中电导钙激活钾离子通道对子宫内膜癌细胞生物学行为的影响及调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子宫内膜癌(endometrial carcinoma,EC)是女性生殖系统中常见的恶性肿瘤,发病率大约为15-20/100,000,严重威胁妇女的健康和生命。随着科技和医疗的发展,子宫内膜癌的治愈率逐渐提高,但是特殊病理类型和晚期子宫内膜癌五年的存活率还是很低。尽管对子宫内膜癌的病因和发病机制有许多学说,但目前为止,人们对于子宫内膜癌的具体病因和发病机制还不清楚。研究发现,包括钾离子通道在内的离子通道在肿瘤细胞的增殖中发挥了重要作用,本课题组的前期研究则显示中电导钙激活性钾离子通道(intermediate-conductance Ca2+-activated K~+channels,KCa3.1)在子宫内膜癌组织中高表达,并能促进子宫内膜癌细胞的增殖,在此基础上,本课题将进一步研究中电导钙激活钾离子通道对子宫内膜癌细胞株生物学行为的影响,并探讨可能的分子作用机制。
     本课题共分三部分:①中电导钙激活钾离子通道对子宫内膜癌细胞增殖、周期调控及凋亡的影响;②中电导钙激活钾离子通道对子宫内膜癌细胞迁移和侵袭的影响;③表皮生长因子对中电导钙激活钾离子通道表达的影响及其相关分子机制。
     第一部分中电导钙激活钾离子通道对子宫内膜癌细胞增殖、周期调控及凋亡的影响
     目的利用KCa3.1 siRNA表达质粒及其特异性阻断剂TRAM-34抑制KCa3.1的表达和活性,探讨KCa3.1表达及活性的改变对子宫内膜癌细胞增殖、周期调控及凋亡的影响。
     方法将携有KCa3.1干扰RNA基因片断的质粒转染子宫内膜癌细胞株HEC-1-A、Ishikawa细胞,以转染阴性对照质粒及未转染(空白对照)的细胞作为对照,用Real time-RT-PCR技术及Western blot法检测KCa3.1的表达变化。应用MTT比色法、BrdU掺入法、流式细胞仪、Real time-PCR及Western blot法研究KCa3.1相对特异性阻断剂TRAM-34和KCa3.1 siRNA表达质粒对子宫内膜癌细胞株增殖、周期调控及凋亡的影响。
     结果KCa3.1 siRNA表达质粒可以显著抑制KCa3.1基因及蛋白的表达,与阴性对照质粒转染组及空白对照组相比差异有统计学意义;加入TRAM-34及转染KCa3.1 siRNA表达质粒可以显著抑制HEC-1-A、Ishikawa细胞的增殖;2株细胞的G0/G1百分比上升,S期百分比下降,与对照组相比差异有统计学意义(P<0.05),而细胞凋亡率与对照组相比却无显著差异(P>0.05);细胞蛋白Cyclin D1、Cyclin E及Survivin的表达水平降低,与对照组相比差异具有统计学意义。
     结论抑制KCa3.1通道表达及活性可以抑制细胞增殖,阻碍子宫内膜癌细胞周期进展,但对细胞凋亡无显著影响。
     第二部分中电导钙激活钾离子通道对子宫内膜癌细胞迁移和侵袭的影响
     目的利用特异性阻断剂TRAM-34抑制KCa3.1的活性,探讨钙激活性中电导钾离子通道(KCa3.1)活性改变对子宫内膜癌细胞运动和侵袭的影响。
     方法利用特异性阻断剂TRAM-34,应用划痕实验、运动实验、Transwell小室侵袭实验了解KCa3.1对子宫内膜癌细胞运动和侵袭能力的影响,并用RT-PCR及Western blot法检测TRAM-34作用前后MMP-2表达的改变。
     结果(1)TRAM-34可以显著抑制HEC-1-A、Ishikawa细胞的运动和侵袭能力,与对照组相比差异有统计学意义(P<0.01);(2)与对照组相比,TRAM-34处理后MMP-2的基因和蛋白表达水平降低,差异具有统计学意义(P<0.01)。
     结论抑制KCa3.1通道活性可以降低子宫内膜癌细胞的运动和侵袭能力,这可能与下调MMP-2的表达有关。提示KCa3.1可以促进子宫内膜癌细胞的运动和侵袭,它的表达和/或功能异常可能在子宫内膜癌的转移中起重要作用。
     第三部分EGF对子宫内膜癌细胞KCa3.1表达的影响及其相关分子机制
     目的研究EGF对子宫内膜癌细胞KCa3.1表达的影响及其相关分子机制。
     方法将EGF以不同浓度(0、1、10、20ng/ml)分别作用于HEC-1-A细胞或Ishikawa细胞不同时间(0、12、24、48、72h),采用Westernblot法检测KCa3.1表达水平。以10ng/ml EGF分别作用于HEC-1-A细胞或Ishikawa细胞不同时间(0、5、15、30、60、120min),分别测定AKT和ERK1/2的磷酸化水平,并应用特异性的MAPK通路阻断剂PD98059抑制ERK1/2的磷酸化、特异性的PI3K/AKT通路阻断剂LY294002抑制AKT的磷酸化和相对特异性阻断剂TRAM-34降低KCa3.1的活性,研究信号通路MAPK、PI3K/AKT与KCa3.1之间的相互关系。
     结果(1)随着EGF浓度的增加,HEC-1-A细胞或Ishikawa细胞的KCa3.1的蛋白表达明显增加,与对照组相比,EGF浓度达10ng/ml时,KCa3.1的表达变化具有统计学差异(P<0.05),其后略有下降;随着EGF作用时间的延长,HEC-1-A细胞和Ishikawa细胞的KCa3.1蛋白表达水平逐渐增强,48小时达高峰,此后KCa3.1表达水平呈下降趋势。(2)10ng/ml EGF可以引起HEC-1-A细胞和Ishikawa细胞的p-ERK1/2和pAKT表达的明显增强,ERK1/2和AKT的表达无明显变化。MAPK信号通路的阻断剂PD98059和PI3K/AKT信号通路的阻断剂LY294002分别可抑制EGF引起的ERK1/2和AKT的磷酸化,进而引起KCa3.1的表达下降。(3)KCa3.1通道的相对特异性阻断剂TRAM-34可以阻断EGF引起的ERK1/2的磷酸化,对AKT的磷酸化水平没有影响。
     结论EGF通过MAPK和PI3K/AKT通路促进子宫内膜癌细胞KCa3.1的表达;KCa3.1在EGF激活MAPK信号通路过程中发挥一定作用。
     综上所述,KCa3.1可促进子宫内膜癌细胞株HEC-1-A和Ishikawa细胞的增殖、周期进展、迁移和侵袭。EGF可以通过MAPK和PI3K/AKT信号通路促进子宫内膜癌细胞KCa3.1的表达,同时,KCa3.1的活性改变对ERK1/2的激活具有一定的调节作用。本课题的研究为进一步研究子宫内膜癌的发病机制提供了新的思路,为子宫内膜癌的药物治疗提供了新的思路和靶点。
