CXCR4表达在衰老骨髓细胞中的变化及其对血管再生功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验背景:
     随着社会经济的发展,心脑血管疾病的发病率日益增高。动脉闭塞作为冠心病、脑血管意外和下肢缺血的共同病因,其发病率在老年人群中渐增。利用人体自身的细胞来生成新血管的细胞替代治疗作为一种低成本、低风险的治疗方案已越来越受重视。不幸的是,可能从中受益最大的老年患者体内可用的祖细胞数量及其血管生成能力均已极度衰减。
     骨髓源性干细胞(BMCs)具有多向分化能力,并能提供支持血管生长和成熟的蛋白质,从而促进新生血管生成。基质细胞衍生因子-1(SDF-1)是动员骨髓细胞和促进细胞向靶组织归巢的过程中的关键性趋化因子。SDF-1通过与靶细胞表面受体CXCR4结合并激活CXCR4而起作用。不同类型的细胞表面CXCR4的表达各不相同,而通过适当的体外培养可以增加其表达。我们过去的研究表明,钙处理可提高对骨髓细胞表面CXCR4的表达。BMCs表面CXCR4的表达水平决定了细胞向靶组织归巢及随后血管生成的效率。MSCs或CD34+细胞CXCR4的过度表达,在体外实验中会增强这些细胞向SDF-1的迁移,在体内实验中则能增加骨髓移植的疗效,这些都很可能归功于细胞存活和归巢的增加。但是,老年人骨髓中所含有的干细胞祖细胞在治疗和修复功能方面有所缺陷。无论动物或人类,其EPC水平和功能均因衰老、糖尿病、缺血性心脏病和动脉粥样硬化而受到不利影响,血管生成功能也因衰老而受损,然而这些因素在分子层面的影响尚不明确。
     实验目的:
     研究骨髓细胞CXCR4表达是否因衰老而有所缺陷,从而使骨髓中CXCR4+祖细胞的数量减少,并进一步导致骨髓细胞向缺血组织的归巢能力及促血管新生能力的受损。并对可能的机制进行探讨。
     实验方法:
     应用流式细胞术检测全骨髓细胞表面及细胞内CXCR4的表达,分别根据骨髓细胞表面抗原的不同和细胞大小的不同对其进行分群,并对不同细胞亚群表面CXCR4的表达进行检测;应用real-time PCR技术检测CXCR4的mRNA表达;从基因转录、蛋白表达及蛋白内移能力等不同水平、不同细胞亚群研究衰老对CXCR4表面表达的影响。通过1mM氯化钙作为细胞外刺激因子短期处理骨髓细胞,研究BMCold CXCR4对细胞外刺激因子的反应是否与BMCyoung有所区别。通过测定骨髓细胞与氯化钙混合后细胞内钙离子浓度的升高对钙离子内流进行分析,研究衰老对细胞钙内流的影响,从而解释衰老细胞CXCR4对钙刺激不敏感的原因。应用Western Blot技术检测SDF-1/CXCR4的下游信号通路AKT和ERK1/2的磷酸化水平,以研究衰老对SDF-1/CXCR4的下游信号通路的影响。应用改进的Boyden小室法检测BMC的迁移能力;又以细胞粘附试验检测SDF-1介导的BMC向HUVEC单细胞层的粘附能力,以垂直胶原凝胶侵袭试验检测骨髓细胞穿越内皮细胞的迁移能力,从而在体外模拟CXCR4+的BMCs在体内先被SDF-1捕获,紧密粘附于血管内皮细胞表面,再完成跨内皮细胞迁移至受损组织的过程;建立小鼠后肢缺血模型,经尾静脉注射输入骨髓细胞,再分别通过免疫组化和激光多普勒灌注成像术(LDPI)检测在缺血组织内不同骨髓细胞的增殖、归巢和血管生成,从而研究衰老引起CXCR4表达受损是否进一步影响细胞的功能。通过骨髓细胞移植对接受致死量的放射线照射后的骨髓重建研究年轻和老年微环境对骨髓细胞CXCR4表达的影响。
     实验结果:
     小鼠后肢缺血模型中老年小鼠在2和3周时缺血肢体灌注的恢复明显低于年轻小鼠,并且SDF-1治疗也没有提高灌注量。相较于年轻小鼠,老年小鼠中向缺血部位归巢的祖细胞更少,且对SDF-1处理更不敏感,导致其血管新生反应受损。
     通过流式细胞术分析发现,BMCold表面表达CXCR4的细胞数量更少,且每一个细胞表面的CXCR4表达更少。钙离子处理可以增强BMCyoung中CXCR4的表达,但老年小鼠细胞表面CXCR4的表达却对钙离子的刺激并不敏感。而其原因可能是BMCold的钙内流缺陷使CXCR4基因转录水平降低,从而导致钙诱导CXCR4表达反应受损。在不同的BMC亚群中,除了BMCyoung中的Lin-细胞明显多于BMCold外,其余亚群细胞量在BMCyoung和BMCold间没有显著差异。Lin-Sca-1+亚群表面CXCR4的表达,年轻小鼠显著高于老年小鼠,而两者之间CD34+Flk1+亚群、Gr-1+CD11b+亚组的CXCR4表达没有显著差异。而根据细胞大小对BMC进行分组后,“小细胞”亚群总是具有更高的表面CXCR4表达量。钙处理所致亚群CXCR4表达的增长在BMCold亚群中也明显要少很多。
     SDF-1与其受体CXCR4的结合会使CXCR4向细胞内移位。BMCold CXCR4的这种内移反应正常,其与BMCyoung的主要区别在于基础CXCR4表达的降低及其对钙处理应答的缺乏。在SDF-1/CXCR4的下游信号通路的反应方面,BMCyoung对钙刺激提高细胞内通过SDF-1/CXCR4相互作用的信号通路活性更为敏感,而BMCold中SDF-1/Akt通路受到了抑制。另一方面,ERK1/2信号转导通路则未发生改变。
     在体外试验中,BMCold的粘附能力、向SDF-1的迁移能力和跨内皮细胞的侵袭能力均受损。而通过相互的骨髓细胞移植发现,体内微环境的改变并不能改变骨髓细胞CXCR4表达和对SDF-1的迁移能力。在体内试验中,由SDF-1介导的BMCold向缺血肌肉归巢的能力受损,血管生成能力受损,且不因钙处理而提高。
     实验结论:
     相较于BMCyoung,BMCold:(1)表面CXCR4表达及细胞内CXCR4的浓度均降低了;(2)对细胞外辅助剂如钙对细胞表面CXCR4表达的刺激的敏感性降低;(3)明显降低的钙内流和钙刺激不能使CXCR4 mRNA表达量增加;(4)SDF-1介导的CXCR4内移对钙刺激的反应极大地减少;(5)相应于SDF-1处理的Akt磷酸化几乎完全受抑。
     而衰老对骨髓细胞CXCR4表达的这些影响也转化成了以下的功能障碍:(1)骨髓细胞未能向SDF-1浓度梯度迁移;(2)钙不能加强这方面的迁移能力;(3)骨髓细胞在体内缺血后肢中未能响应SDF-1的化学诱导作用向缺血组织归巢;(4)尽管向缺血肌肉中注射了SDF-1,血管新生能力还是明显受损。
     总之,BMCold的CXCR4/SDF-1轴缺陷极大地导致了衰老相关的血管生成反应的丧失。
Background:
     Bone marrow derived cells (BMCs) contribute to angiogenesis by differentiating into endothelial cells (ECs), smooth muscle cells, and pericytes, and by delivering angiogenic proteins that support vessel growth and maturation. The chemotactic cytokine stromal cell derived factor-1 (SDF-1) plays a key role in mobilizing cells from the bone marrow and promoting homing of the cells to target tissues. SDF-1 acts by binding and activating the cell surface receptor CXCR4 on target cells. CXCR4 is essential for homing and maintenance of hematopoietic stem cells (HSCs) in distinct stromal cell niches within the marrow. CXCR4 surface expression varies between cell types. Most mesenchymal stem cells (MSCs) do not express CXCR4 but endothelial progenitor cells (EPCs) express relative high surface CXCR4. Only 5% of freshly isolated CD34+ cells from peripheral blood express CXCR4 but the expression can be increased> 10-fold by exposing cells to appropriate culture in vitro. Our previous study shows that calcium treatment can increase the surface expression of CXCR4 on BMCs.
