materials Letters.2009,63:1269-1271.
    [13]Yuxiang Li,Min Guo,Mei Zhang,Xidong Wang.Hydrothermal synthesis and characterization of TiO_2 nanorod arrays on glass substrates[J].Materials Research Bulletin.2009,44:1232-1237.
    [14]Wei Zheng,Zhenyu Li,Hongnan Zhang,Wei Wang,Yu Wang,Ce Wang.Electrospinning route for a-Fe_2O_3 ceramic nanofibers and their gas sensing properties[J].Materials Research Bulletin.2009,44:1432-1436.
    [15]Li Wang,Chuanxiao Peng,Jianhong Gong.Molecular dynamics study of the mechanics for Ni single-wall nanowires[J].European Journal of Mechanics A/Solids.2009,28:877-881.
    [16]Meng Zhang,Guojin Yan,Yonggai Hou,Chunhua Wang.Mesoscale assembly of NiO nanosheets into spheres[J].Journal of Solid State Chemistry.2009,182:1206-1210.
    [17]Jayyu Kim,Youn-geun Kim,JohnL.Stickney.Cu nanofilm formation by electrochemical atomic layer deposition(ALD) in the presence of chloride ions[J].Journal of Electro analytical Chemistry.2008,621:205-213.
    [18]Wei Yan,Chenguo Hu,Yi Xi,Buyong Wan,Xiaoshan He,Michao Zhang,Yan Zhang.ZnSe nanorods prepared in hydroxide-melts and their application as a humidity sensor[J].Materials Research Bulletin.2009,44:1205-1208.
    [19]Sheng Wang,David F.P.Pile,Cheng Sun and Xiang Zhang.Nanopin Plasmonic Resonator Array and Its Optical Properties[J].nano letters.2007,7(4):1076-1080.
    [20]Jun Du,Piyi Du,Peng Hao,Yanfei Huang,Zhaodi Ren,Gaorong Han,Wenjian Weng and Gaoling Zhao.Growth Mechanism of TiSi Nanopins on Ti_5Si_3 by Atmospheric Pressure Chemical Vapor Deposition[J].J.Phys.Chem.C.2007,111(29):10814-10817.
    [21]Benoit Coasne,Anne Galarneau,Francesco Di Renzo and Roland J.M.Pellenq.Gas Adsorption in Mesoporous Micelle-Templated Silicas:MCM-41,MCM-48,and SBA-15[J].Langmuir.2006,22:11097-11105.
    [22]Henriette Groger,Fabian Gyger,Peter Leidinger,Christian Zurmuhl and Claus Feldmann.Microemulsion Approach to Nanocontainers and Its Variability in Composition and Filling[J].Adv.Mater.2009,21:1586-1590.
    [23]Liangbao Yang,Bai Sun,Fanli Meng,Meiyun Zhang,Xing Chen,Minqiang Li,Jinhuai Liu.One-step synthesis of UV-induced Pt nanotrees on the surface of DNA network[J].Materials Research Bulletin.2009,44:1270-1274.
    [24]Lijun Hong,Qing Li,Hua Lin,Yuan Li.Synthesis-of flower-like silver nanoarchitectures at room temperature[J].Materials Research Bulletin.2009,44:1201-1204.
    [25]Eryun Yan,Yin Ding,Changjing Chen,Rutian Li and Xiqun Jiang.Polymer/silica hybrid hollow nanospheres with pH-sensitive drug release in physiological and intracellular environmentsw[J].Chem.Commun.2009:2718-2720.
    [26]Qiuyu Li,Enbo Wang,Siheng Li,Chunlei Wang,Chungui Tian,Guoying Sun,Jianmin Gu,Rui Xu.Template-free polyoxometalate-assisted synthesis for ZnO hollow spheres[J].Journal of Solid State Chemistry.2009,182:1149-1155.
    [27]Huang Lan,Zhang Yu,Guo ZhiRui & Gu Ning.Facile synthesis of gold nanoribbons by L-cysteine at room temperature[J].Chinese Science Bulletin.2009,54(9):1626-1629.
    [28]Xi Wang,Hongbing Fu,Aidong Peng,Tianyou Zhai,Ying Ma,Fangli Yuan and Jiannian Yao.One-Pot Solution Synthesis of Cubic Cobalt Nanoskeletons[J].Adv.Mater.2009,21:1636-1640.
    [29]嵇天浩,孙家跃,杜海燕.分散型无机纳米粒子-制备、组装和应用[M].第一版.北京:科学出版社,2009.
    [30]许并社等.纳米材料及应用技术[M].第一版.北京:化学工业出版社,2004.
    [31]陈敬中,刘剑洪.纳米材料科学导论[M].第一版.北京:高等教育出版社,2006.
    [32]陈翌庆,石瑛.纳米材料科学基础[M].第一版.长沙:中南大学出版社,2009.
    [33]盖国胜.超微粉体技术[M].第一版.北京:化学工业出版社,2004.
    [34]刘吉平,廖莉玲.无机纳米材料[M].第一版.北京:科学出版社,2003.
    [35]Stephane Hamelet,Pierre Gibot,Montse Casas-cabanas,Dominique Bonnin,Clare P.Grey,Jordi Cabana et al.The effects of moderate thermal treatments under air on LiFePO_4-based nano powders[J].Journal of Materials Chemistry.2009,19:3979-3991.
    [36]Sudeshna Sawoo,Dipankar Srimani,Piyali Dutta,Rima Lahiri,Amitabha Sarkar.Size controlled synthesis of Pd nanoparticles in water and their catalytic application in C-C coupling reactions[J].Tetrahedron.2009,65:4367-4374.
    [37]Yang-chuang Chang,Dong-Hwang Chen.Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst[J].Journal of Hazardous Materials.2009,165:664-669.
    [38]Nguyen Duc Hoa,Nguyen Vanquy,Hyejin Song,Youngjin Kang,Yousuk Cho,Dojin Kim.Tin oxide nanotube structures synthesized on a template of single-walled carbon nanotubes[J].Journal of Crystal Growth.2009,311:657-661.
    [39]Kuyyadi P.Biju.Mahaveer K.Jain.Sol-gel derived TiO_2:ZrO_2 multilayer thin films for humidity sensing application[J].Sensors and Actuators.2008,128:407-413.
    [40]Byoungho Lee.,Sookyoung Roh,Junghyun Park.Current status of micro-and nano-structured optical fiber sensors[J].Optical Fiber Technology.2009,15:209-221.
    [41]Guoqing Chen.,Kaifeng Zhang,Guofeng Wang,Wenbo Han.The superplastic deep drawing of a fine-grained alumina-zirconia ceramic composite and its cavitation behavior[J].Ceramics International.2004,30:2157-2162.
    [42]Masashi Yoshimura,Tatsuki Ohji,Mutsuo Sando Koichi Niihara.Superplasticity of ZrO_2 and ZrO_2/Al_2O_3 composite consisting of nano-sized grains[J].Mat Res Innovat.1998,2:83-86.
    [43]Jian-Lin Shi.High-Temperature Structural Ceramics:Recent Progress in China[J].Adv.Mater.1999,11:1103-1109.
    [44]Sangeeta Thakur,S.c.katyal,M,Singh.Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique[J].Journal of Magnetism and Magnetic Materials.2009,321:1-7.
    [45]Chiung-fen Changa,Yi-lingwu,Sheng-Shu Hou.Preparation and characterization of superpara magnetic nanocomposites of alumino silicate/silica/magnetite[J].Colloids and Surfaces A:Physicochem.Eng.Aspects.2009,336:159-166.
    [46]翟庆洲.纳米技术[M].第一版.北京:兵器工业出版社,2006.
    [47]M.Sabzia,S.m.Mirabedini,and M.Atai.Surface modification of TiO_2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating[J].Progress in Organic Coatings.2009,65(2):222-228.
    [48]Ying Xiong,Guangshun Chen,Shaoyun Guo.The preparation of core-shell CaCO_3 particles and its effect on mechanical property of PVC composites[J].Journal of Applied Polymer Science.2006,102(2):1084-1091.
    [49]Xuejun Li,Zhiyong Xiao,Anhuai Lu,Lijuan wang,Xihui Ouyang,Junhong Ma,Yuanyuan Li.Preparation and characteristics of NiO-coated nano-fibriform silica[J].Colloids and Surfaces A:Physicochem.Eng.Aspects.2008,324:171-175.
