血管内皮生长因子对肺癌细胞株药物敏感性影响的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的考察外源性血管内皮生长因子对体外培养的A549肺癌细胞增殖,细胞凋亡,化疗药物敏感性的影响,并观察VEGF-VEGFR2-PI3K/Akt信号通路在其中的作用。从而初步探讨VEGF对肺癌细胞生物学影响及机制。
     方法分别在含有10%、0.5%、0%血清浓度的培养基中,加入不同浓度梯度外源性VEGF培养A549细胞,MTT实验检测VEGF对于细胞生长及生存的影响;确定顺铂、吉西他滨、多烯紫杉醇的适合作用浓度,MTT法比较加入与否外源性VEGF时A549细胞对上述化疗药物的敏感性;MTT法比较加入外源性VEGF时抑制VEGF-VEGFR2-PI3K/Akt信号通路与否对于A549细胞的药物敏感性的影响;Western-blot实验检测加入VEGF时细胞VEGF-VEGFR2-PI3K/Akt信号通路中Akt蛋白磷酸化的变化;流式细胞仪检测VEGF+化疗药物组与单纯化疗组相比,细胞周期及凋亡的变化情况。
     结果1、向含10%及0.5%血清的培养基中加入不同浓度梯度外源性VEGF,细胞的增殖及凋亡变化不显著。应用不含血清的培养基培养A549细胞,MTT示分别加入50ng/ml,100ng/ml,500ng/ml外源性VEGF均能使促进其增殖及生存,流式细胞分析示加入100ng/m1外源性VEGF细胞S期及G2期比例增加,G1期比例下降。2、MTT法示在0.5%血清的培养基中应用适宜浓度的顺铂、吉西他滨、多烯紫杉醇杀伤细胞的同时加入外源性VEGF能够显著提高细胞生存,应用VEGF-VEGFR2-PI3k/Akt信号通路的抑制剂能够阻断这种效应,流式细胞分析示加入VEGF组与对照组相比化疗诱导的细胞凋亡明显减少。3、Western-blot实验示外源性VEGF对细胞中Akt磷酸化的激活作用于30分钟至2小时达到最强,随时间发展逐渐减弱,加入VEGF信号通路抑制剂能够减弱VEGF对Akt磷酸化的激活作用。
     结论1、无血清培养基培养细胞时,VEGF可延长A549细胞的存活时间。2、向细胞培养基中加入外源性VEGF可拮抗顺铂、吉西他滨、多烯紫杉醇对于A549细胞诱导的凋亡作用。3、VEGF拮抗A549细胞的凋亡作用与VEGF-VEGFR-PI3K/Akt通路相关。
     目的探讨由质粒载体介导的针对VEGF的RNAi对A549肺癌细胞中VEGF的表达、A549细胞增殖的影响及RNAi联合化疗药物对肿瘤的杀伤作用,为RNA干扰技术在肺癌治疗领域中的应用提供实验依据。
     方法将携带有针对VEGF的RNAi表达框架的真核表达载体pRS-VEGF-shRNA质粒于DH5a大肠杆菌中扩增并进行测序鉴定,通过脂质体转染技术将该质粒转染入A549细胞,RT-PCR法检测VEGF mRNA表达被抑制情况,ELISA法检测培养细胞上清液中VEGF蛋白表达,MTT法检测转染该质粒对于A549细胞的增殖与凋亡的影响,MTT法检测RNAi与顺铂、吉西他滨或多烯紫杉醇共同作用时细胞的增殖与凋亡的变化。
     结果1、质粒pRS-VEGF-shRNA进行扩增后,测序结果显示其具有能够抑制VEGF表达的shRNA序列。2、RT-PCR法示与对照组比较,48小时后质粒pRS-VEGF-shRNA转染组VEGF mRNA表达量显著降低。3、ELISA法示转染组细胞上清液中VEGF蛋白含量显著降低,与RT-PCR结果相一致。4、转染后48h,MTT法示质粒转染组细胞的与对照组相比细胞增殖及存活受到抑制。5、RNAi质粒与化疗药物共作用组较单纯化疗药物组细胞存活数减少。
     结论1.质粒pRS-VEGF-shRNA能够成功转染入A549细胞,VEGF mRNA表达及VEGF蛋白分泌受到抑制。2.应用针对VEGF的RNAi阻断内源性VEGF表达后,A549细胞的增殖受到影响。3. RNAi能够通过抑制肿瘤自分泌的VEGF与化疗药物协同杀伤肺癌细胞。
Objective To investigate the effect by exogenous vascular endothelial growth factor on proliferation, apoptosis, chemosensitivity in cultured A549 lung cancer cells and the involvement of VEGF-VEGFR2-PI3K/Akt pathway, hoping to provide the experimental data of biological effects of VEGF on lung cancer cells.