     Accumulating evidence indicates that the level of CXCR4 surface expression on BMCs determines the efficiency of homing and the subsequent angiogenic response within target tissues. Over-expression of CXCR4 in MSCs or CD34+ cells enhances the migration of these cells towards SDF-1 in vitro and increases the efficiency of bone marrow transplant in vivo, probably due to increased cell survival and homing. Infusions of autologous progenitor cells have been shown to promote revascularization of muscle in animal models of peripheral ischemia but this has not been translated well into clinical applications. One reason may be that bone marrow of aged or diseased subjects contain stem cell progenitors that are defective for therapy and repair. EPC level and function are reported to be adversely impacted by aging, diabetes, ischemic heart disease and atherosclerosis in animals and humans. Angiogenesis is also impaired in aging. The molecular aspects of these defects are not known.
     We hypothesize that defective CXCR4 expression develops during aging, decreasing the number of CXCR4-positive progenitor cells of both the bone marrow and the circulation. This results in reduced progenitor cell presentation to the ischemic tissue and reduces angiogenesis.
     Objectives:
     The objectives of this study is to determine that aging defects bone marrow cells both on the decreased population of CXCR4+ progenitor cells and on the impaired homing capacity and angiogenetic ability and to explore possible mechanisms.
     Methods:
     To evaluate the aging impact on CXCR4 expression from gene transcription to protein synthesis and internalization, surface and intracellular CXCR4 expression on BMCs from old or young mice were analyzed with FCM. And multi-color FCM was used to examine the CXCR4 expression on the surface of different subpopulations of BMCs. The mRNA of CXCR4 was detected by real-time PCR and normalized to hypoxanthine phosphoribosyl transferase 1(HPRT1) mRNA levels. To compare the inducibility of CXCR4 expression in response to environmental change between BMCold and BMCyoung,1 mM CaCl2 was used as an extracellular stimuli to treat BMCs for 4 hours. To examine how BMCold are defect on calcium-induced CXCR4 surface expression, calcium influx was analyzed by measuring the increase of intracellular calcium after BMCs were mixed with CaCl2. Western blot analysis was performed to quantify the SDF-1-mediated phosphorylation of Akt kinase and Extracellular signal-regulated kinases 1 and 2 (ERK1/2). To imitate the in vivo process of BMCs homing from the CXCR4+ BMCs capture by SDF-1, close adhesion to vascular endothelial cell, to the trans-endothelial cell migration to injured tissue in vitro, cell-cell adhesion assays were used to detect the SDF-1 mediated adhesion of BMCs to the HUVEC monolayer, boyden chamber assays and vertical Collagen Gel invasion assay were used respectively to quantify the migration and trans-endothelial migration of BMCs from young and old mice in response to a gradient of SDF-1. We also established a mouse hindlimb ischemia model, injected BMCs via the tail vein, then detect proliferation, homing, and angiogenesis of the BMCs in ischemic tissue using immunohistochemistry and laser Doppler perfusion imaging (LDPI), to study whether aging impaired CXCR4 expression on BMCs would impact the cell functions. To study the effect of the micro-environment on BMC CXCR4 expression, BMCs of young mice were replaced with BMCold and vice versa after receiving lethal irradiation. After a 2-month reconstitution, mice were sacrificed to recover BMCs from femurs and tibias. The BMC surface CXCR4 expression before infusion and after recovery was determined by flow cytometry.