    [50]Libang Feng,Lin He and Yulong Wang.Grafting poly(methyl methacrylate) onto silica nanoparticle surfaces via a facile esterification reaction[J].Materials Chemistry and Physics.2009,116(1):158-163.
    [51]M.Atai,L.Solhi,A.Nodehi,S.Mirabedini,S.Kasraei,K.Akbari,S.Babanzadeh.PMMA-grafted nanoclay as novel filler for dental adhesives[J].Dental Materials.2009,25(3):339-347.
    [52]C.A.avila-Ortaa,V.J.Cruz-Delgadoa,M.G.Neira-Velazqueza,E.Hernandez-Hernandeza,M.G.Mendez-Padillaa and F.J.Medellin-Rodriguez.Surface modification of carbon nanotubes with ethylene glycol plasma[J].Carbon.2009,47(8):1916-1921.
    [53]Qi Yang,and Wenbin Hu.Preparation of alumina/carbon nanotubes composites by chemical precipitation[J].Ceramics International.2009,35(3):1305-1310.
    [54]H.L.Luo,J.Sheng and Y.Z.Wan.Preparation and characterization of TiO_2/polystyrene core-hell nanospheres via microwave-assisted emulsion polymerization[J].Materials Letters.2008,62:37-40.
    [55]Landfester K.The Generation of Nanoparticles in Miniemulsions[J].Adv.Mater.2001,13(10):765-768.
    [56]N.chthold,F.Tiarks,M.Willert,K.Landfester,M.Antonietti.A.Miniemulsion polymerization:applications and new materials[J].Macromol.Symp.2000,151:549-555.
    [57]Franca Tiarks,Katharina Landfester,Markus Antonietti.Encapsulation of Carbon Black by Miniemulsion Polymerization[J].Macromol.Chem.Phys.2001,202:51-60.
    [58]Wormuth K.Superparamagnetic Latex via Inverse Emulsion Polymerization[J].Journal of Colloid and Interface Science.2001,241:366-377.
    [59]Gang Xie,Qiuyu Zhang,Zhengping Luo,Min Wu,Tiehu Li.Preparation and Characterization of Monodisperse Magnetic Poly(styrene butyl acrylate methacrylic acid) Microspheres in the Presence of a Polar Solvent[J].Journal of Applied Polymer Science.2003,87:1733-1738.
    [60]Z.z.Xu,C.c.Wang,W.l.Yang,Y.h.Deng,S.K.Fu.Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization[J].Journal of Magnetism and Magnetic Materials.2004,277:136-143.
    [61]Chia-lung Lin,Wen-yen Chiu,Trong-Ming Don.Superparamagnetic Thermoresponsive Composite Latex via W/O Miniemulsion Polymerization[J].Journal of Applied Polymer Science.2006,100:3987-3996.
    [62]Zhang Kai,Fu Qiang,Fan Jinghui,Zhou Dehui.Preparation of Ag/PS composite particles by dispersion polymerization under ultrasonic irradiation[J].Materials Letters.2005,59:3682-3686.
    [63]Jian Xu,Xiaolin Li,Junfeng Liu,Xun Wang,Qing Peng,Yadong Li.Solution Route to Inorganic Nanobelt-Conducting Organic Polymer Core-Shell Nanocomposites[J].Journal of Polymer Science:Part A:Polymer Chemistry.2005,43:2892-2900.
    [64]Li-ping Yang,Cai-Yuan Pan.A Non-Covalent Method to Functionalize Multi-Walled Carbon Nanotubes Using Six-Armed Star Poly(L-lactic acid) with a Triphenylene Core[J].Macromol.Chem.Phys.2008,209:783-793.
    [65]Jea Uk Lee,June Huh,Keon Hyeong Kim,Cheolmin Park,Won Ho Jo.Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly (ethylene glycol)[J].Carbon.2007,45:1051-1057.
    [66]Fuyong Cheng and Alex Adronov.Noncovalent Functionalization and Solubilization of Carbon Nanotubes by Using a Conjugated Zn-Porphyrin Polymer[J].Chem.Eur.J.2006,12:5053-5059.
    [67]Greg J.Bahun,Clair Wang,Alex Adronov.Solubilizing Single-Walled Carbon Nanotubes with Pyrene-Functionalized Block Copolymers[J].Journal of Polymer Science:Part A:Polymer Chemistry.2006,44:1941-1951.
    [68]Akiharu Satake,Yoshiyuki Miyajima,and Yoshiaki Kobuke.Porphyrin-Carbon Nanotube Composites Formed by Noncovalent Polymer Wrapping[J].Chem.Mater.2005,17:716-724.
    [69]Seamus A Curran,Pulickel M Ajayan,Werner J.Blau,David L.Carroll,Johnathan N.Coleman,Alan B.Dalton et al.A Composite from Poly(m-phenylenevinylene co- 2,5-dioctoxy -p-phenylenevinylene) and Carbon Nanotubes:A Novel Material for Molecular Optoelectronics[J].Adv.Mater.1998,10(14):1091-1093.
    [70]Jian Chen,Haiying Liu,Wayne A.Weimer,Mathew D.Halls,David H.Waldeck,and Gilbert C. Walker. Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers[J]. J. Am. Chem. Soc. 2002, 124: 9034-9035.
    [71]Alexander Star, Yi Liu, Kevin Grant, Ludek Ridvan, J. Fraser Stoddart, David W. Steuerman, Michael R. Diehl, Akram Boukai, and James R. Heath. Noncovalent Side-Wall Functionalization of Single-Walled Carbon Nanotubes[J]. Macromolecules. 2003, 36: 553-560.
    [72]Jonathan N. Coleman, Alan B. Dalton, Seamus Curran, Angel Rubio, Andrew P. Davey, Anna Drury et al. Phase Separation of Carbon Nanotubes and Turbostratic Graphite Using a Functional Organic Polymer[J]. Adv. Mater. 2000, 12(3): 213-216.
    [73]Alexander Star, J. Fraser Stoddart, David Steuerman, Mike Diehl, Akram Boukai, Eric W. Wong et al. Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes[J]. Angew. Chem. Int. Ed. 2001, 40(9): 1721-1725.
    [74] Xudong Lou, Raphael Daussin, Stehane Cuenot, Anne-Sophie Duwez, Christophe Pagnoulle, Christophe Detrembleur et al.Synthesis of Pyrene-Containing Polymers and Noncovalent Sidewall Functionalization of Multiwalled Carbon NanotubesfJ]. Chem. Mater. 2004, 16: 4005-4011.
    [75]Christoph G. Salzmann, Gordon K.-C. Lee, Michael A. H. Ward, Bryan T. T. Chu and Malcolm L. H. Green. Highly hydrophilic and stable polypeptide/single-wall carbon nanotube conjugates[J]. Journal of Materials Chemistry. 2008, 18: 1977-1983.
    [76]Dan Wang, Wen-Xi Ji, Zi-Chen Li, and Liwei Chen. A Biomimetic " Polysoap" for Single-Walled Carbon Nanotube Dispersion[J]. J. Am. Chem. Soc. 2006, 128: 6556-6557.
    [77]Nozomi Nakayama-Ratchford, Sarunya Bangsaruntip, Xiaoming Sun, Kevin Welsher, and Hongjie Dai. Noncovalent Functionalization of Carbon Nanotubes by Fluorescein- Polyethylene Glycol: Supramolecular Conjugates with pH-Dependent Absorbance and Fluorescence[J]. J. Am. Chem. Soc. 2007, 129: 2448-2449.
    [78]Chao-Hua Xue, Min-Min Shi, Quan-Xiang Yan, Zhen Shao, YanGao, GangWu, Xiao-Bin Zhang,Yang Yang, Hong-Zheng Chen and MangWang. Preparation of water-soluble multi-walled carbon nanotubes by polymer dispersant assisted exfoliation[J]. Nanotechnology. 2008, 19: 1-7.
    [79]Kenji Saito, Vincent Troiani, Hongjin Qiu, Nathalie Solladie, Takao Sakata, Hirotaro Mori, Mitsuo Ohama, and Shunichi Fukuzumi. Nondestructive Formation of Supramolecular Nanohybrids of Single-Walled Carbon Nanotubes with Flexible Porphyrinic Polypeptides[J]. J. Phys. Chem. C. 2007, 111: 1194-1199.