Endometrial cancer(endometrial carcinoma,EC) is common in malignant tumors of female reproductive system,the incidence is at 15-20 per 100000 women per year.Owing to the development of technology and medical treatment,the curability of EC raised,but for the tumors with particular morphological variants, adverse histopathological features and/or advanced stage,the five years survival rate are still very low.Despite extensive etiopathogenisis and pathogenetic studies,the molecular mechanisms of EC remain elusive.The ion channel has been found to play an important role in the proliferation of cancer cells,and our previous study show that intermediate-conductance Ca2+-activated K~+ channels is highly expressed in endometrial carcinoma tissues and it can promote the proliferation of endometrial carcinoma cells.We will further study the effects of KCa3.1 on endometrial carcinoma cells and to explore the possible molecular mechanisms.
     Our study contains three parts:(1)The effects of KCa3.1 on the proliferation, cell cycle and apoptosis of endometrial carcinoma cells;(2)The impact of KCa3.1 on the migration and invasion of endometrial carcinoma cells;(3) The effects of EGF on KCa3.1 expression and the possible mechanisms.
     SectionⅠEffects of KCa3.1 on proliferation,cell cycle and apoptosis of human endometrial carcinoma cells
     Objective The aim of the present study was to explore the effect of KCa3.1 on cell proliferation,cell cycle and apoptosis in endometrial cancer cells.
     Methods The recombinant plasmid containing small interference RNA of KCa3.1 gene was transfected into endometrial cancer cell lines,HEC-1-A and Ishikawa.Real time-PCR and Western blot were used to examine the gene and protein expression of KCa3.1 channels,while un-transfected cells and transfected negative plasmid cells were served as control groups.The function of KCa3.1 channels in KCa3.1 siRNA transfected endometrial cancer cells was analyzed through MTT、BrdU uptake test,flow cytometry,Real time-RT-PCR and Western blot.In addition, the TRAM-34 was added as inhibitor of KCa3.1.
     Results KCa3.1 siRNA transfected cells inhibited the mRNA and protein expression of KCa3.1 channels compared with control groups(P<0.01).TRAM-34 and KCa3.1 siRNA transfectants suppressed the cell proliferation dramatically. Compared with control groups,the ratios of G0-G1 phase cells in experimental groups increased,while the ratios of S phase cells decreased and the apoptotic rate had no significant changes(P>0.05) among the groups.The protein expressions of Cyclin D1、Cyclin E and survivin had significantly decreased in the experiment groups by Western blot analysis.
     Conclusion The blockage of the function or expression of KCa3.1 channels could inhibit cell proliferation and cell cycle progression,while may not involved in apoptosis in endometrial cancer cells.
     SectionⅡThe impact of KCa3.1 on the migration and invasion of human endometrial carcinoma cells
     Objective To explore the impacts of intermediate-conductance Ca~(2+)-activated K~+ channel on migration and invasion of endometrial carcinoma cells.
     Methods With TRAM-34,the specific blocker of KCa3.1,we detected the changes of migration and invasion of endometrial carcinoma cells through scratch experiment, migration experiment and Transwell chamber invasion assay.At the same time,we studied the changes of MMP-2 expression before and after treatment with TRAM-34, using RT-PCR and Western blot.