     Results:
     BMCold have less number of cells expressing CXCR4 and less CXCR4 on the surface of each cell as compared to BMCyoung. CXCR4 expression on BMCyoung could be enhanced by calcium, but CXCR4 surface expression in cells from old mice increased significantly less then BMCyoung. And it partly because of the defective calcium influx in BMCold which reduced the CXCR4 gene transcription, consequently lead to impaired responses to calcium-induced CXCR4 surface expression. There were no significant differences in the different BMC subpopulations, except the lineage negative (Lin-) subset, was observed between BMCyoung and BMCold. BMCs from young mice have significantly more Lin-cells than old mice. Surface CXCR4 expression in Lin-Sca-1+ subpopulation from young mice is significantly higher than that of old mice, while CXCR4 expression on CD34+Flkl+ subset and Gr-1+CD11b+ subset was not significantly different between BMCs from old and young mice. When the subpopulations of BMCs were grouped according to cell size, the "small cell" subpopulations from both young and old mice have higher CXCR4 surface expression than the other cells with bigger size. In cells from young mice, CXCR4 expression in all subpopulations was significantly increased by calcium treatment. However, such increase was significant less in the subpopulations of BMCs from old mice.
     SDF-1 binding causes internalization of the CXCR4 receptor. In BMCs from old mice, this CXCR4 receptor internalization responds normally to SDF-1, and the main difference is lower basal CXCR4 expression and absence of a response to calcium. Furthermore, BMCyoung are more sensitive to calcium stimulation to enhance intracellular signaling through SDF-1/CXCR4 interaction, suggesting that the SDF-1/Akt pathway is repressed in BMCs from old mice. On the other hand, the ERK1/2 signaling pathway is not altered in BMCold. BMCold showed weaker adhesion, lower mobility and lower trans-endothelial migration in vitro, and this was not enhanced by calcium pretreatment. After reciprocal bone marrow transplants, we found the changes due to transplantation were not significantly different in either case. Similarly transplantation did not change basal or calcium-stimulated mobility toward SDF-1. And also, aged BMCs have the impaired SDF-1-mediated homing capacity and angiogenic response to ischemia in vivo, with the defective calcium response.
     Conclusions:
     Compared to BMCs from young mice, BMCs from aged mice had:(1) reduced both surface CXCR4 expression and intracellular CXCR4 concentration. (2) diminished stimulation of CXCR4 surface expression by extracellular adjuvant like calcium; (3) significant lower Ca-influx and loss of calcium-stimulated CXCR4 mRNA accumulation; (4) dramatic reduction of SDF-1-mediated CXCR4 internalization both in the presence and absence of calcium stimulation; (5) Nearly complete abrogation of Akt phosphorylation in response to SDF-1 treatment.
     These effects of aging on CXCR4 expression in BMCs translated into the following functional impairments:(1) BMCs failed to migrate in an SDF-1 gradient; (2) Calcium failed to enhance this migration; (3) BMCs failed to home in vivo to the ischemic tissue in response to SDF-1 chemoattraction in the ischemic hindlimb; (4) Angiogenesis was markedly impaired despite injected SDF-1 in the ischemic muscle.
引文
Aranguren XL, McCue JD, Hendrickx B, Zhu XH, Du F, Chen E, Pelacho B, Penuelas I, Abizanda G, Uriz M, Frommer SA, Ross JJ, Schroeder BA, Seaborn MS, Adney JR, Hagenbrock J, Harris NH, Zhang Y, Zhang X, Nelson-Holte MH, Jiang Y, Billiau AD, Chen W, Prosper F, Verfaillie CM, Luttun A (2008). Multipotent adult progenitor cells sustain function of ischemic limbs in mice. The Journal of clinical investigation.118,505-514.
    Bach MH, Sadoun E, Reed MJ (2005). Defects in activation of nitric oxide synthases occur during delayed angiogenesis in aging. Mech Ageing Dev.126,467-473.
    Bhakta S, Hong P, Koc O (2006). The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med.7, 19-24.
    Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA (1996). The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature.382,829-833.
    Burke F, Relf M, Negus R, Balkwill F (1996). A cytokine profile of normal and malignant ovary. Cytokine.8,578-585.
    Chang EI, Loh SA, Ceradini DJ, Chang EI, Lin SE, Bastidas N, Aarabi S, Chan DA, Freedman ML, Giaccia AJ, Gurtner GC (2007). Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation.116,2818-2829.
