自噬体—溶酶体系统与2型糖尿病关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:自噬体-溶酶体系统是细胞利用溶酶体降解自身受损的细胞器和大分子物质的过程,是真核细胞特有的生命现象,在细胞的生长、发育和疾病发生中起着重要的作用。自噬消化过程既广泛存在于正常的生理过程中,又是细胞对不良环境的一种防御机制,同时还参与多种疾病的病理过程,无论是自噬过度还是自噬不足都可能导致疾病发生。
     目前研究表明,自噬体-溶酶体系统异常与肿瘤、神经退行性疾病以及病原微生物的入侵等相关。但自噬体-溶酶体系统与2型糖尿病(T2DM)发病相关性的研究尚少。有研究认为自噬体-溶酶体系统与T2DM相关,该系统数量与功能改变时,都会影响T2DM的发生与发展,但是目前研究报道结果尚不一致。
     本研究旨在研究自噬体-溶酶体系统在T2DM患者体内的变化,探讨其在T2DM发生、发展中的作用,从而为2型糖尿病的病因、干预与治疗提供理论基础。
     方法:本研究收集自2007年12月至2008年4月期间在济宁医学院附属医院内分泌科病房住院确诊的T2DM患者作为病例组,从医院健康查体中心选取相同年龄组健康者作为对照组。实验采用病例-对照观察,分为健康对照组、T2DM组和微血管并发症组,各40例,共计120例,其中对照组男22例,女18例,平均年龄55.72岁,糖尿病组男24例,女16例,平均年龄51.2岁;并发症组男21例,女19例,平均年龄55.08岁。
     收集外周血液标本并分离白细胞,分别提取蛋白及RNA,分别用免疫蛋白印迹(western blot)及逆转录聚合酶链式反应(RT-PCR)方法,对自噬体特异性标记LC3及溶酶体特异性标记LAMP2进行检测,从而观察自噬体-溶酶体数量的变化。所有数据输入采用SPSS13.0统计软件进行统计分析,设P<0.05为有统计学意义。
     结果:western blot及RT-PCR结果均显示,对照组、T2DM组及并发症组之间自噬体的数量呈递减趋势,对照组与T2DM组及对照组与并发症组之间均有明显差异,有统计学意义(P<0.05),而T2DM组与并发症组之间无明显差异,无统计学意义。三组间溶酶体有下降趋势,但无明显差异,无统计学意义。多因素非条件Logistic回归分析结果:与2型糖尿病发生、发展成正相关的指标有年龄、FBG、TG、TC及LDL,成负相关的有自噬体数量及尿酸,均有统计学意义(P<0.05)
     结论:自噬体数量的改变对T2DM及其并发症的发生、发展之间存在显著相关性,自噬体对糖尿病患者有保护作用。在2型糖尿病患者及其合并并发症患者体内自噬体数量是减少的,自噬体的数量减少使糖尿病患者胰腺β细胞内受损的细胞器得不到及时清除,从而不能维持胰岛β细胞功能,异常的、畸形的及功能缺陷的β细胞线粒体以及膨胀的内质网的存在可能会降低细胞产生胰岛素的能力,导致糖尿病的加重及其并发症的发生。虽然三组间溶酶体数量有下降趋势,但无显著性差异。这可能与溶酶体变异较大有关,另外溶酶体不仅接受来自自噬体的物质,也同样肩负内源性和外源性大分子物质的消化。因此,虽然我们未观察到本组病人中溶酶体数量的显著变化,尚不能排除溶酶体与T2DM之间的相关关系。年龄、肥胖、高血糖及高血脂为T2DM的发生及发展的危险因素,而细胞自噬体可作为其保护因素之一。
Objective:Autophagic-lysosmal system involves degradation of cellular components and macromolecular substances through lysosomal digestion,which is a specific vital phenomenon in eukaryotic cells.Autophagy plays an important role in cell growth,development and disease.Autophagy functions widely in normal physiological processes,cellular defense mechanism under certain circumstances and pathological processes.Excessive or reduced autophagy cause a great number of diseases.
     Accumulating evidence shows that autophagy has been associated to cancer, neurodegenerative diseases,invasion of pathogenic microorganisms and other diseases.To date,very few studies have been reported on the association between autophagic-lysosomal system and type 2 diabetes.