    
    [80]Durairaj Baskaran, Jimmy W. Mays, and Matthew S. Bratcher. Noncovalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon NanotubesfJ]. Chem. Mater. 2005, 17: 3389-3397.
    [81]Michael J. O'Connell, Sergei M. Bachilo, Chad B. Huffman, Valerie C. Moore, Michael S. Strano, Erik H. Haroz et al. Band Gap Fluorescence from Individual Single-Walled Carbon NanotubesfJ]. Science. 2002, 297(5581): 593-596.
    [82]Valerie C. Moore, Michael S. Strano, Erik H. Haroz, Robert H. Hauge, and Richard E. Smalley. Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants[J]. Nano Letters. 2003, 3(10): 1379-1382.
    [83]M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson and A. G. Yodh. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water[J]. Nano Letters. 2003, 3(2): 269-273.
    [84]Aihua Liu, ItaruHonma, Masaki Ichihara and Haoshen Zhou. Poly(acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: definitive spectroscopic properties[J]. Nanotechnology. 2006, 17: 2845-2849.
    [85]Michael J. O'Connell, Peter Boul, Lars M. Ericson, Chad Huffman, Yuhuang Wang, Erik Haroz et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping[J]. Chemical physics letters. 2001, 342: 265-271.
    [86]Rajdip Bandyopadhyaya, Einat Nativ-Roth, Oren Regev, and Rachel Yerushalmi-Rozen. Stabilization of Individual Carbon Nanotubes in Aqueous Solutions[J]. Nano Lett. 2002, 2(1): 25-28.
    [87]Alexander Star, David W. Steuerman, James R. Heath, and J. Fraser Stoddart. Starched Carbon Nanotubes[J]. Angew. Chem. Int. Ed. 2002, 41(14): 2508-2512.
    [88]Vladimir A. Sinani, Muhammed K. Gheith, Alexander A. Yaroslavov, Anna A. Rakhnyanskaya, Kai Sun, Arif A. Mamedov, James P. Wicksted, and Nicholas A. Kotov. Aqueous Dispersions of Single-wall and Multiwall Carbon Nanotubes with Designed Amphiphilic Polycations[J]. J. Am. Chem. Soc. 2005, 127: 3463-3472.
    [89]Youngjong Kang and T. Andrew Taton. Micelle-Encapsulated Carbon Nanotubes: A Route to Nanotube Composites[J]. J. Am. Chem. Soc. 2003, 125: 5650-5651.
    [90]Rina Shvartzman-Cohen, Yael Levi-Kalisman, Einat Nativ-Roth, and Rachel Yerushalmi -Rozen. Generic Approach for Dispersing Single-Walled Carbon Nanotubes: The Strength of a Weak Interaction[J]. Langmuir. 2004, 20: 6085-6088.
    [91]Tamres M J. Aromatic compounds as donor molecules in hydrogen bonding[J]. J. Am. Chem. Soc. 1952, 74: 3375-3378.
    [92]Klopman G. Chemical Reactivity and the Concept of Charge- and Frontier-Controlled Reactions[J]. J. Am. Chem. Soc. 1968, 90(2): 223-234.
    [93]Durairaj Baskaran, Jimmy W. Mays, and Matthew S. Bratcher. Noncovalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon Nanotubes[J]. Chem. Mater. 2005, 17:3389-3397.
    [94]Nishio, M., Umezawa, Y., Hirota, M. And Takeuchi Y. The CH/ π interaction: Significance in molecular recognition.[J]. Tetrahedron. 1995, 51: 8665-8701.
    [95]Umezawa, Y., Tsuboyama, S., Takahashi, H., Uzawa, J. and Nishio, M. CH/π interaction in the conformation of peptides. A database study[J]. Bioorg. Med. Chem. 1999, 7: 2021-2026.
    [96]Umezawa, Y. And Nishio M. CH/ π interactions in the crystal structure of TATA-box binding protein/DNA complexes[J]. Bioorg. Med. Chem. 2000, 8: 2643-2650.
    [97]Muraki M. The importance of CH/π p interactions to the function of carbohydrate binding proteins.[J]. Protein Pept. Lett. 2002, 9: 195-209.
    [98]Brian P. Grady, Francisco Pompeo, Robert L. Shambaugh, and Daniel E. Resasco. Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes. Resasco Nanotubes[J]. J. Phys. Chem. B. 2002, 106(23): 5852-5858.
    [99]Haggenmueller, R.; Gommans, H. H.; Rinzler, A. G.; Fischer, J. E.; Winey, K. I.. Aligned single-wall carbon nanotubes in composites by melt processing methods[J]. Chemical Physics Letters. 2000, 330: 219-225.
    [100]Milo S. P. Shaffer and Alan H. Windle. Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites[J]. Adv. Mater. 1999, 11(11): 937-941.
    [101]F. Ko, Y. Gogotsi, A. Ali, N. Naguib , H. Ye , G.L. Yang , C. Li , P. Willis. Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns[J].Advanced Materials.2003,15(14):1161-1165.
    [102]Hilmar Koerner,Gary Price,Nathan A.Pearce,Max Alexander & Richard A.Vaia.Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers[J].Nature Materials.2004,3:115-120.
    [103]Lingyu Li,Christopher Y.Li,and Chaoying Ni.Polymer Crystallization-Driven,Periodic Patterning on Carbon Nanotubes[J].J.Am.Chem.Soc.2006,128:1692-1699.
    [104]Norio Tsubokawa.Preparation and Properties of Polymer-grafted Carbon Nanotubes and Nanofibers[J].Polymer Journal.2005,37(9):637-655.
    [105]Wang J,Matyjaszew ski K.Controlled/"living" radical polymerization.Atom transfer radical polymerization in the presence of transition-metal complexes.[J].J Am.Chem.Soc.1995,117:5614-5615.
    [106]Wang J,Matyjaszew skiK.Controlled/"living" radical polymerization Halogen atom transfer radical polymerization promoted by a Cu(Ⅰ)/Cu(Ⅱ) redox process.[J].Macromolecules.1995,28:7901-7910.
    [107]Kato M,Kamigaito M,Sawamoto M et al..Polymerization of methylmethacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)[J].Macromolecules.1995,28:1721-1723.
    [108]Endo T,Kato M,Kam igaite M et al.Living radical polymerization of methylmethacrylate with ruthenium complex:formation of polymers with controlled molecular weights and very narraw distributions[J].Macromolecules.1996,29:1070-1072.
    [109]袁金颖,楼旭东,潘才元.原子转移自由基聚合反应及进展[J].化学通报.2000(3):10-16.
    [110]B.Fragneaud,K.Masenelli-Varlota,A.Gonzalez-Montielb,M.Terronesc,and J.Y.Cavaille.Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites[J].Composites Science and Technology.2008,68(15-16):3265-3271.
    [111]A.M.Shanmugharaj,J.H.Bae,Rati Ranjan Nayak,Sung Hun Ryu.Preparation of poly(styrene-co-acrylonitrile)-grafted multiwalled carbon nanotubes via surface-initiated atom transfer radical polymerization[J].Journal of Polymer Science Part A:Polymer Chemistry.2006,45(3):460-470.
    [112]Tarik Matrab,Jerme Chancolon,Martine Mayne L'hermite,Jean-No Rouzaud,Guy Deniau,Jean-Paul Boudou et al.Atom transfer radical polymerization(ATRP) initiated by aryl diazonium salts:a new route for surface modification of multiwalled carbon nanotubes by tethered polymer chains[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,287:217-221.
    [113]Hao Kong,Chao Gao,and Deyue Yan.Functionalization of Multiwalled Carbon Nanotubes by Atom Transfer Radical Polymerization and Defunctionalization of the Products[J].Macromolecules.2004,37(11):4022-4030.
    [114]Benjamin Fragneaud,Karine Masenelli-Varlot,Alfonso Gonzalez-Montiel,Mauricio Terrones,and Jean-Yves Cavaille.Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization[J].Chemical Physics Letters.2006,419:567-573.