     Results(1) TRAM-34 can significantly inhibit the ability to migrate and invade in HEC-1-A and Ishikawa cells,compared with the control group(P<0.01);(2) TRAM-34 could cause the decline of MMP-2 expression and the difference was significant(P<0.01).
     Conclusion The inhibition of KCa3.1 channel activity can reduce the ability to migrate and invade in endometrial carcinoma cells.These phenomenon may be related to reduced MMP-2 expression.In endometfial carcinoma cells,KCa3.1 probably can prompted the migration and invasion,and its expression and/or dysfunction maybe plays an important role in the metastasis of endometrial carcinoma.
     SectionⅢEffect of EGF on KCa3.1 expression and the possible mechanisms
     Objective To study the effects of EGF on the expression of KCa3.1 and the possible mechanisms.
     Methods Cultured HEC-1-A and Ishikawa were treated by EGF with different concentration for different time.The cells were then harvested and the mRNA or proteins of KCa3.1 were extracted for RT-PCR or Western blot analysis,and also the expression of p-ERK1/2 and p-AKT with 10ng/ml EGF after different time(0,5, 15,30,60,120min).Moreover,to investigate the molecular mechanism of EGF,the specific inhibitor of MAPK pathway PD98059 or/and the specific inhibitor of PI3K/AKT pathway LY294002 or/and the specific inhibitor of KCa3.1 TRAM-34 were also used to inhibit the phosphorylation of ERK1/2 or AKT or the KCa3.1 and to study the relations in all these molecules.
     Results(1) With the increase in EGF concentration,HEC-1-A cells or Ishikawa cells KCa3.1 protein expression was significantly increased,compared with the control group;when the dose arrived at 10ng/ml,KCa3.1 expression arrived at the peak with significant difference(P<0.01);with time extension,KCa3.1 protein expression level gradually increased,peaked at 48 hours,after which the expression level of KCa3.1 was downward trend in HEC-1-A or Ishikawa cells.(2) 10ng/ml EGF can cause significant enhancement of p-ERK1/2 and p-AKT expression,which reached the peak after 60min,while the ERK1/2 and AKT expression had no significant changes,the specific inhibitor of MAPK pathway PD98059 or/and the specific inhibitor of PI3K/AKT pathway LY294002,respectively,inhibited EGF-induced ERK1/2 and AKT phosphorylation,thereby causing the expression of KCa3.1 decline compared with the control group statistically(P<0.01).(3)The relative specific blocker of KCa3.1 channel TRAM-34 can block the majority of EGF-induced ERK1/2 phosphorylation,but not the AKT phosphorylation or the expression of ERK1/2 or AKT.
     Conclusion EGF can promote the expression of KCa3.1 through the MAPK and PI3K/AKT signaling pathways;KCa3.1 plays a role in EGF-activated MAPK signaling pathway.
     Overall,KCa3.1 can promote the proliferation,cell cycle,migration and invasion in endometrial cancer cell lines HEC-1-A and Ishikawa.EGF can up-regulate the expression of KCa3.1 through MAPK and PI3K/AKT signaling pathways,meanwhile,KCa3.1 activity changes plays a regulatory role in the activation of MAPK signaling pathway.Our study provide a new sight for study of pathogenesis and a new target for drug therapy of endometrial cancer in the future.
引文
1. Ryan AJ, Susil B, Iobling TW, et al. Endometrial cancer. Cell Tissue Res, 2005, 322(1):53-61.
    