    Cipriani P, Guiducci S, Miniati I, Cinelli M, Urbani S, Marrelli A, Dolo V, Pavan A, Saccardi R, Tyndall A, Giacomelli R, Cerinic MM (2007). Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells:new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum.56, 1994-2004.
    Cristillo AD, Bierer BE (2003). Regulation of CXCR4 expression in human T lymphocytes by calcium and calcineurin. Molecular Immunology.40,539-553.
    Dillingham TR, Pezzin LE, Shore AD (2005). Reamputation, mortality, and health care costs among persons with dysvascular lower-limb amputations. Archives of Physical Medicine and Rehabilitation.86,480-486.
    Feil C, Augustin HG (1998). Endothelial cells differentially express functional CXC-chemokine receptor-4 (CXCR-4/fusin) under the control of autocrine activity and exogenous cytokines. Biochemical and biophysical research communications.247,38-45.
    Franitza S, Kollet O, Brill A, Vaday GG, Petit I, Lapidot T, Alon R, Lider O (2002). TGF-betal enhances SDF-1alpha-induced chemotaxis and homing of naive T cells by up-regulating CXCR4 expression and downstream cytoskeletal effector molecules. European journal of immunology.32,193-202.
    Gupta SK, Lysko PG, Pillarisetti K, Ohlstein E, Stadel JM (1998). Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. The Journal of biological chemistry.273,4282-4287.
    Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH, Martin H, Zeiher AM, Dimmeler S (2004). Profoundly Reduced Neovascularization Capacity of Bone Marrow Mononuclear Cells Derived From Patients With Chronic Ischemic Heart Disease. Circulation.109,1615-1622.
    Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005). Impaired Progenitor Cell Activity in Age-Related Endothelial Dysfunction. Journal of the American College of Cardiology.45,1441-1448.
    Helbig G, Christopherson KW, II, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE, Nakshatri H (2003). NF-kB Promotes Breast Cancer Cell Migration and Metastasis by Inducing the Expression of the Chemokine Receptor CXCR4. J. Biol. Chem.278,21631-21638.
    Hur J, Yang HM, Yoon CH, Lee CS, Park KW, Kim JH, Kim TY, Kim JY, Kang HJ, Chae IH, Oh BH, Park YB, Kim HS (2007). Identification of a novel role of T cells in postnatal vasculogenesis:characterization of endothelial progenitor cell colonies. Circulation.116,1671-1682.
    Kahn J, Byk T, Jansson-Sjostrand L, Petit I, Shivtiel S, Nagler A, Hardan I, Deutsch V, Gazit Z, Gazit D, Karlsson S, Lapidot T (2004). Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood.103,2942-2949.
    Kyriakou C, Rabin N, Pizzey A, Nathwani A, Yong K (2008). Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica.93,1457-1465.
    Li Y, Yu X, Lin S, Li X, Zhang S, Song Y-H (2007). Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochemical and biophysical research communications.356,780-784.
    Loetscher P, Seitz M, Baggiolini M, Moser B (1996). Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. The Journal of experimental medicine.184,569-577.
    Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ (2004). Endothelial progenitor cell dysfunction:a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes.53,195-199.
    Majka SM, Jackson KA, Kienstra KA, Majesky MW, Goodell MA, Hirschi KK (2003). Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. The Journal of clinical investigation. 111,71-79.
    Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L (1998). The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood.91,4523-4530.
    Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999). Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science (New York, N.Y.283,845-848.
    Porecha NK, English K, Hangoc G, Broxmeyer HE, Christopherson KW,2nd (2006). Enhanced functional response to CXCL12/SDF-1 through retroviral overexpression of CXCR4 on M07e cells:implications for hematopoietic stem cell transplantation. Stem Cells Dev.15,325-333.
    Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Yla-Herttuala S, Alitalo K, Weissman IL, Salven P (2008). Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proceedings of the National Academy of Sciences of the United States of America.105,6620-6625.
    Ratajczak MZ, Zuba-Surma EK, Shin D-M, Ratajczak J, Kucia M (2008). Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Experimental Gerontology.43,1009-1017.
    Reed MJ, Corsa A, Pendergrass W, Penn P, Sage EH, Abrass IB (1998). Neovascularization in aged mice:delayed angiogenesis is coincident with decreased levels of transforming growth factor betal and type Ⅰ collagen. Am J Pathol.152,113-123.
    Reed MJ, Edelberg JM (2004). Impaired angiogenesis in the aged. Sci Aging Knowledge Environ.2004, pe7.
    Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM (1999). Age-dependent impairment of angiogenesis. Circulation.99, 111-120.
    Shao H, Tan Y, Eton D, Yang Z, Uberti G, Li S, Schulick A, Yu H (2008). Statin and Stromal Cell Derived Factor-1 Additively Promote Angiogenesis by Enhancement of Progenitor Cells Incorporation into New Vessels. Stem Cells.26,1376-1384.
    Shimada T, Takeshita Y, Murohara T, Sasaki K, Egami K, Shintani S, Katsuda Y, Ikeda H, Nabeshima Y, Imaizumi T (2004). Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation.110,1148-1155.
    Sugihara S, Yamamoto Y, Matsuura T, Narazaki G, Yamasaki A, Igawa G, Matsubara K, Miake J, Igawa O, Shigemasa C, Hisatome I (2007). Age-related BM-MNC dysfunction hampers neovascularization. Mech Ageing Dev.128,511-516.