    [115]Jin Hwan Choi,Saet Byeol Oh,Junho Chang,IKim,Chang-Sik Ha,Bog G.Kim,Jong Hun Han et al.Graft Polymerization of Styrene from Single-Walled Carbon Nanotube using Atom Transfer Radical Polymerization[J].Polymer Bulletin.2005,55(3):1436-2449.
    [116]Hao Kong,Chao Gao,and Deyue Yan.Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization[J]. J. Am. Chem. Soc. 2004, 126(2): 412-413.
    [117] Zhaoling Yao, Nadi Braidy, Gianluigi A. Botton, and Alex Adronov. Polymerization from the Surface of Single-Walled Carbon Nanotubes-Preparation and Characterization of Nanocomposites[J]. J. Am. Chem. Soc. 2003, 125(51): 16015-16024.
    [118]Guoyong Xu, Yusong Wang, Wenmin Pang, Wei-Tai Wu, Qingren Zhu, Pinghua Wang. Grafting of thermoresponsive polymer from the surface of functionalized multiwalled carbon nanotubes via atom transfer radical polymerization[J]. Chinese Science Bulletin. 2008, 53: 1861-9541.
    [119]Hao Kong, Ping Luo, Chao Gao, and Deyue Yan. Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly [J]. Polymer. 2005, 46(8): 2472-2485.
    [120] Qin S, Qin D, Ford W T, et al. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate[J]. J. Am. Chem. Soc. 2004, 126(1): 170-176.
    [121] Christos L. Chochos, Andreas A. Stefopoulos, Stephane Campidelli, Maurizio Prato, Vasilis G.Gregoriou, and Joannis K. Kallitsis. Immobilization of Oligoquinoline Chains on Single-Wall Carbon Nanotubes and Their Optical Behavior[J]. Macromolecules. 2008, 41(5): 1825-1830.
    [122]Yang Yang, Xuehai Yan, Yue Cui, Qiang He, Dongxiang Li, Anhe Wang et al. Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a graft-from method[J]. J. Mater. Chem. 2008, 18: 5731-5737.
    [123]Michal Kruk, Bruno Dufour,Ewa B. Celer,Tomasz Kowalewski,Mietek Jaroniec and Krzysztof Matyjaszewski. Grafting Monodisperse Polymer Chains from Concave Surfaces of Ordered Mesoporous Silicas[J]. Macromolecules. 2008, 41(22): 8584-8591.
    [124] Maud Save, Gwenalle Granvorka, Julien Bernard, Bernadette Charleux, Cedric Boissiere, David Grosso et al. Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate from Mesoporous Ordered Silica Particles[J]. Macromolecular Rapid Communications. 2006, 27(6): 393-398.
    [125] Fabrice Audouin, Helene Blas, Pamela Pasetto, Patricia Beaunier, Cedric Boissiere, Clement Sanchez et al. Structured Hybrid Nanoparticles via Surface-Initiated ATRP of Methyl Methacrylate from Ordered Mesoporous Silica[J]. Macromolecular Rapid Communications. 2008, 29(11): 914-921.
    [126] J. Moreno and D. C. Sherrington. Well-Defined Mesostructured Organic-Inorganic Hybrid Materials via Atom Transfer Radical Grafting of Oligomethacrylates onto SBA-15 Pore Surfaces[J]. Chem. Mater. 2008, 20(13): 4468-4474.
    [127]Congming Li, Jie Yang, Peiyuan Wang, Jian Liu and Qihua Yang. An efficient solid acid catalyst: Poly-p-styrenesulfonic acid supported on SBA-15 via surface-initiated ATRP[J]. Microporous and Mesoporous Materials. 2009, 123: 228-233.
    [128}Zhengyang Zhou, Shenmin Zhu and Di Zhang. Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release[J]. J. Mater. Chem. 2007, 17: 2428-2433.
    [129]Behnaz Hojjati, Paul A. Charpentier. Synthesis and kinetics of graft polymerization of methyl methacrylate from the RAFT coordinated surface of nano-TiO_2[J]. Journal of Polymer Science Part A:Polymer Chemistry.2008,46(12):3926-3937.
    [130]Graeme Moad,Ezio Rizzardo and San H.Thang.Living Radical Polymerization by the RAFT Process[J].Aus J Chem.2005,58:379-410.
    [131]Philipp Vana,Thomas P.Davis,Christopher Bamer-Kowollik.Kinetic Analysis of Reversible Addition Fragmentation Chain Transfer(RAFT) Polymerizations:Conditions for Inhibition,Retardation,and Optimum Living Polymerization[J].macromol theory simul.2002,11:823-835.
    [132]Xiaowei Pei,Jingcheng Hao,and Weimin Liu.Preparation and Characterization of Carbon Nanotubes-Polymer/Ag Hybrid Nanocomposites via Surface RAFT Polymerization[J].J.Phys.Chem.C.2007,111(7):2947-2952.
    [133]Guoyong Xu,Yusong Wang,Wenmin Pang,Wei-Tai Wu,Qingren Zhu,Pinghua Wang.Fabrication of multiwalled carbon nanotubes with polymer shells through surface RAFT polymerization[J].Polymer International.2007,56(7):847-852.
    [134]Chun-Yan Hong,Xin Lia and Cai-Yuan Pan.Grafting polymer nanoshell onto the exterior surface of mesoporous silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization[J].European Polymer Journal.2007,43(10):4114-4122.
    [135]Chun-Yan Hong,Xin Li and Cai-Yuan Pan.Smart Core-Shell Nanostructure with a Mesoporous Core and a Stimuli-Responsive Nanoshell Synthesized via Surface Reversible Addition-Fragmentation Chain Transfer Polymerization[J].J.Phys.Chem.C.2008,112(39):15320-15324.
    [136]Ye-Zi You,Chun-Yan Hong and Cai-Yuan Pan.Directly growing ionic polymers on multi-walled carbon nanotubes via surface RAFT polymerization[J].Nanotechnology.2006,17:2350-2354.
    [137]Michael K.George,Richard P.N.Veregin,Peter M.Kazmaier,and Gordon K.Hamer.Narrow Molecular Weight Resins by a Free-Radical Polymerization Process[J].Macromolecules.1993,26:2987-2988.
    [138]曹健,张可达.“活性”/可控自由基聚合新进展[J].化学研究与应用.2005,17(1):19-26.
    [139]Christa M Homenick,Umakanthan Sivasubramaniam,Alex Adronov.Effect of polymer chain length on the solubility of polystyrene grafted single-walled carbon nanotubes in tetrahydrofuran[J].Polymer International.2008,57(8):1007-1011.
    [140]Xiao-Dong Zhao,Xing-He Fan,Xiao-Fang Chen,Chun-Peng Chai,Qi-Feng Zhou.Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization[J].Journal of Polymer Science Part A:Polymer Chemistry.2006,44(15):4656-4667.
    [141]Maurizio Lenarda,Gavino Chessa,Elisa Moretti,Stefano Polizzi,Loretta Storaro and Aldo Talon.Toward the preparation of a nanocomposite material through surface initiated controlled/"living" radical polymerization of styrene inside the channels of MCM-41 silica[J].Journal of Materials Science.2006,41(19):6305-6312.
    [142]M.Dehonor,K.Masenelli-Varlot,A.Gonzalez-Montiel,C.Gauthier,J.Y.Cavaille,H.Terrones and M.Terrones.Nanotube brushes:polystyrene grafted covalentty on CNx nanotubes by nitroxide-mediated radical polymerization[J].Chem.Commun.2005:5349-5351.
    [143]Mickael Castro,Jianbo Lu,Stehane Bruzaud,Bijandra Kumar,Jean-Francis Feller.Carbon nanotubes/poly(e-caprolactone)composite vapour sensors[J].Carbon.2009,47:1930-1942.
    [144]Ling Xiang,Zhinan Zhang,Ping Yu,Jun Zhang,Lei Su,Takeo Ohsaka and Lanqun Mao.In Situ Cationic Ring-Opening Polymerization and Quaternization Reactions To Confine Ferricyanide onto Carbon Nanotubes:A General Approach to Development of Integrative Nanostructured Electrochemical Biosensors[J].Anal.Chem.2008,80(17):6587-6593.
    [145]Kuk Ro Yoon,Wan-Joong Kim,Insung S.Choi.Functionalization of Shortened Single-Walled Carbon Nanotubes with Poly(p-dioxanone) by Grafting-From Approach[J].Macromolecular Chemistry and Physics.2004,205(9):1218-1221.