     Some studies have revealed the quantitaty and functional changes of autophagic-lysosomal system in the patients with T2DM,suggesting its role in the pathogenesis and development of T2DM.However,negatvie efftects have also been reported,indicting the comlex effects of the system.
     This study was designed to investigate the quantity changes of the autophagic-lysosomal system in the T2DM patients and explore its role in the onset and development of T2DM.The results will provide a theoretical basis for understaning the etiology and developing novel intervention and treatment measures for the disease.
     Methods:From Dec.2007 to Apr.2008,we collected blood samples of T2DM patients,without or with diabetic microangiopathy,in the Endocrinology Department of Affiliated Hospital of Jining Medical College.Healthy volunteers as normal control were from the hospital physical-examination center.We employed case-control method with 3 groups:normal control(40 cases),T2MD patients(40 cases),T2MD patients with microangiopathy(40 cases).
     Blood samples were collected and the leukocytes were isolated.Cellular protein and total RNA were parepared for western blotting and RT-PCR,respectively.All data were analysed with software SPSS13.0 and P value<0.05 set as statistically significant.
     Results:The results of western blotting and RT-PCR showed that the LC3 protein levels and LC3 gene expression levels were significantly decreased in T2DM patient group and T2DM patients with with microangiopathy group,compared with normal controls,indicating that autophagosome formation were reduced.There was not significant difference between T2DM pateint group and T2DM patient with microangiopathy group.However,we did not observe the differences of LAMP-2 protein level and LAMP-2 gene expresion levels among these three groups.Logistic analyses showed that age,FBG,TG,TC and LDL were significantly positively correlated with the onset of T2DM,but uric acid were significantly negative correlated with them.
     Conclusions:Our study showed that number and formation of autophagosome were associated with the pathogeneis,development of T2DM and its complications, suggesting that autophagosomes has protective effects in T2DM patients.As the formation and number of autophagosome were reduced and the damaged cell organelles in the pancreaticβ-cell could not be cleared promptly,theβ-cell functions are not well maintained in T2DM patients.As a result,uncleared and damaged mitochondria and swelled endoplasmic reticulum ofβ-cell may reduce its ability to produce insulin.Although LAMP-2 protein,a mark of lysosomes,were decreased in T2DM patients,but there was no significant difference among the three groups, which may be related to the great variation of lysosomes.Lysosomes not only fuse with autophagosome,but also directly digest both endogenous and exogenous macromolecules.Therefore,the assocition of lysosomes and T2DM can not be ruled out and needs to be further investigated.In addition,age,obesity,high blood sugar and high blood lipids were the risk factors for the onset of T2DM.
引文
[1]World health organization:definition,diagnosis and classification of diabetes mellitus and its complication report of WHO consulation Part 1:diagnosis and classification of diabetes mellitus.Geneva,1999.
    [2]卫生统计学第二版.孙振球主编.人民卫生出版社,2005,85-87.
    [3]Butler AE,Janson J,Bonner-Weir S,et al.Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes[J].Diabetes,2003,52(1):102-110.
    [4]Rhodes CJ.Type 2 diabetes-a matter of beta-cell life and death?[J].Science,2005,307(5708):380-384.
    [5]DeFronzo RA.Dysfunctional fat cells,lipotoxicity and type 2 diabetes[J].Int J Clin Pract Suppl,2004,(143):9-21.
    [6]Unger RH,and Zhou YT.Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover[J].Diabetes,2001,50(Suppl 1):S118-S121.
    [7]Klionsky DJ and Emr SD.Autophagy as a regulated pathway of cellular degradation[J].Science,2000,290(5497):1717-1721.
    [8]Lemasters JJ,Qian T,He L,et al.Role of mitochondrial inner membrane permeabilization in necrotic cell death,apoptosis,and autophagy[J].Antioxid Redox Signal,2002,4(5):769-781.
    [9]Bellu AR and Kiel JA.Selective degradation of peroxisomes in yeasts[J].Microsc Res Tech,2003,61(2):161-170.
    [10]Roberts P,Moshitch-Moshkovitz S,Kvam E,et al.Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae[J].Mol Biol Cell 2003,14(1):129-141.