    Swift ME, Kleinman HK, DiPietro LA (1999). Impaired wound repair and delayed angiogenesis in aged mice. Laboratory investigation; a journal of technical methods and pathology.79,1479-1487.
    Tan Y, Shao H, Eton D, Yang Z, Alonso-Diaz L, Zhang H, Schulick A, Livingstone AS, Yu H (2007). Stromal Cell-Derived Factor-1 Enhances Pro-Angiogenic Effect of Granulocyte Colony Stimulating Factor. Cardiovasc Res.73,823-832.
    Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002). Human endothelial progenitor cells from type Ⅱ diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation.106,2781-2786.
    Volin MV, Joseph L, Shockley MS, Davies PF (1998). Chemokine receptor CXCR4 expression in endothelium. Biochemical and biophysical research communications.242,46-53.
    Westvik TS, Fitzgerald TN, Muto A, Maloney SP, Pimiento JM, Fancher TT, Magri D, Westvik HH, Nishibe T, Velazquez OC, Dardik A (2009). Limb ischemia after iliac ligation in aged mice stimulates angiogenesis without arteriogenesis. Journal of Vascular Surgery.49,464-473.
    Wu Q, Shao H, Eton D, Li J, Li J, Yang B, Webster KA, Yu H (2009). Extracellular calcium increases CXCR4 Expression on Bone Marrow-derived Cells and Enhances Pro-Angiogenesis Therapy. J Cell Mol Med.13,3764-3773
    Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation.107,1322-1328.
    Zhang D, Fan G-C, Zhou X, Zhao T, Pasha Z, Xu M, Zhu Y, Ashraf M, Wang Y (2008). Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardio.44,281-292.
    Zhu S, Liu X, Li Y, Goldschmidt-Clermont PJ, Dong C (2007). Aging in the atherosclerosis milieu may accelerate the consumption of bone marrow endothelial progenitor cells. Arteriosclerosis, thrombosis, and vascular biology. 27,113-119.
    Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ (2004). Stromal cell-derived factor 1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation.110:3300-3305.
    Abkowitz JL, Robinson AE, Kale S, Long MW, Chen J (2003). Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood. 102:1249-1253.
    Adams GB, Chabner KT, Foxall RB, Weibrecht KW, Rodrigues NP, Dombkowski D, Fallon R, Poznansky MC, Scadden DT (2003). Heterologous cells cooperate to augment stem cell migration, homing, and engraftment. Blood.101:45-51.
    Ando K, Nakamura Y, Chargui J, Matsuzawa H, Tsuji T, Kato S, Hotta T (2000). Extensive generation of human cord blood CD34(+) stem cells from Lin(-)CD34(-) cells in a long-term in vitro system. Exp Hematol.28:690-699.
    Angelopoulou MK, Rinder H, Wang C, Burtness B, Cooper DL, Krause DS (2004). A preclinical xeno-transplantation animal model to assess human hematopoietic stem cell engraftment. Transfusion.44:555-566.
    Askenasy N, Farkas DL (2002). Optical imaging of PKH labeled hematopoietic cells in recipient bone marrow in vivo. Stem Cells.2002; 20:501-513.
    Askenasy N, Farkas DL (2002). Antigen barriers or available space do not restrict in situ adhesion of hemopoietic cells to bone marrow stroma. Stem Cells.20:80-85.
    Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, Kollet O, Hershkoviz R, Alon R, Hardan I, Ben-Hur H, Naor D, Nagler A, Lapidot T (2004). CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow.103:2981-2989.
    Avigdor A, Schwartz S, Goichberg P, et al. (2004). Membrane type 1-matrix metalloproteinase is directly involved in G-CSF induced human hematopoietic stem and progenitor cell mobilization [abstract]. Blood.104:731a.
    Balkwill F (2004). The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol.14:171-179.
    Barcew K, Kacinska E, Marchlewicz M, Wiszniewska B, Machalinski B (2004). Bone marrow morphology during haematopoietic stem cell mobilization with G-CSF in mice. Folia Morphol (Warsz).63:87-89.
    Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998). A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med.4: 1038-1045.
    Bonig H, Priestley GV, Nilsson LM, Jiang Y, Papayannopoulou T (2004). PTX-sensitive signals in bone marrow homing of fetal and adult hematopoietic progenitor cells. Blood.104:2299-2306.
    Bonnet D, Bhatia M, Wang JC, Kapp U, Dick JE (1999). Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice. Bone Marrow Transplant.23:203-209.
    Bonnet D, Dick JE (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med.3:730-737.
    Brenner S, Whiting-Theobald N, Kawai T, Linton GF, Rudikoff AG, Choi U, Ryser MF, Murphy PM, Sechler JM, Malech HL (2004). CXCR4-transgene expression significantly improves marrow engraftment of cultured hematopoietic stem cells. Stem Cells.22:1128-1133.
    Busso N, Wagtmann N, Herling C, Chobaz-Peclat V, Bischof-Delaloye A, So A, Grouzmann E (2005). Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am J Pathol.166:433-442.
    Byk T, Kahn J, Kollet O, Petit I, Samira S, Shivtiel S, Ben-Hur H, Peled A, Piacibello W, Lapidot T (2005). Cycling G1 CD34+/CD38+ cells potentiate the motility and engraftment of quiescent GO CD34+/CD38-/low severe combined immunodeficiency repopulating cells. Stem Cells.23:561-574.