     Methods Culture A549 lung cancer cell with different concentrations of exogenous VEGF in the medium containing different concentrations of serum, then the cell growth was monitored by MTT assay. The cells were treated with anticancer drugs alone or in combination of exogenous VEGF. The proliferation and apoptosis was measured by MTT assay. The distribution of cell cycle or the apoptosis rate was analysed by flow cytometry. After inhibition VEGF-VEGFR2-PI3K/Akt signaling pathway, the chemosensitivity was evaluated by MTT assay. The phosphorylation of Akt was detected by Western blot.
     Results Culturing the cells with medium containing 10% or 0.5% serum, the exogenous VEGF did not change the growth rates significantly. When A549 cells in the serum free culture, applying exogenous VEGF, proliferation and survival could be stimulated, and the cell population in G1 phase was decreased while the cell population in S and G2 phase was increased. Compared to chemotherapy alone, the survival of the cells was improved when it treated with anticancer drugs together with exogenous VEGF, which was suppressed by VEGF-VEGFR-PI3K/Akt inhibitors. Flow cytometry analysis indicated the proportion of apoptotic cells was lesser in the VEGF plus chemotherapy group. Western blot revealed the level of phosphorylated Akt reached the highest after the cells were incubated with exogenous VEGF for 30 minutes or 2 hours.
     Conclusion 1. Exogenous VEGF could prolong survival of A549 human lung cancer cells cultured cells in serum-free medium.2. Exogenous VEGF could reduce chemotherapy-induced apoptosis of A549 human lung cancer cells.3. VEGF-VEGFR-PI3K/Akt signaling pathway was involved in the protection against chemotherapy toxicity by exogenous VEGF in A549 human lung cancer cells.
     Objective To study the effect of vector-mediated RNA interference targeting VEGF combined with chemotherapy on cell proliferation and survival in A549 human lung cancer cell line, providing some data of RNA interference therapy for lung cancer.
     Methods The VEGF-specific shRNA-expressing plasmid pRS-VEGF-shRNA was amplified in E. coli DH5α. The shRNA sequence targeting human VEGF was confirmed by DNA sequencing analysis. After the plasmid was transfected into A549 cells by liposome, VEGF mRNA expression and VEGF protein concentration was detected by RT-PCR and ELISA separately. The cytotoxity of RNAi plasmid alone or in combination with anticancer drugs was evaluated by MTT assay.
     Results The sequencing proved the targeting sequence was identical to part of VEGF cDNA. RT-PCR showed the down-regulation of VEGF mRNA expression. ELISA showed the concentration of VEGF protein in the supernatant of the medium was decreased. MTT assay indicated the growth of the plasmid transfected cells was inhibited. After the cells were treated with plasmid and anticancer drugs, compared to the control group, the number of apoptotic cells increased.
     Conclusion 1. Plasmid pRS-VEGF-shRNA could be successfully transfected into A549 cells, resulting in the inhibition of VEGF mRNA expression and VEGF protein secretion.2. After the expression of endogenous VEGF was suppressed, the growth of A549 cells was affected.3. The cytotoxicity of anticancer drugs was enhanced when the secretion of endogenous VEGF was down-regulated by plasmid-mediated RNAi in A549 lung cancer cells.
引文
1. Jemal, A., et al., Cancer statistics,2005. CA:a cancer journal for clinicians,2005.55(1):p.10.
    2. Shibuya, M.a.C.-W., L., Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell. Res,2006.312:p.549-560.
    3. Goustin, A.S., et al., Growth factors and cancer. Cancer Res,1986.46(3):p.1015-29.
    4. LeRoith, D. and C.T. Roberts, Jr., The insulin-like growth factor system and cancer. Cancer Lett,2003. 195(2):p.127-37.