    [146]Jin-Ho Moon,B.Ramaraj,Soo Min Lee,Kuk Ro Yoon.Direct grafting of-caprolactone on solid core/mesoporous shell silica spheres by surface-initiated ring-opening polymerization[J].Journal of Applied Polymer Science.2007,107(4):2689-2694.
    [147]Dongguang Yan and Guisheng Yang.A novel approach of in situ grafting polyamide 6 to the surface of multi-walled carbon nanotubes[J].Materials Letters.2009,63(2):298-300.
    [148]Hun-Sik Kima,Yun Seok Chaea,Byung Hyun Parka,Jin-San Yoona,Minsung Kanga and Hyoung-Joon Jin.Thermal and electrical properties of poly(l-lactide)-graft-multiwalled carbon nanotube composites[J].European Polymer Journal 2007,43(5):1729-1735.
    [149]Sohaib Akbar,Emmanuel Beyou,Philippe Cassagnau,Philippe Chaumont and Gholamali Farzi.Radical grafting of polyethylene onto MWCNTs:A model compound approach[J].Polymer.2009,50(12):2535-2543.
    [150]Rati Ranjan Nayak,Andikkadu M.Shanmugharaj,Sung Hun Ryu.A Novel Route for Polystyrene Grafted Single-Walled Carbon Nanotubes and their Characterization[J].Macromolecular Chemistry and Physics.2008,209(11):1137-1144.
    [151]Zhi Yang,Xiao-Hua Chen,Shang-Zhou Xia,Yu-Xing Pu,Hai-Yang Xu,Wen-Hua Li,Long-Shan Xu,Bin Yi and Wei-Ying Pan.Covalent attachment of poly(acrylic acid) onto multiwalled carbon nanotubes functionalized with formaldehyde via electrophilic substitution reaction[J].Journal of Materials Science.2007,42(22):9447-9452.
    [152]Dimitrios Tasis,Kostas Papagelis,Maurizio Prato,Ioannis Kallitsis,Constantinos Galiotis.Water-Soluble Carbon Nanotubes by Redox Radical Polymerization[J].Macromolecular Rapid Communications.2007,28(15):1553-1558.
    [153]Tian Shyng Lin,Ling Yu Cheng,Chih-Chun Hsiao and Arnold C.-M.Yang.Percolated network of entangled multi-walled carbon nanotubes dispersed in polystyrene thin films through surface grafting polymerization[J].Materials Chemistry and Physics.2005,94:438-443.
    [154]Jing He,Yanbin Shen and David.G.Evans.Nanocomposite Structure Based on Silylated MCM-48 and Poly(vinyl acetate)[J].Chem.Mater 2003,15(20):3894-3902.
    [155]M.Sasidharan,N.K.Mal and A.Bhaumik.In-situ polymerization of grafted aniline in the channels of mesoporous silica SBA-15[J].J.Mater.Chem.2007,17:278-283.
    [156]Jun-Hwan Park,Young-Ho Lee,Seong-Geun Oh.Preparation of Thermosensitive PNIPAm-Grafted Mesoporous Silica Particles[J].Macromolecular Chemistry and Physics.2007,208(22):2419-2427.
    [157]Lixin Xu,and Mujie Yang.In situ compatibilization of polypropylene and polystyrene -grafted nano-sized TiO_2 in the presence of Friedel- Crafts catalyst[J].Materials Letters.2008,62:2607-2610.
    [158]Yu Rong,Hong-Zheng Chen,,Gang Wu and Mang Wang.Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization[J].Materials Chemistry and Physics.2005,91:370-374.
    [159]Jing He, Yanbin Shen, Jia Yang, David G. Evans, and Xue Duan. A nanocomposite structure based on modified MCM-48 and polystyrene[J]. Microporous and Mesoporous Materials. 2008, 109: 73-83.
    [160] Graham L. Warren , Luyi Sun , Viktor G. Hadjiev , Daniel Davis , Dimitris Lagoudas , Hung-Jue Sue. B-staged epoxy/single-walled carbon nanotube nanocomposite thin films for composite reinforcement[J]. Journal of Applied Polymer Science. 2008, 112(1): 290-298.
    [161] Hai-Yun Ma , Li-Fang Tong , Zhong-Bin Xu , Zheng-Ping Fang. Functionalizing Carbon Nanotubes by Grafting on Intumescent Flame Retardant: Nanocomposite Synthesis, Morphology, Rheology, and Flammability[J]. Advanced Functional Materials. 2008, 18(3): 414-421.
    [162] Tzong-Liu Wang , Ching-Guey Tseng. Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane[J]. Journal of Applied Polymer Science. 2007, 105(3): 1642-1650.
    [163] Jason J. Ge, Dong Zhang, Qing Li, Haoqing Hou, Matthew J. Graham, Liming Dai, Frank W. Harris, and Stephen Z. D. Cheng. Multiwalled Carbon Nanotubes with Chemically Grafted Polyetherimides[J]. J. Am. Chem. Soc. 2005, 127(28): 9984-9985.
    [164] Jinyao Liu, Zhihua Nie, Yong Gao, Alex Adronov, Huaming Li. Click coupling between alkyne-decorated multiwalled carbon nanotubes and reactive PDMA-PNIPAM micelles[J]. Journal of Polymer Science Part A: Polymer Chemistry. 2008, 46(21): 7187-7199.
    [165]Guojian Wang, Zehua Qu, Lin Liu, Quan Shi and Jianlong Guo. Study of SMA graft modified MWNT/PVC composite materials[J]. Materials Science and Engineering: A. 2008, 472: 136-139.
    [166] Yan-Xin Liu, Zhong-Jie Du, Yan Li, Chen Zhang, Cong-Ju Li, Xiao-Ping Yang et al. Surface covalent encapsulation of multiwalled carbon nanotubes with poly(acryloyl chloride) grafted poly(ethylene glycol)[J]. Journal of Polymer Science Part A: Polymer Chemistry. 2006, 44 (23): 6880-6887.
    [167]Bin Zhao, Hui Hu, Aiping Yu, Daniel Perea, and Robert C. Haddon. Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers[J]. J. Am. Chem. Soc. 2005, 127(22): 8197-8203.
    [168]B. Zhao, H. Hu, R. C. Haddon. Synthesis and Properties of a Water-Soluble Single-Walled Carbon Nanotube-Poly(m-aminobenzene sulfonic acid) Graft Copolymer[J]. Advanced Functional Materials. 2004, 14(1): 71-76.
    [169]K.A.Williams, T.M. Peter, B.G. Veenhuizen Torre, R. Eritja and C. Dekker. Nanotechnology: carbon nanotubes with DNA recognition[J]. Nature. 2002, 420: 761-762.
    
    [170]Li Niu, Yanling Luo, and Zhanqing Li. A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly(ethylene glycol)[J]. Sensors and Actuators B: Chemical. 2007, 126(2): 361-367.
    
    [171]Jianfei Che, Wei Yuan, Guohua Jiang, Jie Dai, Su Yin Lim and Mary B. Chan-Park. Epoxy Composite Fibers Reinforced with Aligned Single-Walled Carbon Nanotubes Functionalized with Generation 0-2 Dendritic Poly(amidoamine)[J]. Chem. Mater. 2009, 21(8): 1471-1479.
    [172]In-Yup Jeon , Loon-Seng Tan , Jong-Beom Baek. Nanocomposites derived from in situ grafting of linear and hyperbranched poly(ether-ketone)s containing flexible oxyethylene spacers onto the surface of multiwalled carbon nanotubes[J]. Journal of Polymer Science Part A: Polymer Chemistry. 2008, 46(11): 3471-3481.
    [173]Ja-young Choi,Sang-wook Han,Wan-soo Huh,Loon-seng Tan And Jong-beom Baek.In situ grafting of carboxylie acid-terminated hyperbranched poly(ether-ketone) to the surface of carbon nanotubes[J],polymer.2007,48(14):4034-4040.
    [174]Jessica M.Rosenholm,Alain Duchanoy and Mika Linden.Hyperbranching Surface Polymerization as a Tool for Preferential Functionalization of the Outer Surface of Mesoporous Silica[J].Chem.Mater.2008,20(3):1126-1133.