    2. Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin, 1999, 49(1):36-64.
    
    3. Amant F, Moerman P, Neven P, et al. Endometrial cancer. Lancet, 2005,366(9484): 491-505.
    
    4. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002. CA Cancer J Clin,2005,55(2):74-108.
    
    5. Oehler MK, Fung A, Jobling TW. Advances in the treatment of endometrial cancer. J Br Menopause Soc,2005,11(1):18-22.
    
    6. Lax SF, Kendall B, Tashiro H, et al.The frequency of p53,k-ras mutations,and microsatellite instability in uterine endometriod and serous carcinoma:evidence of distinct molecular genetic pathways. Cancer,2000,88(4):814-824.
    
    7. Lagarda H, Catasus L, Argulles R, et al. K-ras mutations in endometrial carcinomas with macrosatellite instability. J Pathol,2001,193(2):193-199.
    
    8. Santin AD, Bellone S, Gokden M, et al. Overexpression of HER-2/neu in uterine serous papillary cancer. Clin Cancer Res,2002,8(5): 1271-1279.
    
    9. Slomovitz BM, Broaddus RR, Burke TW, et al. Her-2/neu overexpression and amplification in uterine papillary serous carcinoma. J Clin Oncol,2004,22(15): 3126-3132.
    
    10. Karl K. Ion channels and cancer. J membr Boil,2005,205:159-173.
    
    11. Wonderlin WF, Strobl JS. Potassium channels, proliferation and G1 progression. J Membr Biol,1996,154(2):91-107.
    
    12. Abdul M, Hoosein N. Voltage-gated potassium ion channels in colon cancer. Oncol Rep, 2002,9(5):961-964.
    
    13. Abdul M, Hoosein N. Voltage-gated sodium ion channels in prostate cancer: expression and activity. Anticancer Res,2002,22(3):1727-1730.
    
    14. Bianchi L, Wible B, Arcangeli A, et al. herg encodes a K+ current highly conserved in tumors of different histogenesis:a selective advantage for cancer cells? Cancer Res. 1998,58(4):815-822.
    
    15. Chang KW, Yuan TC, Fang KP,et al. The increase of voltage-gated potassium channel Kv3.4 mRNA expression in oral squamous cell carcinoma. J Oral Pathol. Med 2003,32(10):606-611.
    
    16. Abdul M, Hoosein N. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett, 2002,186(1):99-105.
    
    17. Parihar AS, Coghlan MJ, Gopalakrishnan M, et al. Effects of intermediate-conductance Ca(2+)-activated K(+) channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol.2003,471(3):157-164.
    
    18. Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, et al. Functional and molecular identification of intermediate-conductance Ca(2+)-activated K(+) channels in breast cancer cells:association with cell cycle progression, Am J Physiol Cell Physiol, 2004,287(1):C125-C134.
    
    19. Jager H, Dreker T, Buck A, et al. Blockage of intermediate-conductance Ca(2+)-activated K(+) channels inhibit human pancreatic cancer cell growth in vitro.Mol Pharmacol.2004,65(3):630-638.
    
    20. Lastraioli E, Guasti L, Crociani O,et al. herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res, 2004,64(2):606-611.
    
    21. Mu D, Chen L, Zhang X, et al. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer cell,2003,3(3):297-302.
    
    22. Neylon CB. Potassium channels and vadcular proliferation. Vascul Pharmacol, 2002,38(1):35-41.
    
    23. O'Grady SM, Lee SY. Molecular diversity and function of voltage-gated(Kv) potassium channels in epithelial cells. Int J Biochem cell Biol. 2005,37 (8):1578-1594.
    