    5. Cross, M. and T.M. Dexter, Growth factors in development, transformation, and tumorigenesis. Cell, 1991.64(2):p.271-80.
    6. Senger, D.R., et al., Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science,1983.219(4587):p.983-5.
    7. Gerber, H.P., et al., Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem,1998.273(46):p.30336-43.
    8. Nakanishi, R., et al., Effect of vascular endothelial growth factor and its receptor inhibitor on proliferation and invasion in bladder cancer. Urol Int,2009.83(1):p.98-106.
    9. Zagzag, D., Angiogenic growth factors in neural embryogenesis and neoplasia. Am J Pathol,1995. 146(2):p.293-309.
    10. Abu-Jawdeh, G.M., et al., Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Lab Invest,1996. 74(6):p.1105-15.
    11. Masood, R., et al., Vascular endothelial growth factor/vascular permeability factor is an autocrine growth factor for AIDS-Kaposi sarcoma. Proc Natl Acad Sci U S A,1997.94(3):p.979-84.
    12. Byrne, A.M., D.J. Bouchier-Hayes, and J.H. Harmey, Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med,2005.9(4):p.777-94.
    13. Toi, M., et al., Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer,1998.77(6):p.1101-1106.
    14. Avramis, I.A., R. Kwock, and V.I. Avramis, Taxotere and vincristine inhibit the secretion of the angiogenesis inducing vascular endothelial growth factor (VEGF) by wild-type and drug-resistant human leukemia T-cell lines. Anticancer Res,2001.21(4A):p.2281-6.
    15. Katoh, O., et al., Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an antiapoptotic factor. Cancer Res,1998.58(23):p.5565-9.
    16. Hannon, G.J., RNA interference. Nature,2002.418(6894):p.244-51.
    17. Senger DR, G.S., Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HE, Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.. science 1983 219:p.983-5.
    18. Myoken, Y, et al., Vascular endothelial cell growth factor (VEGF) produced by A-431 human epidermoid carcinoma cells and identification of VEGF membrane binding sites. Proc Natl Acad Sci U S A,1991.88(13):p.5819-23.
    19. Sheng, H., et al., Prognostic value of vascular endothelial growth factor expression in primary lung carcinoma. Acta Med Okayama,2000.54(3):p.119-26.
    20. O'Byrne, K.J., et al., Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. Br J Cancer,2000.82(8):p.1427-32.
    21. Dalaveris, E., et al., VEGF, TNF-[alpha] and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer,2009.64(2):p.219-225.
    22. Kaya, A., et al., The prognostic significance of vascular endothelial growth factor levels in sera of non-small cell lung cancer patients. Respiratory medicine,2004.98(7):p.632-636.
    23. Seto, T., et al., Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage Ⅰ non-small-cell lung cancer. Lung Cancer,2006.53(1):p.91-6.
    24. Wang, X.F., et al., Inhibition of expression of vascular endothelial growth factor and its receptors in pulmonary adenocarcinoma cell by TNP-470 in combination with gemcitabine. J Zhejiang Univ Sci B, 2006.7(10):p.837-43.
    25. Liu, B., et al., Melanoma cell lines express VEGF receptor KDR and respond to exogenously added VEGF. Biochem Biophys Res Commun,1995.217(3):p.721-7.
    26. Laack, E., et al., Pretreatment vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) serum levels in patients with metastatic non-small cell lung cancer (NSCLC). Lung Cancer,2005.50(1):p.51-58.
    27. Volm, M. and W. Rittgen, Cellular predictive factors for the drug response of lung cancer. Anticancer Res,2000.20(5B):p.3449-58.
    28. Tran, J., et al., A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci U S A,2002.99(7):p.4349-54.
    29. Matsumoto, T. and H. Mugishima, Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J Atheroscler Thromb,2006.13(3):p.130-5.
    30. Gerber, H., et al., Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Journal of Biological Chemistry,1998. 273(46):p.30336.