    Cancelas JA, Lee AW, Prabhakar R, Jansen M, Zheng Y, Williams DA (2004). Rac1 and Rac2 Rho GTPases distinctly regulate stem cell engraftment and mobilization and are novel targets for pharmacologically-induced progenitor mobilization [abstract]. Blood.104:36a.
    Cashman J, Dykstra B, Clark-Lewis I, Eaves A, Eaves C (2002). Changes in the proliferative activity of human hematopoietic stem cells in NOD/SCID mice and enhancement of their transplantability after in vivo treatment with cell-cycle inhibitors. J Exp Med.196:1141-1149.
    Castello S, Podesta M, Menditto VG, Ibatici A, Pitto A, Figari O, Scarpati D, Magrassi L, Bacigalupo A, Piaggio G, Frassoni F (2004). Intra-bone marrow injection of bone marrow and cord blood cells:an alternative way of transplantation associated with a higher seeding efficiency. Exp Hematol.32:782-787.
    Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med.10: 858-864.
    Chabner KT, Adams GB, Qiu J, Moskowitz M, Marsters ES, Topulos GP, Scadden DT (2004). Direct vascular delivery of primitive hematopoietic cells to bone marrow improves localization but not engraftment. Blood.103:4685-4686.
    Christopherson KW, Cooper S, Broxmeyer HE (2003). Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood. 101:4680-4686.
    Christopherson KW 2nd, Hangoc G, Broxmeyer HE (2002). Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells.J Immunol.169:7000-7008.
    Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE (2004). Modulation of hematopoietic stem cell homing and engraftment by CD26. Science.305: 1000-1003.
    Collis SJ, Neutzel S, Thompson TL, Swartz MJ, Dillehay LE, Collector MI, Sharkis SJ, DeWeese TL (2004). Hematopoietic progenitor stem cell homing in mice lethally irradiated with ionizing radiation at differing dose rates. Radiat Res.162:48-55.
    Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D, Devine S (2003). Stem cell mobilization. Hematology.419-437.
    Daldrup HE, Link TM, Blasius S, Strozyk A, Konemann S, Jurgens H, Rummeny EJ (1999). Monitoring radiation-induced changes in bone marrow histopathology with ultra-small superparamagnetic iron oxide (USPIO)-enhanced MRI. J Magn Reson Imaging.9:643-652.
    Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003). Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest.112:126-135.
    Dao MA, Arevalo J, Nolta JA (2003). Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood.101:112-118.
    Dar A, Kollet O, Shinder V, et al. (2005). CXCR4-dependent internalization and secretion of functional SDF-1 by bone marrow endothelial and stromal cells [abstract]. Exp Hematol.33(suppl 1):118.
    Davis DA, Singer KE, De La Luz Sierra M, Narazaki M, Yang F, Fales HM, Yarchoan R, Tosato G (2005). Identification of carboxypeptidase N as an enzyme responsible for C-terminal cleavage of stromal cell-derived factor-la in the circulation. Blood. 105:4561-4568.
    Delgado MB, Clark-Lewis I, Loetscher P, Langen H, Thelen M, Baggiolini M, Wolf M (2001). Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur J Immunol.31:699-707.
    Dick JE, Lapidot T (2003). Stem cells take a shortcut to the bone marrow. Blood.101: 2901-2901.
    Driessen RL, Johnston HM, Nilsson SK (2003). Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region. Exp Hematol.31:1284-1291.
    Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W (1998). Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol. 140:947-959.
    Foudi A, Zhang Y, Geay J, et al. (2004). The hematopoietic reconstitution defect of mice lacking CXCR4 is related to an altered retention of hematopoietic cells in the bone marrow [abstract]. Blood.104:38a.
    Frassoni F, Podesta M, Maccario R, Giorgiani G, Rossi G, Zecca M, Bacigalupo A, Piaggio G, Locatelli F (2003). Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation. Blood.102:1138-1141.
    Giebel B, Corbeil D, Beckmann J, Hohn J, Freund D, Giesen K, Fischer J, Kogler G, Wernet P (2004). Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood.104:2332-2338.
    Glimm H, Eisterer W, Lee K, Cashman J, Holyoake TL, Nicolini F, Shultz LD, von Kalle C, Eaves CJ (2001). Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice.J Clin Invest.107:199-206.
    Glimm H, Tang P, Clark-Lewis I, von Kalle C, Eaves C (2002). Ex vivo treatment of proliferating human cord blood stem cells with stroma-derived factor-1 enhances their ability to engraft NOD/SCID mice. Blood.99:3454-3457.
    Goichberg P, Kalinkovich A, Borodovsky N, Tesio M, Petit I, Nagler A, Hardan I, Lapidot T (2006). cAMP-induced PKCzeta activation increases functional CXCR4 expression on human CD34+ hematopoietic progenitors. Blood.107(3): 870-879.
    Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC, Harris CE, Lee AW, Prabhakar R, Atkinson SJ, Kwiatkowski DJ, Williams DA (2003). Hematopoietic cell regulation by Racl and Rac2 guanosine triphosphatases. Science.302: 445-449.
    Hagglund H, Ringden O, Agren B, Wennberg L, Remberger M, Rundquist L, Svahn BM, Aspelin P (1998). Intra-osseous compared to intravenous infusion of allogeneic bone marrow. Bone Marrow Transplant.21:331-335.
    Hess DA, Karanu FN, Levac K, Gallacher L, Bhatia M (2003). Coculture and transplant of purified CD34(+)Lin(-) and CD34(-)Lin(-) cells reveals functional interaction between repopulating hematopoietic stem cells. Leukemia.17:1613-1625.