    24. Platoshyn O, Golovina VA, Bauley CL, et al. Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol, 2000,279(5):C1540-C1549.
    
    25. Rao JN, Platoshyn O, Li L, et al. Activation of K(+) channels and increased migration of differentiated intestinal epithelial cells after wounding. Am J Physiol Cell Physiol, 2002,282(4):C885-C898.
    
    26. Remillard CV, Yuan JX. Activation of K+ channels:an essential pathway in programmed cell death. Am J Physiol lung Cell Mol Physiol,2004,286 (1):L49-L67.
    
    27. Khanna R, Chang MC, Joiner WJ, et al. hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J Biol Chem,1999,274(21):14838-14849.
    
    28. Beeton C, Pennington MW, Wulff H, et al. Targeting effector memory T cells with a selective peptic inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol Pharmacol,2005,67(4):1369-1381.
    
    29. Wei L, Xiao AY, Jin C, et al. Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Arch,2004, 448(3):325-334.
    
    30. Stocker JW, De Franceschi L, McNaughton-Smith GA,et al. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood,2003,101(6):2412-2418.
    
    31. Begenisich T, Nakamoto T, Ovitt CE, et al. Physiological roles of the intermediate conductance, Ca2+-activated potassium channel KCNN4. J Biol Chem,2004,279 (46):47681-47687.
    
    32. Warth R, Barhanun J. Function of K+ channels in the intestinal epithelium. J Membr Boil,2003,193(2):67-78.
    
    33. Joiner WJ, Wang LY, Tang MD, et al. hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA, 1997,94(20): 11013-11018.
    
    34. Ishii TM, Silvia C, Hirschberg B, et al. A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA. 1997,94(21): 11651-11656.
    
    35. Jensen BS, Strobak D, Christophersen P,et al.Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol, 1998,275(3 Ptl):C848-C856.
    
    36. Logsdon NJ, Kang J, Togo JA, et al. A novel gene, hKCa4, endodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem,1997,272(52):32723-32726.
    
    37. Vandorpe DH, Shmukler BE, Jiang L, et al. cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1.Roles in regulatory volume decrease and erythroid differentiation. J Biol Chem, 1998,273(34):21542 -21553.
    
    38. Saito T, Fujiwara Y, Fujiwara R, et al. Role of augmented expression of intermediate-conductance Ca2+-activated K+ channel in postischaemic heart. Clin Exp Pharmacol Physiol,2002,29(4):324-329.
    39.Rane SG.The growth regulatory fibroblast IK channel is the prominent electrophysiological feature of rat prostatic cancer cells.Biochem Biophys Res Commun,2000,269(2):457-463.
    40.赵丽君 魏丽惠 刘宁,等.PTEN基因敲减后H EC-1-A细胞生长和信号通路变化的研究[J].中国妇产科临床杂志,2008,9(3):191-195.
    41.王朕华,丰有吉,苏敏,等.中电导钙激活性钾离子通道在子宫内膜癌组织中的表达及其在细胞增殖中的作用[J].中华妇产科杂志,2007,42(2):111-115.
    42.Hannon GJ.RNA interference.Nature,2002,418(6894):244-51.
    43.Couzin J.Breakthrough of the year.Small RNAs make big splash.Science,2002,298(5602):2296-2297.
    44.Scherer LJ,Rossi JJ.Approaches for the sequence-specific knockdown of mRNA.Nat Biotechnol,2003,21(12):1457-1465.
    45.Amarzguioui M,Rossi JJ,Kim D.Approaches for chemically synthesized siRNA and vector-mediated RNAi.FEBS Letters,2005,579(26):5974-5981.
    46.Hammond SM.Dicing and slicing:the core machinery of the RNA interference pathway.FEBS Lett,2005,579(26):5822-5829.
    47.Hannon GJ,Rossi JJ.Unlocking the potential of the human genome with RNA interference.Nature,2004,431(7006):371-378.
    48.Uprichard SL.The therapeutic potential of RNA interference.FEBS Lett,2005,579(26):5996-6007.
    49.Lin X,Yang J,Chen J,et al.Development of a tightly regulated U6 promoter for shRNA expression.FEBS Lett,2004,577(3):376-380.
    50.Schwab A.Function and spatial distribution of ion channels and transporters in cell migration[J].Am J Physiol Renal Physiol,2001,280(5):739-747.
    51.Fioretti B,Pietrangelo T,Catacuzzeno L,et al.Intermediate-conductance Ca~(2+)-activated K+ channel is expressed in C2C12 myoblasts and is downregulated during myogenesis[J].Am J Physiol Cell Physiol,2005,289(1):89-96.
    52.Parihar AS,Coghlan MJ,Gopalakrishnan M,et al.Effects of intermediate-conductance Ca~(2+)-activated K~+ channel modulators on human prostate cancer cell proliferation[J].Eur J Pharmacol,2003,471(3):157-164.
    53.Jager H,Dreker T,Buck A,et al.Blockage of intermediate-conductance Ca~(2+)-activated K~+ channels inhibit human pancreatic cancer cell growth in vitro[J].Mol Pharmacol,2004,65(3):630-638.
    54.Ouadid-Ahidouch H,Roudbaraki M,Delcourt P,et al.Functional and molecular identification of intermediate- conductance Ca~(2+)-activated K~+ channels in breast cancer cells: association with cell cycle progression[J]. Am J Physiol Cell Physiol, 2004,287(1):125-134.
    