    [175]Ja-Young Choi,Sang-Wook Han,Wan-Soo Huh,Loon-Seng Tan and Jong-Beom Back.In-Situ Grafting of Hyperbranched Poly(ether ketone)s onto Multiwalled Carbon Nanotubes via the A3+B2 Approach[J].Macromolecules.2007,40(13):4474-4480.
    [176]Bo Jiang,Xiaotao Zu,Fangyuan Tang,Zhihong Wu,Jian Lu,Qingrong Wei,Xingdong Zhang.Surface modification on nanoscale titanium dioxide by radiation:Preparation and characterization[J].Journal of Applied Polymer Science.2006,100(5):3510-3518.
    [177]Hangxun Xu,Xingbo Wang,Yanfeng Zhang,and Shiyong Liu.Single-Step in Situ Preparation of Polymer-Grafted Multi-Walled Carbon Nanotube Composites under ~(60)Co γ-Ray Irradiation [J].Chem.Mater.2006,18(13):2929-2934.
    [178]Shimou Chen,Guozhong Wu,Yaodong Liu,and Dewu Long.Preparation of Poly(acrylic acid)Grafted Multiwalled Carbon Nanotubes by a Two-Step Irradiation Technique[J].Macromolecules.2006,39(1):330-334.
    [179]Yao Xu,Jinghui Yang,Jiwei Liu and Qiang Fu.CF_4 plasma-induced grafting of fluoropolymer onto multi-walled carbon nanotube powder[J].Applied Physics A:Materials Science &Processing.2007,90(3):1432-0630.
    [180]Serge Cosnier,and Michael Holzinger.Design of carbon nanotube-polymer frameworks by electropolymerization of SWCNT-pyrrole derivatives[J].Electrochimica Acta.2008,53(11):3948-3954.
    [181]Padmanabhan Santhosh,Kalayil Martian Manesh,Kwang-Pill Lee,Anantha Iyengar Gopalan.Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide[J].Analytica Chimica Acta.2006,575(1):32-38.
    [182]Hun-Sik Kim,Byung Hyun Park,Jin-San Yoon and Hyoung-Joon Jin.Thermal and electrical conductivity of poly(l-lactide)/multiwalled carbon nanotube nanocomposites[J].Current Applied Physics.2008,8(6):803-806.
    [183]Sun Hwa Lee,Ji Sun Park,Bo Kyung Lim,Sang Ouk Kim.Polymer/Carbon Nanotube Nanocomposites via Noncovalent Grafting with End-Functionalized Polymers[J].Journal of Applied Polymer Science.2008,110(4):2345-2351.
    [184]Yeong-Tarng Shieh,Gin-Lung Liu,Kuo Chu Hwang and Chia-Chun Chen.Crystallization,melting and morphology of PEO in PEO/MWNT-g-PMMA blends[J],polymer.2005,46(24):10945-10951.
    [185]Xiangling Ji,J.Eric Hampsey,Qingyuan Hu,Jibao He,Zhengzhong Yang,and Yunfeng Lu.Mesoporous Silica-Reinforced Polymer Nanocomposites[J].Chem.Mater.2003,15(19):3656-3662.
    [186]Xiao Hua,Feng-Li Bei,Xin Wang.A simple approach to prepare PMA/TiO_2 composite:The homogeneous dispersion of nano TiO_2 in maleic anhydride polymer matrix[J].Journal of Applied Polymer Science.2009,112(6):3582-3588.
    [187]Ling Zan,Songlin Wang,Wenjun Fa,Yanhe Hu,Lihong Tian,Kejian Deng.Solid-phase photocatalytic degradation of polystyrene with modified nano-TiO_2 catalyst[J]. Polymer. 2006, 47:8155-8162.
    [188]Daniel Hora' k, Nataliya Chekina. Preparation of Magnetic Poly(glycidyl methacrylate) Microspheres by Emulsion Polymerization in the Presence of Sterically Stabilized Iron Oxide Nanoparticles[J]. Journal of Applied Polymer Science. 2006, 102: 4348-4357.
    [189]Liliana P. Ram rez, Katharina Landfester. Magnetic Polystyrene Nanoparticles with a High Magnetite Content Obtained by Miniemulsion Processes[J]. Macromol. Chem. Phys. 2003, 204: 22-31.
    [190]R. Faridi-Majidi, N. Sharifi-Sanjani, F. Agend. Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization[J]. Thin Solid Films. 2006, 515: 368-374.
    [191]Noriko Yanase, Hiromichi Noguchi , Hideki Asakura, Tatsuo Suzuta. Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofluid[J]. Journal of Applied Polymer Science. 2003, 50(5): 765-776.
    [192]Hiromichi Noguchi, Noriko Yanase, Yasuzo Uchida, Tatsuo Suzuta. Preparation and characterization by thermal analysis of magnetic latex particles[J]. Journal of Applied Polymer Science. 2003,48(9): 1539-1547.
    [193]Akihiko Kondo,U Hideki Fukuda. Preparation of thermo-sensitive magnetic microspheres and their application to bioprocesses[J]. Colloids and Surfaces A: Physiochemical and Engineering Aspects. 1999, 153:435-438.
    [194]Guihua Qiu, Qi Wang, Chao Wang, Willie Lau, Yili Guo. Ultrasonically initiated miniemulsion polymerization of styrene in the presence of Fe_3O_4 nanoparticles[J]. Polymer International. 2005, 55(3): 265-272.
    [195]Chengli Yang, Yueping Guan, Jianmin Xing, Guanghe Jia and Huizhou Liu. Synthesis and protein immobilization of monodisperse magnetic spheres with multifunctional groups[J]. Reactive and Functional Polymers. 2006, 66(2): 267-273.
    [196]Chengli Yang, Yueping Guan, Jianmin Xing, Guanghe Jia and Huizhou Liu. Synthesis and protein immobilization of monodisperse magnetic spheres with multifunctional groups[J]. Reactive and Functional Polymers. 2006, 66(2): 267-273.
    [197]A. B. Dalton, C. Stephan, J. N. Coleman, B. McCarthy, P. M. Ajayan, S. Lefrant, P. Bernier, W. J. Blau, and H. J. Byrne. Selective Interaction of a Semiconjugated Organic Polymer with Single-Wall Nanotubes[J]. J. Phys. Chem. B. 2000, 104: 10012-10016.
    [198]Moonsub Shim, Nadine Wong Shi Kam, Robert J. Chen, Yiming Li, and Hongjie Dai. Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition[J]. Nano Lett. 2002, 2(4): 285-288.
    
    [199]J. Li, J.-D. Qiu, J.-J. Xu, H.-Y. Chen, X.-H. Xia. The Synergistic Effect of Prussian-Blue-Grafted Carbon Nanotube/Poly(4-vinylpyridine) Composites for Amperometric Sensing[J]. Advanced Functional Materials. 2007, 17(9): 1574-1580.
    [200]Po-Wen Chung, Rajeev Kumar, Marek Pruski, Victor S.-Y. Lin. Temperature Responsive Solution Partition of Organic-Inorganic Hybrid Poly(N-isopropylacrylamide)-Coated Mesoporous Silica Nanospheres[J]. Advanced Functional Materials. 2008, 18(9): 1390-1398.
    [201]Chun-Yan Hong, Ye-Zi You, and Cai-Yuan Pan. Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-Responsive Shells by Surface RAFT Polymerization[J]. Chem. Mater. 2005, 17(9): 2247-2254.
    [202]C.Sanchez,M.J.Escuti,C.van Heesch,C.W.M.Bastiaansen,D.J.Broer,J.Loos,R.Nussbaumer.TiO_2 Nanoparticle-Photopolymer Composites for Volume Holographic Recording[J].Advanced Functional Materials.2005,15(10):1623-1629.
    [203]Alexander Star,J.Fraser Stoddart.Dispersion and Solubilization of Single-Walled Carbon Nanotubes with a Hyperbranched Polymer[J].Macromolecules.2002,35(19):7516-7520.
    [204]Yuanqin Liu,Zhaoling Yao,and Alex Adronov.Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polymers by Radical Coupling[J].Macromolecules.2005,38(4):1172-1179.
    [205]虞志光.高聚物分子量及其分布的测定.上海.上海科学技术出版社.1984.