    Hidalgo A, Weiss LA, Frenette PS (2002). Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally.J Clin Invest.110:559-569.
    Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005). Monitoring of bone marrow cell homing into the infracted human myocardium. Circulation.111(17):2198-202.
    Hogan CJ, Shpall EJ, Keller G (2002). Differential long-term and multi-lineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci U S A.99:413-418.
    Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, Ratajczak J, Emerson SG, Kowalska MA, Ratajczak MZ (2001). Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood.98:3143-3149.
    Janowska-Wieczorek A, Marquez LA, Dobrowsky A, Ratajczak MZ, Cabuhat ML (2000). Differential MMP and TIMP production by human marrow and peripheral blood CD34(+) cells in response to chemokines. Exp Hematol.28:1274-1285.
    Kahn J, Byk T, Jansson-Sjostrand L, Petit I, Shivtiel S, Nagler A, Hardan I, Deutsch V, Gazit Z, Gazit D, Karlsson S, Lapidot T (2004). Over-expression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood.103:2942-2949.
    Kawabata K, Ujikawa M, Egawa T, Kawamoto H, Tachibana K, Iizasa H, Katsura Y, Kishimoto T, Nagasawa T (1999). A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci U S A.96: 5663-5667.
    Kerre TC, De Smet G, De Smedt M, Offner F, De Bosscher J, Plum J, Vandekerckhove B (2001). Both CD34(+)38(+) and CD34(+)38(-) cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion. J Immunol.167:3692-3698.
    Kim DK, Fujiki Y, Fukushima T, Ema H, Shibuya A, Nakauchi H (1999). Comparison of hematopoietic activities of human bone marrow and umbilical cord blood CD34 positive and negative cells. Stem Cells.17:286-294.
    Kimura T, Boehmler AM, Seitz G, Kuci S, Wiesner T, Brinkmann V, Kanz L, Mohle R (2004). The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood.103:4478-4486.
    Kimura T, Wang J, Matsui K, Imai S, Yokoyama S, Nishikawa M, Ikehara S, Sonoda Y (2004). Proliferative and migratory potentials of human cord blood-derived CD34-severe combined immunodeficiency repopulating cells that retain secondary reconstituting capacity. Int J Hematol.79:328-333.
    Kollet O, Peled A, Byk T, Ben-Hur H, Greiner D, Shultz L, Lapidot T (2000). beta2 microglobulin-deficient [B2m(null)] NOD/SCID mice are excellent recipients for studying human stem cell function. Blood.95:3102-3105.
    Kollet O, Petit I, Kahn J, Samira S, Dar A, Peled A, Deutsch V, Gunetti M, Piacibello W, Nagler A, Lapidot T (2002). Human CD34(+) CXCR4(-) sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood.100:2778-2786.
    Kollet O, Samstein R, Spiegel A, et al. (2004). Osteoclasts are involved in stem cell mobilization:cleavage of SDF-1 by cathepsin K [abstract]. Blood.2004; 104: 364a.
    Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD, Kahn J, Spiegel A, Dar A, Samira S, Goichberg P, Kalinkovich A, Arenzana-Seisdedos F, Nagler A, Hardan I, Revel M, Shafritz DA, Lapidot T (2003). HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest.112:160-169.
    Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T (2001). Rapid and efficient homing of human CD34(+) CD38(-/low) CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood.97:3283-3291.
    Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S (2005). Stromal derived factor-1 promotes the growth, survival and development of human bone marrow stromal stem cells. Blood.105:3793-3801.
    Lambeir AM, Proost P, Durinx C, Bal G, Senten K, Augustyns K, Scharpe S, Van Damme J, De Meester I (2001). Kinetic investigation of chemokine truncation by CD26/ dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem.276:29839-29845.
    Lanzkron SM, Collector MI, Sharkis SJ (1999). Hematopoietic stem cell tracking in vivo:a comparison of short-term and long-term repopulating cells. Blood.93: 1916-1921.
    Lapidot T, Kollet O (2002). The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia.16: 1992-2003.
    Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams D, Dick JE (1992). Cytokine stimulation of multi-lineage hematopoiesis from immature human cells engrafted in SCID mice. Science.255:1137-1141.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994). A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature.367:645-648.
    Lapteva N, Yang AG, Sanders DE, Strube RW, Chen SY (2005). CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther.12:84-89.
    Larochelle A, Krouse A, Orlic D, Donahue R, Dunbar C, Hematti P (2003). The use of AMD3100 mobilized peripheral blood stem cell CD34+ targets for retroviral transduction results in high-level in vivo marking in rhesus macaques [abstract]. Blood.102:396b.
    Larochelle A, Vormoor J, Hanenberg H, et al. (1996). Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mice using retroviral gene marking and cell purification:implications for gene therapy. Nat Med.2: 1329-1337.
    Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ (2003). Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide.J Clin Invest. 111: 187-196.
    Liu B, Liao C, Chen J, Gu S, Wu S, Xu Z (2003). Significance of increasing adhesion of cord blood hematopoietic cells and a new method:platelet microparticles. Am J Hematol.74:216-217.
    Manfredini R, Zini R, Salati S, Siena M, Tenedini E, Tagliafico E, Montanari M, Zanocco-Marani T, Gemelli C, Vignudelli T, Grande A, Fogli M, Rossi L, Fagioli ME, Catani L, Lemoli RM, Ferrari S (2005). The kinetic status of hematopoietic stem cell subpopulations underlies a differential express ion of genes involved in self-renewal, commitment, and engraftment. Stem Cells.23:496-506.