    55. Diehl JA. Cycling to cancer with cyclin Dl[J].Cancer Biol Ther,2002, 1(3):226-231.
    
    56. Session DR, Lee GS, Choi J, et al. Expression of cyclin E in gynecologic malignancies [J]. Gynecol Oncol, 1999, 72(1):32-37.
    
    57. Ai Z, Yin L, Zhou X, et al. Inhibition of Survivin reduces cell proliferation and induces apoptosis in human endometrial cancer[J].Cancer,2006,15,107(4):746-756.
    
    58. Cantiello HF, Prat AG, Bonventre JV,et al. Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells. J Biol Chem, 1993,268(7):4596-4599.
    
    59. Cantiello HF, Prat AG, et al. Oscillating activityof a Ca2+-sensitive K+ channel-a prerequisite for migration of alkali transformed Madin-Darby canine kidney (MDCK-F) cells. J Clin Invest. 1994,93:1631-1636.
    
    60. Roll A, Wulf A, Schuricht B, et al. K+channel (hIK1) dependent migration of human neutrophil granulocytes. Pflugers Arch.2000,439: R447
    
    61. Stringer BK, CooperAG, Shepard SB. Overexpression of the G2 protein inwardly rectifying potassium channel 1 ( GIRK1 ) in primary breast carcinomas correlates with axillary lymph node metastasis[ J ].Cancer Res, 2001, 61 (2): 582-588.
    
    62. Potier M, Joulin V, Roger S,et al.Identification of SK3 channel as a new mediator of breast cancer cell migration. Mol Cancer Ther.2006,5(11):2946-2953.
    
    63. Kopfstein L, Chrietofori G. Metastasisxell-autonomous mechanisms versus contribution by the tumor microenviroment. Cell Mol Life Sci,2006,63(4): 449-468.
    
    64. Ludwing T. Local proteolytic activity in tumor cell invasion and metastasis. Bioessays,2005,27(11):1181-1191.
    
    65. Rosette C, Roth RB, Oeth P, et al. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis,2005,26(5):943-950.
    
    66. Seals DF, Azucena EF Jr, Pass I, et al. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell,2005,7(2):155-165.
    
    67. Boire A, Covic L, Agarwal A, et al. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells.Cell,2005,120 (3):303-313.
    
    68.高进,章静波主编。癌的侵袭和转移基础与临床。科学出版社,2002:94。
    
    69. Cillo C, Cantile M, Mortarini R, et al. Differential partterns of HOX gene expression are associated with specific integrin and ICAM profiles in clonal populations isolated from a single human melanoma metastasis. Int J Cancer, 1996,66(5):692-697.
    
    70. Auersperg N , Maines-Bandiera SL, Dyek HG. Phenotypie plasticity of ovarian surface epithelium:possible implications for ovarian carcinogenesis. Ovsrisn Cancer,1996,4(1):3-17.
    
    71. Misugi F,Sumi T,Okamoto E,et al. Expression of matrix metalloproteinases and tissue inhibitots of metallo- proteinase in uterine endometrial carcinoma and a corre- lation between expression of matrix metalloproteinase -7 and prognosis.Int J Mol Med,2005,16(4):541-546.
    