    [206]复旦大学化学系高分子教研组编.高分子实验技术.上海.上海复旦大学出版社.1996.
    [207]S.Brunauer,P.H.Emmett,and E.Teller.Adsorption of Gases in Multimolecular Layers[J].J.Am.Chem.Soc.1938,60,309-319.
    [208]E.P.Barrett,L.G.Joyner,P.P.Halenda.The Determination of Pore Volume and Area Distributions in Porous Substances.I.Computations from Nitrogen Isotherms[J].J.Am.Chem.Soc.1951,73,373-380.
    [209]J.C.P.Broekhoff,J.H.deBoer.Studies on pore systems in catalysts:X.Calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores B.Applications[J].J.Catal.1967,9,15.
    [210]Johnson,L.K.,Killian,C..M.,Brookhart,M.New Pd(Ⅱ)- and Ni(Ⅱ)-Based Catalysts for Polymerization of Ethylene and.alpha.-Olefins[J].J.Am.Chem.Soc.1995,117,6414-6415.
    [211]Gottfried,A.C.,Brookhart,M.Living Polymerization of Ethylene Using Pd(Ⅱ) α-Diimine Catalysts[J].Macromolecules.2001,34,1140-1142.
    [212]Gottfried,A.C.,Brookhart,M.Living and Block Copolymerization of Ethylene and α-Olefins Using Palladium(Ⅱ)-α-Diimine Catalysts[J].Macromolecules.2003,36,3085-3100.
    [213]Guan,Z.,Cotts,P.M.,McCord,E.E,McLain,S.J.Chain Walking:A New Strategy to Control Polymer Topology[J].Science.1999,283,2059-2062.
    [214]Cotts,P.M.,Guan,Z.;McCord,E.,McLain,S.Novel Branching Topology in Polyethylenes As Revealed by Light Scattering and ~(13)C NMR[J].Macromolecules.2000,33,6945-6952.
    [215]Guan,Z.Control of Polymer Topology by Chain-Walking Catalysts[J].Chem.-Eur.J.2002,8,3086-3092.
    [216]Johnson,L.K.,Mecking,S.,Brookhart,M.Copolymerization of Ethylene and Propylene with Functionalized Vinyl Monomers by Palladium(Ⅱ) Catalysts[J].J.Am.Chem.Soc.1996,118,267-268.
    [217]Mecking,S.,Johnson,L.K.,Wang,L.,Brookhart,M.Mechanistic Studies of the Palladium-Catalyzed Copolymerization of Ethylene and α-Olefins with Methyl Acrylate[J].J.Am.Chem.Soc.1998,120,888-899.
    [218]Kejian Zhang,Zhibin Ye,and Ramesh Subramanian.Synthesis of Block Copolymers of Ethylene with Styrene and n-Butyl Acrylate via a Tandem Strategy Combining Ethylene "Living" Polymerization Catalyzed by a Functionalized Pd-Diimine Catalyst with Atom Transfer Radical Polymerization[J].Macromolecules.2008,41(3):640-649.
    [219]Sung Chul Hong,Shijun Jia,Mircea Teodorescu,Tomasz Kowalewski,Krzysztof Matyjaszewski,Maurice Brookhart et al.Polyolefin Graft Copolymers via Living Polymerization Techniques:Preparation of Poly(n-butyl acrylate)-graft-Polyethylene through the Combination of Pd-Mediated Living Olefin Polymerization and Atom Transfer Radical Polymerization [J]. Journal of Polymer Science: Part A: Polymer Chemistry. 2002, 40: 2736-2749.
    [220] Zhang, Y., Ye, Z. Homogeneous polyhedral oligomeric silsesquioxane (POSS)-supported Pd-diimine complex and synthesis of polyethylenes end-tethered with a POSS nanoparticle via ethylene "living" polymerization [J]. Chem. Commun. 2008, 1178-1180.
    [221] Ye, Z., Zhu, S. Newtonian Flow Behavior of Hyperbranched High-Molecular-Weight Polyethylenes Produced with a Pd-Diimine Catalyst and Its Dependence on Chain Topology [J]. Macromolecules. 2003, 36, 2194-2197.
    [222] Ye, Z., AlObaidi, F., Zhu, S. Melt rheological properties of branched polyethylenes produced with Pd- and Ni-diimine catalysts [J]. Macromol. Chem. Phys. 2004, 205, 897-906.
    [223] Inoue, Y., Matyjaszewski, K. Preparation of polyethylene block copolymers by combination of post-metallocene catalysis of ethylene polymerization and atom transfer polymerization [J]. J. Polym. Sci, Part A: Polym. Chem. 2004, 42, 496-504.
    [224] Kaneyoshi, H., Inoue, Y., Matyjaszewski, K. Synthesis of Block and Graft Copolymers with Linear Polyethylene Segments by Combination of Degenerative Transfer Coordination Polymerization and Atom Transfer Radical Polymerization [J]. Macromolecules. 2005, 38, 5425-5435.
    [225] Jianli Wang, Zhibin Ye, and Helen Joly. Synthesis and Characterization of Hyperbranched Polyethylenes Tethered with Polyhedral Oligomeric Silsesquioxane (POSS) Nanoparticles by Chain Walking Ethylene Copolymerization with Acryloisobutyl-POSS [J]. Macromolecules. 2007,40,6150-6163.
    [226] D. A. Tomalia, A. M. Naylor, W. A. Goddard III. Starburst-Dendrimere: Kontrolle von Groβe, Gestalt, Oberflachenchemie, Topologie und Flexibilitat beim Ubergang von Atomen [J]. Angew. Chem. 1990, 102, 119.
    [227] S. M. Grayson, J. M. J. Frechet, Convergent Dendrons and Dendrimers: from Synthesis to Applications [J]. Chem. Rev. 2001, 101, 3819.
    [228] Y. H. Kim. J Hyperbranched polymers 10 years after [J]. J. Polym. Sci. Part A: Polym.Chem. 1998,36,1685.
    [229] C. J. Hawker, J. M. J. Frechet, R. B. Grubbs, J. Dao. Preparation of Hyperbranched and Star Polymers by a "Living", Self-Condensing Free Radical Polymerization [J]. J. Am. Chem. Soc. 1995,117,10763.
    [230] L. Brunsveld, B. J. B. Folmer, E.W. Meijer, R. P. Sijbesma. Supramolecular Polymers [J]. Chem. Rev. 2001, 101,4071.
    
    [231] V. M. Mohring, G. Fink. Angew. Chem. 1985, 97, 982.
    [232] V. M. Mohring, G. Fink. Novel Polymerization of α-Olefins with the Catalyst System Nickel/ Aminobis(imino) phosphorane [J]. Angew. Chem. Int. Ed. Engl. 1985, 24, 1001.
    [233] D.Avnir, S. Braun, O. Lev, M. Ottolenghi, Enzymes and Other Proteins Entrapped in Sol-Gel Materials [J]. Chem. Mater. 1994, 6, 1605.
    [234] M. Hartmann. Ordered Mesoporous Materials for Bioadsorption and Biocatalysis [J]. Chem. Mater. 2005, 17,4577.
    [235] Xueying Huang and Mary J. Wirth. Surface-Initiated Radical Polymerization on Porous Silica [J].AnaI. Chem. 1997,69,4577-4580.
    [236] X. Huang and M. J. Wirth. Surface Initiation of Living Radical Polymerization for Growth of Tethered Chains of Low Polydispersity [J]. Macromolecules. 1999, 32, 1694-1696.
    [237] Christopher B. Gorman, Randall J. Petrie, and Jan Genzer. Effect of Substrate Geometry on Polymer Molecular Weight and Polydispersity during Surface-Initiated Polymerization [J]. Macromolecules. 2008, 41, 4856-4865.
    [238] Chung, T. C, Xu, G., Lu, Y., Hu, Y. Metallocene-Mediated Olefin Polymerization with B-H Chain Transfer Agents: Synthesis of Chain-End Functionalized Polyolefins and Diblock Copolymers [J]. Macromolecules. 2001, 34, 8040-8050.
    [239] Yanwu Zhang, Zhibin Ye. Covalent Surface Grafting of Branched Polyethylenes on Silica Nanoparticles by Surface-Initiated Ethylene "Living" Polymerization with Immobilized Pd-Diimine Catalysts [J]. Macromolecules. 2008, 41, 6331-6338.