    [11]Reggiori F and Klionsky DJ.Autophagosomes:biogenesis from scratch?[J].Curr Opin Cell Biol,2005,17(4):415-422.
    [12]Crotzer VL and Blum JS.Autophagy and intracellular surveillance:Modulating MHC class Ⅱ antigen presentation with stress[J].Proc Natl Acad Sci USA,2005,102(22):7779-7780.
    [13]Tanida I,Ueno T,Kominami E.LC3 conjugation system in mammalian autophagy[J].Int J Biochem Cell Biol,2004,36(12):2503-2518.
    [14]Kim JS and Klionsky DJ.Autophagy,cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells[J].Annu Rev Biochem,2000.69:303-342.
    [15]Walker DH,Popov VL,Crocquet-valdes PA,ET AL.Cytokine-induced,nitric oxide-dependent,intracellular antirickettsial activity of mouse endothelial cells[J].Lab Invest,1997,76(1):129-138.
    [16]Talloczy Z,Jiang W,Virgin HW 4~(th),et al.Regulation of starvation and virus-induced autophagy by the eIF2alpha kinase signalling pathway[J].Proc Natl Acad Sci USA,2002,99(1):190-195.
    [17]Webb JL,Ravikumar B,Atkins J,et al.Alpha-synuclein is degraded by both autophagy and the proteasome[J].J Biol Chem,2003,278(27):25009-25013.
    [18]Ogier-Denis E and Codogno P.Autophagy:a barrier or an adaptive response to cancer[J].Biochim Biophys Acta,2003,1603(2):113-128.
    [19]Klionsky DJ.Autophagy[J].Curr Biol,2005,15(8):R282-R283.
    [20]Shintani T and Klionsky DJ.Autophagy in health and disease:a double-edged sword[J].Science,2004,306(5698):990-995.
    [21]Marino G and Lopez-Otin C.Autophagy:molecular mechanisms,physiological functions and relevance in human pathology[J].Cell Mol Life Sci,2004,61(12):1439-1454.
    [22]Eskelinen EL.Maturation of autophagic vacuoles in mammalian cells[J].Autophagy,2005,1(1):1-10.
    [23]Komatsu M,Waguri S,Ueno T,et al.Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice[J].J Cell Biol,2005,169(3):425-434.
    [24]Hara T,Nakamura K,Matsui M,et al.Suppression of basal autophagy in neural cells causes neurodegenerativedisease in mice[J].Nature.2006,441(7095):885-889.
    [25]Komatsu M,Waguri S,Chiba T,et al.Loss of autophagy in the central nervous system causes neurodegeneration in mice[J].Nature,2006,441(7095):880-884.
    [26]Nakai A,Yamaguchi O,Takeda T,et al.The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress[J].Nat Med,2007,13(5):619-624.
    [27]Levine B,and Kroemer G.Autophagy in the pathogenesis of disease[J].Cell,2008,132(1):27-42.
    [28]Li X,Zhang L,Meshinchi S,et al.Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes[J].Diabetes,2006,55(11):2965-2973.
    [29]Codogno P and Meijer AJ.Autophagy and signaling:their role in cell survival and cell death[J].Cell Death Differ,2005,12(Suppl 2):1509-1518.
    [30]Meijer AJ and Codogno P.Macroautophagy:protector in the diabetes drama?[J].Autophagy,2007,3(5):523-526.
    [31]Scherz-Shouval R,Shvets E,Fass E,et al.Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4[J].EMBO J,2007,26(7):1749-1760.
    [32]Kaniuk NA,Kiraly M,Bates H,et al.Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy[J].Diabetes,2007,56(4):930-939.
    [33]Ebato C,Uchida T,Arakawa M,et al.Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet[J].Cell Metab,2008,8(4):325-332.
    [34]Kaniuk NA,Kiraly M,Bates H,et al.Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy[J].Diabetes,2007,56(4):930-939.
    [35]Jung HS,Chung KW,Kim JW,et al.Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia[J].Cell Metab,2008,8(4):318-324.
    [36]Mizushima N and Klionsky DJ.Protein turnover via autophagy:implications for metabolism[J].Annu Rev Nutr,2007,27:19-40.
    [37]Mammucari C,Milan G,Romanello V,et al.Fox03 controls autophagy in skeletal muscle in vivo[J].Cell Metab,2007,6(6):458-471.