    72. Graesslin O, Cortez A, Fauvet R, et al. Metalloproteinase-2, -7 and -9 and tissue inhibitor of metalloproteinase-1 and -2 expression in normal, hyperplastic and neoplastic endometrium:a clinical- pathological correlation study . Ann Oncol,2006,17(4):637-645.
    
    73. Okada A. Rolesof matrix metalloproteinases and tissue inhibitor of metalloproteinases(TIMP) in cancer invasion and metastasis. Gan To Kagakn Ryoho,1999;26(14):2247-2252.
    
    74. Lurlaro M, Loverro G, Vacca A, el al. Angiogenesis extent and expression of matrix metalloproteinase-2 and-9 correlate with upgrading and myometrial invasion in endometrial carcinom. EurJ Clin invest,1999,29(9):793-801.
    
    75.Aglund K, Rauvala M, Puistola U, et al. Gelatinases A and B (MMP-2 and MMP-9)in endometrial cancer- MMP-9 correlates to the grade and the stage. Gynecol Oncol,2004,94(3):699-704.
    
    76. Di Nezza LA, Misajon A, Zhang J, et al. Presence of active gelatinases in endometrial carcinoma and correlation of matrix metalloproteinase expression with increasing tumor grade and invasion.Cancer,2002,94(5):1466-1475.
    
    77. Tamakoshi K, Kikkawa F, Nawa A, et al. Different pattern of zymography between human gynecologic nomal and malignant tissues.Am J Obstet Gynecol,1994,171(2): 478-484.
    
    78. Laird SM, Dalton CF, Okon MA, et al. Metalloproteinases and tissue inhibitor of metalloproteinases-l(TIMP-l) in endometrial flushings from pre-and post-menopausal women and from women with endometrial adenocarcinoma. J Reprod Fertil. 1999,115(2):225-232.
    
    79. Moser PL, Hefler L, Tempfer C, et al. Immunohistochemical detection of matrix metalloproteinase(MMP)-1and-2,and tissue inhibitor of metalloproteinase-2 (TIMP-2)in stage I and II endometrial cancer. Anticancer Res, 1999,19 (3B):2365-2367.
    
    80. Wang L, Xu B, White RE, et al. Growth factor-mediated K+ channel activity associated with human myeloblastic ML-1 cell proliferation. Am J Physiol, 1997 273(5 Pt 1):C1657-1665.
    
    81. Xu D,Wang L, Dai W, et al.A Requirement for K1-Channel Activity in Growth Factor-Mediated Extracellular Signal-Regulated Kinase Activation in Human Myeloblastic Leukemia ML-1 Cells.Blood, 1999, 94(1):139-145.
    
    82. Fioretti B, Castigli E, Micheli MR, et al. Expression and modulation of the intermediate-conductance Ca2+-activated K+ channel in glioblastoma GL-15 cells. Cell Physiol Biochem. 2006,18(1-3):47-56.
    
    83. Hofmann GE ,Scott RT Jr ,Bergh PA ,et al. Immunohistochemical localization of epidermal growth factor in human endometrium, deciduas and placenta. J Clin EndocrinolMetab,1991,73(4):882-887.
    
    84. Khalifa MA, Abdoh AA, Mannel RS, et al. Prognostic utility of epidermal growth factor receptor overexpression in endometrial adenocarcinoma. Cancer, 1994,73 (2):370-376.
    
    85. Athanassiadou P, Petrakakou E, Liossi A. et al. Prognostic significance of P53, bcl-2 and EGFR in carcinoma of th endometrium.Acta Cytol, 1999,43 (6):1039-1044.
    
    86. Pearl ML, Talavera F, Gretz HF 3rd, et al. Mitogenic activity of growth factors in the human endometrical adenocarcinoma cell lines HEC-1-A and KLE. Gynecol Oncol, 1993,49(3):325-332.
    
    87. Imai T , Kurachi H , Adachi K, et al. Changes in epidermal growth factor receptor and the levels of its ligands during menstrual cycle in human endometrium. Biol Reprod,1995,52(4):928-938.
    