    31. Schmidt, M., S. Hovelmann, and T. Beckers, A novel form of constitutively active farnesylated Akt1 prevents mammary epithelial cells from anoikis and suppresses chemotherapy-induced apoptosis. British journal of cancer,2002.87(8):p.924-932.
    32. Dole, M., et al., Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res,1994. 54(12):p.3253-9.
    33. Tamm, I., et al., IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res,1998.58(23):p.5315-20.
    34. Shweiki, D., et al., Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids:implications for tumor angiogenesis. Proc Natl Acad Sci U S A,1995.92(3):p.768-72.
    35. Hinz, M., et al., NF-kappaB function in growth control:regulation of cyclin D1 expression and GO/GI-to-S-phase transition. Mol Cell Biol,1999.19(4):p.2690-8.
    36. Sporn, M.B. and A.B. Roberts, Autocrine growth factors and cancer. Nature,1985.313(6005):p. 745-7.
    37. Koukourakis, M.I., et al., Vascular endothelial growth factor/KDR activated microvessel density versus CD31 standard microvessel density in non-small cell lung cancer. Cancer Res,2000.60(11):p. 3088-95.
    38. Sui, G., et al., A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A,2002.99(8):p.5515-20.
    39. Wang, S., et al., Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference. Neoplasia,2008.10(4):p.399-407.
    40. Masood, R., et al., Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood,2001.98(6):p.1904-13.
    41. Ge, Y.L., et al., The mechanisms on apoptosis by inhibiting VEGF expression in human breast cancer cells. Int Immunopharmacol,2009.9(4):p.389-95.
    42. Raskopf, E., et al., siRNA targeting VEGF inhibits hepatocellular carcinoma growth and tumor angiogenesis in vivo. J Hepatol,2008.49(6):p.977-84.
    43. Sandler, A., et al., Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer.N Engl J Med,2006.355(24):p.2542-50.
    44. Johnson, D.H., et al., Randomized phase Ⅱ trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol,2004.22(11):p.2184-91.
    1. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak H F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science.1983;219:983-5
    2. Gospodarowicz D, Abraham JA, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc. Natl. Acad. Sci.1989;86:7311-5
    3. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science.1989;246:1306-9
    4. Devries C, Escobedo JA., Ueno H, Houck K, Ferrara N, and Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science.1992;255:989-91
    5. Byrne AM, Bouchier DJ, Harmey JH. Angiogenic and cell survival functions of Vascular Endothelial Growth Factor J. Cell. Mol. Med.2005;9:777-94
    6. Maharaj AS, D'Amore PA. Roles for VEGF in the adult. Microvasc Res.2007;74:100-13
    7. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev.2004; 56:549-80
    8. Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui TG, Sugiono M, Waine E, Perrin R, Foster R, Digby-Bell J, Shields JD, Whittles, CE, Mushens RE, Gillatt DA, Ziche M, Harper SJ, Bates DO. VEGF165b, an inhibitory vascular endothelial growth factor splice variant:mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res.2004; 64:7822-35
    9. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-C induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 2005;201:1089-99
    10. Kawakami M, Furuhata T, Kimura Y, Yamaguchi K, Hata F, Sasaki K, Hirata K. Expression analysis of vascular endothelial growth factors and their relationships to lymph node metastasis in human colorectal cancer. J Exp Clin Cancer Res.2003; 22:229-37
    11. Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, Alitalo K. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR3. EMBO J.2001; 20:4762-73
    12. Waltenberger J, Augustin HG, Ziche M, Lanz C, Buttner M, Rziha, HJ, Dehio C. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signaling through VEGFR2 (KDR) but not VEGFR1 (Flt-1) receptor tyrosine kinases. EMBO J.1999; 18:363-74.