    [38]WeIr GC,Bonner-Weir S.Five stages of evolving beta-cell dysfunction during progression to diabetes[J].Diabetes,2004,53(Suppl 3):S16-21.
    [39]Federici M,Hribal M,Perego L,et al.High glucose causes apoptosis in cultured human pancreatic islets of Langerhans:a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program[J].Diabetes,2001,50(6):1290-1301.
    [40]Maedler K,Sergeev R,Ris F,et al.Glucose-inducecl beta-cell production of IL-lbeta contributes to glucotoxicity in human pancreatic islets[J].J Clin Invest,2002,110(6):851-860.
    [41]Liu K,Paterson AJ,Chin E,et al.Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells:linkage of O-linked GlcNAc to beta cell death[J].Proc Natl Acad Sci USA,2000,97(6):2820-2825.
    [42]周北凡.我国成年人体重指数和腰围对相关疾病危险因素异常的预测价值:适宜体重指数和腰围切点的研究[J].中华流行病学杂志,2002,23(1):5-10.
    [43]傅祖植,傅茂.肥胖和糖尿病[J].辽宁实用糖尿病杂志,2001,9(2):1-3.
    [44]富振英,马林茂,王克安,等.我国Ⅱ型糖尿病的流行特征[J].中国慢性病预防与控制,1999,7(3):125-126.
    [45]潘长玉,田慧,徐向进,等.北京军队老年人糖尿病患病率、发病率调查[J].中华老年医学杂志,2003,22(6):364-367.
    [46]Ashcroft F,Rorsman P.Type 2 diabetes mellitus:not quite exciting enough?[J].Hum Mol Genet,2004,13(Spec NO1):R21-R31.
    [47]Petersen KF,Befroy D,Dufour S,et al.Mitochondrial dysfunction in the elderly:possible role in insulin resistance[J].Science,2003,300(5622):1140-1142.
    [48]Chang AM,Smith MJ,Galecki AT,et al.Impaired beta-cell function in human aging:response to nicotinic acid-induced insulin resistance[J].J Clin Endocrinol Metab,2006,91(9):3303-3309.
    [49]Lupi R,Dotta F,Marselli L,et al.Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets:evidence that beta-cell death is caspase mediated,partially dependent on ceramide pathway,and Bcl-2 regulated[J].Diabetes,2002,51(5):1437-1442.
    [50]Maedler K,Spinas GA,Dyntar D,et al.Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function[J].Diabetes,2001,50(1):69-76.
    [51]El-Assaad W,Buteau J,Peyot ML,et al.Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death[J].Endocrinology,2003, 144(9):4154-4163.
    [52]刘晓梅.β细胞脂性凋亡与2型糖尿病[J].中国医学文摘·内科学,2005,26(5):669-671.
    [53]Bo s,Cavallo-Perin P,Gentile L,et al.Hypouricemia and hyperuricemia in type 2 diabetes:two different phenotypes[J].Eur J Clin Invest,2001,31(4):318-321.
    [54]雒瑢,樊继援.血尿酸与2型糖尿病应并发冠心病的关系[J].中国糖尿病杂志,2006,14(1):20-21.
    [1]胡蕾,姜汉国.PI_3K/AKT信号转导通路与肿瘤转移及其机制的研究进展[J].医学综述,2006,12(22):1375-1377.
    [2]Fresno Vara JA,Casado E,de Castro J,et al.PI_3K/Akt signalling pathway and cancer[J].Cancer Treat Rev,2004,30(2):193-204.
    [3]Blume-Jensen P,Hunter T.Oncogenic kinase signaling[J].Nature,2001,411(6835):355-365.
    [4]Pene F,Claessens YE,Muller O,et al.Role of the phosphatidylinositol 3-kinase/Akt and Mtor/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma[J].Oncogene,2002,21(43):6587-6597.
    [5]Hill MM,Hemmings BA.Inhibition of protein kinase B/Akt implications for cancer therapy[J].Pharmacol Ther,2002,93(2-3):243-251.
    [6]Huang S,Houghton PJ.Targeting mTOR signaling for cancer therapy[J].Curr Opin Pharmacol.2003,3(4):371-377.