    [240] Von Werne, T., Patten, T. E. Atom Transfer Radical Polymerization from Nanoparticles: A Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled/"Living" Radical Polymerizations from Surfaces [J]. J. Am. Chem. Soc. 2001, 123, 7497-7505.
    [241] Chunzhao Li, Junwon Han, Chang Y. Ryu, and Brian C. Benicewicz. A Versatile Method To Prepare RAFT Agent Anchored Substrates and the Preparation of PMMA Grafted Nanoparticles [J]. Macromolecules 2006, 39, 3175-3183.
    [242] Kejian Zhang, Zhibin Ye, and Ramesh Subramanian. A Trinuclear Pd-Diimine Catalyst for "Core-First" Synthesis of Three-Arm Star Polyethylenes via Ethylene "Living" Polymerization [J]. Macromolecules. 2009, 42, 2313-2316.
    [243] Vogel, R., Mererdith, P., Kartina, I., Harvey, M., Riches, J. D., Bishop, A. et al. Mesostructured Dye-Doped Titanium Dioxide for Micro-Optoelectronic Applications [J]. Chem Phys Chem. 2003, 4, 595.
    [244] Boschloo, G., Hagfeldt, A. Photoinduced absorption spectroscopy of dye-sensitized nanostructured TiO_2 [J]. Chem Phys Lett. 2003, 370, 381.
    [245] Francioso, L., Presicce, D. S., Taurino, A. M., Rella, R., Siciliano, P., Ficarella, A. Automotive application of sol-gel TiO_2 thin film-based sensor for lambda measurement [J]. Sensor Acuate B- Chem. 2003, 95, 66.
    [246] Du, X. Y., Wang, Y., Mu, Y. Y., Gui, L. L., Wang, P., Tang, Y. Q. A New Highly Selective Hydrogen Sensor Based on TiO_2/Pt-OPt Dual-Layer Films [J]. Chem Mater.2002, 14, 3953.
    [247] Hansel, H., Zettl, H., Krausch, G., Kisselev, R., Thelakkat, M., Schmidt, H. W. Optical and Electronic Contributions in Double-Heterojunction Organic Thin-Film Solar Cells [J]. Adv Mater. 2003, 15, 2056.
    [248] Kron, G., Rau, U., Werner, J. H. Influence of the Built-in Voltage on the Fill Factor of Dye-Sensitized Solar Cells [J]. J Phys Chem B. 2003, 107, 13258.
    [249] Bosc, F., Ayral, A., Albouy, P. A., Guizard, G. A Simple Route for Low-Temperature Synthesis of Mesoporous and Nanocrystalline Anatase Thin Films [J]. Chem Mater. 2003, 15, 2463.
    [250] Nakamura, R., Imanishi, A., Murkoshi, K., Nakato, Y. In Situ FTIR Studies of Primary Intermediates of Photocatalytic Reactions on Nanocrystalline TiO_2 Films in Contact with Aqueous Solutions [J]. J Am Chem Soc. 2003, 125, 7443.
    [251] Zhang, Y., Zhou, G. E., Zhang, Y. H., Li, L., Yao, L. Z., Mo, C. M. Preparation and optical absorption of dispersions of nano-TiO_2/MMA (methylmethacrylate) and nano-TiO_2/PMMA (polymethylmethacrylate) [J]. Mater Res Bull. 1999, 5, 701.
    [252] Sung, Y.-M., Yung-Soo, P. K., Sang, M. P., Gopinathan, M. Formation of nanoporous and nanocrystalline anatase films by pyrolysis of PEO-TiO_2 hybrid films [J]. J Cryst Growth. 2006,286,173.
    [253] M. Sabzi, S. M. Mirabedini, J. Zohuriaan-Mehr, M. Atai. Surface modification of TiO_2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating [J]. Progress in Organic Coatings. 2009, 65, 222-228.
    [254] GAO Jia-cheng, ZOU Jian, TAN Xao-wei, WANG Yong. Characteristics and properties of surface coated nano-TiO_2 [J]. Trans. Nonferrous Met. Soc. China. 2006,16,1252-1258.
    [255] Yunhua Chen , An Lin, Fuxing Gan. Improvement of polyacrylate coating by filling modified nano-TiO_2 [J]. Applied Surface Science. 2006, 252, 8635-8640.
    [256]Bourgeat-Lami, E., Lang, J. Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media: 1. Silica Nanoparticles Encapsulated by Polystyrene [J]. J. Colloid Interface Sci. 1998, 197, 293.
    [257] Zhang, K., Chen, H.-T., Chen, X. Monodisperse Silica-Polymer Core-Shell Microspheres via Surface Grafting and Emulsion Polymerization[J]. Macromol. Mater. Eng. 2003, 288, 380.
    [258] Rabello, M. S., White, J. R. The role of physical structure and morphology in the photodegradation behaviour of polypropylene [J]. Polym. Degrad. Stab. 1997, 56, 55.
    [259] Zoepfl, F. J., Markovic, V., Silverman, J. Differential scanning calorimetry studies of irradiated polyethylene: I. Melting temperatures and fusion endotherms [J]. J. Polym. Sci., Polym. Chem. Ed. 1984, 9, 2017.
    [260] Byershtein, V. A. S., Irota, A. G.; Yegorova, L. M. Changes in the structure of composites based on polyolefins induced by radiation-thermal exposures [J]. Polym. Sci. USSR. 1989, 8, 1763.
    [261] Leong, Y. W., Abu Bakar, M. B., Mohd Ishak, Z. A., Ariffin, A. Characterization of talc/calcium carbonate filled polypropylene hybrid composites weathered in a natural environment [J]. Polym. Degrad. Stab. 2004, 83, 411.
    [262] Guo, G., Wang, B.-H., Huang, W.-X., Yu, J., Cao, J.-J., Tu, M.-J. J. Sichuan Univ. (Eng. Sci. Ed.) 2004, 36, 53.
    
    [263] Shang-di, M., Ching, W.-Y. Phys. Rev. B. 1995, 51, 13023.
    [264] Monica, F. D., Silvia, E. B., Numa, J. C. Improvement of mechanical properties for PP/PS blends by in situ compatibilization [J]. Polymer. 2005, 46, 6096.
    [265] Diaz, M., Barbosa, S., Capiati, N. Polyethylene-polystyrene grafting reaction: effects of polyethylene molecular weight [J]. Polymer. 2002, 43, 4851.
    [266] Diaz, M., Barbosa, S., Capiati, N. Polypropylene/polystyrene blends: In situ compatibilization by Friedel-Crafts alkylation reaction [J]. J Polym Phys. 2004, 42, 452.
    [267] D'orazia, L., Guarino, R.; Mancarella, C, Martuscelli, E.; Cecchin, G. Isotactic polypropylene /polystyrene blends: Effects of the addition of a graft copolymer of propylene with styrene [J]. J Appl Polym Sci. 1997, 65, 1539.
    [268] Carrick, W. L. Reactions of polyolefins with strong lewis acids [J]. J Polym Sci Polym Chem Ed. 1970, 8,215.
    [269] Sun, Y., Willemse, R., Liu, T., Baker, W. In situ compatibilization of polyolefin and polystyrene using Friedel-Crafts alkylation through reactive extrusion [J]. Polymer. 1998, 39, 2201.
    [270] Sun, Y., Baker, W. Polyolefin/polystyrene in situ compatibilization using Friedel-Crafts alkylation [J]. J Appl Polym Sci. 1997, 65, 1385.
    [271] Deng, C, James, P. F., Wright, P. V. Poly(tetraethylene glycol malonate)-titanium oxide hybrid materials by sol-gel methods [J]. J Mater Chem. 1998, 8, 153.
    [272] Park, H. K., Kim, D. K., Hee, C. Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl_4 [J]. J Am Cerama Soc. 1997, 80,743.
    [273] Siddiquey, I. A., Ukaji, E., Furusawa, T., Sato, M., Suzuki, N. Mater Chem Phys. 2007, 105, 162.
    [274] Tang, E. J., Liu, H., Sun, L. M., Zheng, E. L., Cheng, G. X. Fabrication of zinc oxide/ poly (styrene) grafted nanocomposite latex and its dispersion [J]. Eur Polym J. 2007, 10, 4210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700