    13. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice, Proc. Natl Acad. Sci.1998;95:9349-54
    14. Wey JS, Fan F, Gray MJ, Bauer TW, McCarty MF, Somcio R, Liu W, Evans DB, Wu Y, Hicklin DJ, Ellis LM. Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer 2005; 104:427-38
    15. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 92:735-45,
    16. Ferrara N, Carvermoore K, Chen H, Dowd M, Lu L, Oshea KS, Powellbraxton L, Hillan KJ, Moore MW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380:439-42
    17. Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J. A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell.1997;89,981-90
    18. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood island formation and vasculogenesis in Flk-1-deficient mice. Nature.1995;376,62-6
    19. Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature.1995;376,66-70
    20. Alon T, Hemo I, Itin A, Peer J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Med. 1995;1:1024-28
    21. Brusselmans K, Bono F, Collen D, Herbert JM, Carmeliet P, Dewerchin M. A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem. 2005;280:3493-9
    22. Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR. Vascular permeability factor/vascular endothelial growth factor:an important mediator of angiogenesis in malignancy and inflammation. Int ArchAllergy Immunol.1995; 107:233-5
    23. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284:1994-8
    24. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature.1992;359:843-5
    25. Shweiki D, Neeman M, Itin A, Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids:Implications for tumor angiogenesis. Proc. Natl. Acad. Sci.1995;92:768-72
    26. Riedel F, Gotte K, Goessler U, Sadick H, Hormann K. Targeting chemotherapy-induced VEGF up-regulation by VEGF antisense oligonucleotides in HNSCC cell lines, Anticancer Res.2004; 24:2179-83
    27. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W. () Vascular endothelial growth factor induces endothelial fenestrations in vitro. J. Cell Biol.1998;140:947-95
    28. Toi M, Kondo S, Suzuki H, Yamamoto Y, Inada K, Imazawa T, Taniguchi T, Tominaga T. Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 1996; 77:1101-6
    29. Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D. Both v-Ha-ras and v-raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J.Biol. Chem.1995;270,25915-9
    30. Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res.2005; 65:3967-79
    31. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips H S, Ferrara N. Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumour growth in vivo. Nature.1993;362:841-4
    32. Barr MP, Byrne AM, Duffy AM, Condron CM, Devocelle M, Harriott P, Bouchier-Hayes DJ, Harmey JH. A peptide corresponding to the neuropilin-1-binding site on VEGF(165) induces apoptosis of neuropilin-1-expressing breast tumour cells. Br J Cancer 2005; 92:328-33
    33. Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig NE. Halting angiogenesis suppresses carcinoma cell invasion. Nature Med.1997;3:1222-7
    34. Herbst RS, Onn A, Sandler A. Angiogenesis and lung cancer:prognostic and therapeutic implications. J Clin Oncol 2005;23:3243-56
    35. Koukourakis MI, Papazoglou D, Giatromanolaki A, Bougioukas G, Maltezos E, Sivridis E VEGF gene sequence variation defines VEGF gene expression status and angiogenic activity in non-small cell lung cancer. Lung Cancer.2004;46:293-8
    36. Fontanini G, Boldrini L, Chine S, Pisaturo F, Basolo F, Calcinai A, Lucchi M, Mussi A, Angeletti CA, Bevilacqua G Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas. Br J Cancer.1999;79:363-9
    37. Matsuyama W, Hashiguchi T, Mizoguchi A, Iwami F, Kawabata M, Arimura K, et al. Serum levels of vascular endothelial growth factor dependent on the stage progression of lung cancer. Chest. 2000;118:948-51
    38. Katsabeki-Katsafli A, Kerenidi T, Kostikas K, Dalaveris E, Kiropoulos TS, Gogou E, Papaioannou AI, Gourgoulianis KI. Serum vascular endothelial growth factor is related to systemic oxidative stress in patients with lung cancer. Lung Cancer.2008;60:271-6