    [7]Zhou X,Tan M,Stone Hawthome V,et al.Activation of the Akt/mammalian target of Rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers[J].Clin Cancer Res,2004,10(20):6779-6788.
    [8]Asnaghi L,Bruno P,Priulla M,et al.mTOR:a protein kinase switching between life and death[J].Pharmacol Res,2004,50(6):545-549.
    [9]Schalm SS,Fingar DC,Sabatinin DM,et al.TOS motif-mediated raptor binding regulates 4E-BP_1 multisite phosphorylation and function[J].Curr Biol,2003,13(10):797-806.
    [10]Xu G,Zhang W,Bertram P,et al.Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors[J].Int J Oncol,2004,24(4):893-900.
    [11]Burroughs KD,Oh J,Barrett JC,et al.Phosphatidylinositol 3-kinase and mek1/2are necessary for insulin-like growth factor-1-induced vascular endothelial growth factor synthesis in prostate epithelial cells:a role for hypoxia-inducible factor-1[J].Mol Cancer Res,2003,1(4):312-322.
    [12]Debes JD,Schmidt LJ,Huang H,et al.p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6[J].Cancer Res.2002,62(20):5632-5636.
    [13]Lawlor MA,Alessi DR.PKB/Akt:a key mediator of cell proliferation.survival and insulin responses?[J].J Cell Sci,2001,114(Pt 16):2903-2910.
    [14]Samuels Y,Ericson K.Oncogenic PI3K and its role in cancer[J].Curr Opin Oncol,2006,18(1):77-82.
    [15]Downward J.Targeting RAS signalling pathways in cancer therapy[J].Nat Rev Cancer,2003,3(1):11-22.
    [16]McGinn S,Poronnik P,King M,et al.High glucose and endothelial cell growth:novel effects independent of autocrine TGF-betal and hyperosmolarity[J].Am J Physiol Cell Physiol,2003,284(6):C1374-C1386.
    [17]McGinn S,Saad S,Poronnik P,et al.High glucose-mediated effects on endothelial cell proliferation occurs via p38 MAP kinase[J].Am J Physiol Endocrinol Metab,2003,285(4):E708-E717.
    [18]Quinn L.Mechanisms in the development of type 2 diabetes mellitus[J].J Cardiovasc Nurs,2002,16(2):1-16.
    [19]Shao J,Yamashita H,Qiao I,et al.Phosphatidylinositol 3-kinase redistribution is associated with skeletal muscle insulin resistance in gestational diabetes mellitus[J].Diabetes,2002,51(1):19-29.
    [20]Pagliassotti MJ,Kang J,Thresher JS,et al.Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance[J].Am J Physiol Endocrinol Metab,2002,282(1):E170-E176.
    [21]Karlsson M,Thorn H,Parpal S,et al.Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes[J].FASEB J,2002,16(2):249-251.
    [22]Foster LJ,Li D,Randhawa VK,et al.Insulin accelerates inter-endosomal GLUT4 traffic via phosphatidylinositol 3-kinase and protein kinase B[J].J Biol Chem,2001,276(47):44212-44221.
    [23]Reggiori F,Kliosky DJ.Autophagy in the eukaryotic cell[J].Eukaryot Cell,2002,1(1):11-21.
    [24]Shintani T,Klionky DJ.Autophagy in health and disease:a double-edged sword [J].Science,2004,306(5698):990-995.
    [25]Wang CW,Klionsky DJ.The molecular mechanism of autophagy[J].Mol Med,2003,9(3-4):65-76.
    [26]Klionsky DJ.The molecular machinery of autophagy:unanswered questions[J].J Cell Sci,2005,H8(Pt1):7-18.
    [27]Majeski AE,Fred Dice JF.Mechanisms of chaperone-mediated autophagy[J].Int J Biochem Cell Biol,2004,36(12):2435-2444.
    [28]Shintani T,Huang WP,Stromhaug PE,et al.Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway[J].Dev Cell,2002,3(6):825-837.
    [29]He C,Song H,Yorimitsu T,et al.Recruitment of Atg9 to the preautophagosomal structure by Atgll is essential for selective autophagy in budding yeast[J].J Cel Biol,2006,175(6):925-935.