    88. Kohler R, Wulff H, Eichler I, et al. Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation, 2003,108(9):1119-1125.
    1.Wang Z.Roles of K+ channels in regulating tumour cell proliferation and apoptosis[J].Pflugers Arch,2004,448(3):274-286.
    2.Kraft R,Krause P,Jung S,et al.BK channel openers inhibit migration of human glioma cells[J].Pflugers Arch,2003,46(2):248-255.
    3.Ouadid-Ahidouch H,Roudbaraki M,Ahidouch A,et al.Cell-cycle-dependent expression of the large Ca2+ -activated K channels in breast cancer cells[J].Biochem Biophys Res Commun, 2004,316(1):244-251.
    
    4. Coiret G, Matifat F, Hague F, et al.17-Beta-estradiol activates maxi-K channels through a non-genomic pathway in human breast cancer cells [J].FEBS Lett,2005,579(14): 2995-3000.
    
    5. Abdul M, Santo A, Hoosein N. Activity of potassium channel- blockers in breast cancer [J].Anticancer Res, 2003,23(4): 3347 -3351.
    
    6. Basrai D ,Kraft R, Bollensdorff C, et al.BK channel blockers inhibit potassium-induced proliferation of human astrocytoma cells [J]. Neuroreport, 2002,13(4):403 -407.
    
    7. Jensen.BS, Strobaek D, Christophersen P, et al. Characterization of the cloned human intermediate- conductance Ca2+-activated K channel [J] .Am J Physiol, 1998,275(3pt1):848-856.
    
    8. Fanger CM, Ghanshani S, Logsdon NJ , et al.Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa Channel, IKCal [J] J Biol Chem, 1998,274(9):5746-5754.
    
    9. Pena TL, Chen SH, Konieczny SF, et al .Ras / MEK / ERK up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis [J].J Biol Chem, 2000, 275(18):13677-13682.
    
    10. Rane SG. The growth regulatory fibroblast IK channel is the predominant electrophysiological feature of rat prostate cancel cells. Biochem Biophys Res Commun, 2000,269(2):457-463.
    
    11. Ghanshani S, Wulff H, Miller MJ, et al .Up-regulation of the IKCal potassium channel during T- cell activation. Molecular mechanism and functional consequences[J].J Biol Chem,2000, 275(47):37137-37149.
    
    12. Kohler R, Wulff H, Eichet I, et al.Blockade of the intermediate- conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis [J].Circulation, 2003, 108(9): 1119-1125.
    
    13. Tajima N, Schonherr K, Niedling S, et al. Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia- inducible factor-1α and the von Hippel-Lindau protein. J Physiol. 2006, 571(Pt 2): 349-359.
    
    14. Parihar AS, Coghlan MJ, Gopalakrishnan M, et al .Effects of intermediate- conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol, 2003,471(3):157-164.
    
    15. Jager H, Dreker T, Buck A, et al .Blockage of intermediate- conductance Ca2+-activated K channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol, 2004,65(3):630-638.
    
    16. Wang ZH, Shen B, Yao HL, et al.Blockage of intermediate- conductance-Ca(2+)- activated K(+) channels inhibits progression of human endometrial cancer. Oncogene, 2007, 26(35):5107-5114.
    
    17. Blatz AL ,Magleby KL. Single apamin-blocked Ca-activated K1 channels of small conductance in cultured rat skeletal muscle. Nature (London) ,1986, 323:718-720.
    
    18. Chandy KG, Fantino E, Wittekindt O, et al.Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and biopolar disorder? Mol Psychiatry,1998,3(1):32-37.
    
    19. Blatz AL. Magleby KL. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature, 1986, 323:718-720.
    
    20. Grissmer S, Lewis RS, Cahalan MD. Ca(2+)-activated K+ channels in human leukemic T cells. J Gen Physiol, 1992, 99(1):63-84.
    
    21. Park YB. Ion selectivity and gating of small conductance Ca(2+)-activated K+ channels in cultured rat adrenal chromaffin cells.J Physiol, 1994,481(Pt 3):555-570.
    
    22. Lancaster B, Nicoll RA, Perkel DJ. Calcium activates two types of potassium channels in rat hippocampal neurons in culture. J Neurosci, 1991,11(1):23-30.
    
    23. Bond CT, Sprengel R, Bissonnette JM, et al.Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science, 2000,289(5486): 1942-1946.
    
    24. Wang H, Zhang Y, Cao L, et al .HERG K channel,a regulator of tumor cell apoptosis and proliferation. Cancer Res, 2002, 62 (17): 4843-4848.
    
    25. Wulff H, Miller MJ, Hansel W, et al. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA, 2000,97(14):8151-8156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700