    39. Ushijima C, Tsukamoto S, Yamazaki K, Yoshino I, Sugio K, Sugimachi K. High vascularity in the peripheral region of non-small cell lung cancer tissue is associated with tumor progression. Lung Cancer 2001;34:233-41
    40. Dalaveris E, Kerenidi T, Katsabeki-Katsafli A, Kiropoulos T, Tanou K, Gourgoulianis KI, Kostikas K. VEGF, TNF-alpha and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer 2008 Oct 7
    41. Kaya A, Ciledag A, Gulbay BE, Poyraz BM, Celik G, Sen E, et al. The prognostic significance of vascular endothelial growth factor levels in sera of non-small cell lung cancer patients. Respir Med 2004;98:632-6
    42. Laack E, Scheffler A, Burkholder I, Boeters I, Andritzky B, Schuch G, Gorn M, Vohwinkel G, Edler L, Fiedler W, Hossfeld DK. Pretreatment vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) serum levels in patients with metastatic non-small cell lung cancer (NSCLC). Lung Cancer.2005;50:51-8
    43. Yilmaz A, Ernam D, Unsal E, Demirag F, Atikcan S, Ta(?)tepe I.Vascular endothelial growth factor immunostaining correlates with postoperative relapse and survival in non-small cell lung cancer. Arch Med Res.2007;38:764-8
    44. Seto T, Higashiyama M, Funai H, Imamura F, Uematsu K, Seki N, Eguchi K, Yamanaka T, Ichinose Y. Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer 2006;53:91-6
    45. Reinmuth N, Piegelbrock E, Raedel M, Fehrmann N, Hintelmann H, Wagner R, Berdel WE, Thomas M, Freitag L, Mesters RM. Prognostic significance of vessel architecture and vascular stability in non-small cell lung cancer. Lung Cancer.2007;55:53-60
    46. Jin HY, Lee KS, Jin SM, Lee YC. Vascular endothelial growth factor correlates with matrix metalloproteinase-9 in the pleural effusion. Respir Med.2004;98:115-22
    47. Kadota K, Huang CL, Liu D, Ueno M, Kushida Y, Haba R, Yokomise H. The clinical significance of lymphangiogenesis and angiogenesis in non-small cell lung cancer patients. Eur J Cancer.2008;44:1057-67
    48. Saintigny P, Kambouchner M, Ly M, Gomes N, Sainte-Catherine O, Vassy R, Czernichow S, Letoumelin P, Breau JL, Bernaudin JF, Kraemer M. Vascular endothelial growth factor-C and its receptor VEGFR3 in non-small-cell lung cancer:Concurrent expression in cancer cells from primary tumour and metastatic lymph node. Lung Cancer.2007;58,205-13
    49. Ohta Y, Shimizu Y, Minato H, Matsumoto I, Oda M, Watanabe G. Results of Initial Operations in Non-Small Cell Lung Cancer Patients With Single-Level N2 Disease. Ann Thorac Surg.2006;81:427-33
    50. Imoto H, Osaki T, Taga S, Ohgami A, Ichiyoshi Y, Yasumoto K. Vascular endothelial growth factor expression in non-small-cell lung cancer:prognostic significance in squamous cell carcinoma. J Thorac Cardiovasc Surg.1998;115:1007-14
    51. Naumnik W, Izycki T, Swidzinska E, Ossoliriiska M, Chyczewska E Serum levels of VEGF-C, VEGF-D, and sVEGF-R2 in patients with lung cancer during chemotherapy. Oncol Res.2007; 16:445-51
    52. Kopfstein L, Veikkola T, Djonov VG, Baeriswyl V, Schomber T, Strittmatter K, Stacker SA, Achen MG, Alitalo K, Christofori G. Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol.2007; 170:1348-61
    53. Sandler AB, Johnson DH, Herbst RS. Anti-vascular endothelial growth factor monoclonals in non-small cell lung cancer. Clin Cancer Res 2004;10:4258s-62s
    54. Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Langer CJ, DeVore RF 3rd, Gaudreault J, Damico LA, Holmgren E, Kabbinavar F. Randomized phase Ⅱ trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol.2004;22:2184-91
    55. Tanno S, Ohsaki Y, Nakanishi K, Toyoshima E, Kikuchi K Human small cell lung cancer cells express functional VEGF receptors, VEGFR2 and VEGFR3. Lung Cancer.2004;46:11-9
    56. Reinmuth N, Jauch A, Xu EC, Muley T, Granzow M, Hoffmann H, Dienemann H, Herpel E, Schnabel PA, Herth FJ, Gottschling S, Lahm H, Steins M, Thomas M, Meister M. Correlation of EGFR mutations with chromosomal alterations and expression of EGFR, ErbB3 and VEGF in tumor samples of lung adenocarcinoma patients. Lung Cancer.2008; 62:193-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700