    [30]Gutierrez MG,Saka HA,Chinen I,et al.Protective role of autophagy against Vibrio cholerae cytolysin,a pore-forming toxin from V cholerae[J].Proc Natl Acad Sci U S A,2007,104(6):1829-1834.
    [31]Ogawa M,Yoshimori T,Suzuki T,et al.Escape of intracellular Shigella from autophagy[J].Science,2005,307(5710):727-731.
    [32]Tekinay T,Wu MY,Otto GP,et al.Function of the Dictyostelium discoideum Atgl kinase during autophagy and development[J].Eukaryot Cell,2006,5(10):1797-1806.
    [33]Matsushita M,Suzuki NN,Obara K,et al.Structure of Atg5,Atg16 a complex essential for autophagy[J].J Biol Chem,2007,282(9):6763-6772.
    [34]Guertin D A,Sabatini D M.An expanding role for mTOR in cancer[J].Trends Mol Med,2005,11(8):353-361.
    [35]Meijer A J,Codogno P.Signalling and autophagy regulation in health,aging and disease[J].Mol Aspects Med,2006,27(5-6):411-425.
    [36]Ng G,Huang J.The significance of autophagy in cancer[J].Mol Carcinog,2005,43(4):183-187.
    [37]Edinger AL,Thompson CB.Death by design:apoptosis,necrosis and autophagy.[J].Curr Opin Cell Biol,2004,16(6):663-669.
    [38]Mizushima N,Yamamoto A,Matsui M,et al.In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker[J].Mol Biol Cell,2004,15(3):1101-1111.
    [39]Boya P,Gonzalez-Polo RA,Casares N,et al.Inhibition of macroautophagy triggers apoptosis[J].Mol Biol Cell,2005,25(3):1025-1040.
    [40]Shimizu S,Kanaseki T,Mizushima N,et al.Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes[J].Nature Cell Biol,2004,6(12):1221-1228.
    [41]Qin ZH,GU ZL.Huntingtin processing in pathogenesis of Huntington disease[J].Acta Pharmacol Sin,2004,25(10):1243-1249.
    [42]Bergamini E,Cavalllni G,Donati A,et al.The role of macroautophagy in the ageing process,anti-ageing intervention and age-associated diseases[J].Int J Biochem Cell Biol,2004,36(12):2392-2404.
    [43]Scarlatti F,Bauvy C,Ventruti A,et al.Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of Beclin 1[J].J Biol Chem,2004,279(18):18384-18391.
    [44]Cuervo AM.Autophagy:in sickness and in health[J].Trends Cell Biol,2004,14(2):70-77.
    [45]Paludan C,Schmid D,Landthaler M,et al.Endogenous MHC class Ⅱ processing of a viral nuclear antigen after autophagy[J].Science,2005,307(5709):593-596.
    [46]Kirkegaard K,Taylor MP,Jackson WT.Cellular autophagy:surrender,avoidance and subversion by microorganisms[J].Nat Rev Microbiol,2004,2(4):301-314.
    [47]Komatsu M,Waguri S,Chiba T,et al.Loss of autophagy in the central nervous system causes neurodegeneration in mice[J].Nature,2006,441(7095):880-884.
    [48]Yamamoto A,Cremona ML,Rothman JE.Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway[J],J Cell Biol.2006,172(5):719-731.
    [49]Lacoste CL,Garcia V,Uro CE,et al.Dannon's disease(X-linked vacuolar cardiomyopathy and myopathy):a case with a novel Lamp-2 gene mutation[J].Neuromuscul Disord,2002,12(9):882-885.
    [50]Tanida I,Ueno T,Kominami E.LC3 conjugation system in mammalian autophagy[J].Int J Biochem Cell Biol,2004,36(12):2503-2518.
    [51]Kabeya Y,Mizushima N,Yamamoto A,et al.LC3,GABARAP and GATE16 localize to autophagosomal membrane depending on form-Ⅱ formation[J].J Cell Sci,2004,117(Pt13):2805-2812.
    [52]Onodera J,Ohsumi Y.Autophagy Is Required for Maintenance of Amino Acid Levels and Protein Synthesis under Nitrogen Starvation[J].J Biol Chem,2005,280(36):31582-31586.
    [53]Codogno P,Meijer AJ.Autophagy and signaling:their role in cell survival and cell death.Cell Death Differ[J].2005,12(2):1509-1518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700