    Ma Q, Jones D, Springer TA (1999). The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity.10:463-471.
    Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM (2003). Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity.19:583-593.
    Matsuoka S, Tsuji K, Hisakawa H, Xu Mj, Ebihara Y, Ishii T, Sugiyama D, Manabe A, Tanaka R, Ikeda Y, Asano S, Nakahata T (2001). Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells. Blood.98:6-12.
    Mazurier F, Doedens M, Gan OI, Dick JE (2003). Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med.9:959-963.
    McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I, Overall CM (2001). Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem.276:43503-43508.
    Nguyen DH, Taub D (2002). CXCR4 function requires membrane cholesterol: implications for HIV infection.J Immunol.168:4121-4126.
    Nibley WE, Spangrude GJ (1998). Primitive stem cells alone mediate rapid marrow recovery and multi-lineage engraftment after transplantation. Bone Marrow Transplant.21:345-354.
    Nilsson SK, Haylock DN, Johnston HM, Occhiodoro T, Brown TJ, Simmons PJ (2003). Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood.101:856-862.
    Nilsson SK, Simmons PJ (2004). Transplantable stem cells:home to specific niches. Curr Opin Hematol.11:102-106.
    Noort WA, Kruisselbrink AB, in't Anker PS, Kruger M, van Bezooijen RL, de Paus RA, Heemskerk MH, Lowik CW, Falkenburg JH, Willemze R, Fibbe WE (2002). Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol.30:870-878.
    Papayannopoulou T (2003). Bone marrow homing:the players, the playfield, and their evolving roles. Curr Opin Hematol.10:214-219.
    Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R (1999). The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest. 104:1199-1211.
    Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, Slav MM, Nagler A, Lider O, Alon R, Zipori D, Lapidot T (2000). The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells:role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 95:3289-3296.
    Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999). Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science.283:845-848.
    Petit I, Goichberg P, Spiegel A, Peled A, Brodie C, Seger R, Nagler A, Alon R, Lapidot T (2005). Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest.115:168-176.
    Petit I, Spiegel A, Kollet O, et al. (2000). Activation of PKC zeta by SDF-1 is essential for migration of human CD34+ cells towards SDF-1 in vitro and for SRC engraftment of NOD/SCID mice [abstract]. Blood.96:536a.
    Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol.3:687-694.
    Plett P, Frankovitz S, Wolber F, Abonour R, Orschell-Traycoff C (2002). Treatment of circulating CD34(+) cells with SDF-1alpha or anti-CXCR4 antibody enhances migration and NOD/SCID repopulating potential. Exp Hematol.30:1061.
    Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, Arenzana-Seisdedos F, Magerus A, Caruz A, Fujii N, Nagler A, Lahav M, Szyper-Kravitz M, Zipori D, Lapidot T (2000). Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest.106:1331-1339.
    Quesenberry PJ, Colvin G, Abedi M (2005). Perspective:fundamental and clinical concepts on stem cell homing and engraftment:a journey to niches and beyond. Exp Hematol.33:9-19.
    Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J (2004). Stem cell plasticity revisited:CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells'hide out'in the bone marrow. Leukemia.18:29-40.
    Reca R, Mastellos D, Majka M, Marquez L, Ratajczak J, Franchini S, Glodek A, Honczarenko M, Spruce LA, Janowska-Wieczorek A, Lambris JD, Ratajczak MZ (2003). Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood.101:3784-3793.
    Rosu-Myles M, Gallacher L, Murdoch B, Hess DA, Keeney M, Kelvin D, Dale L, Ferguson SS, Wu D, Fellows F, Bhatia M (2000). The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression. Proc Natl Acad Sci USA.97:14626-14631.
    Ruiz P, Zacharievich N, Viciana AL, Shenkin M (1998). Peripheral CD34+ progenitor cells express CD26 and contain increased dipeptidyl peptidase IV activity. Acta Haematol.100:110-112.
    Sackstein R (2004). The bone marrow is akin to skin:HCELL and the biology of hematopoietic stem cell homing. J Invest Dermatol.122:1061-1069.
    Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, Mantovani A, Melillo G, Sica A (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med.198: 1391-1402.
    Shirota T, Tavassoli M (1992). Alterations of bone marrow sinus endothelium induced by ionizing irradiation:implications in the homing of intravenously transplanted marrow cells. Blood Cells.18:197-214.
    Shirvaikar N, Montano J, Turner AR, Ratajczak MZ, Janowska-Wieczorek A (2004). Upregulation of MT1-MMP expression by hyaluronic acid enhances homing-related responses of hematopoietic CD34(+) cells to an SDF-1 gradient [abstract]. Blood.104:790a.
    Shivtiel S, Petit I, Avigdor A, et al. (2004). CD45 phosphatase is involved in motility and development of hematopoietic stem and maturing cells by the regulation of cell adhesion and cytokine signaling [abstract]. Blood.104:37a.
    Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Raj an TV, Greiner DL, et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 154:180-191.
    Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, Luster AD, Scadden DT, Lin CP (2005). In vivo imaging of specialized bone marrow endothelial microdomains for tumor engraftment. Nature.435:969-973.
    Soede RD, Wijnands YM, Kamp M, van der Valk MA, Roos E (2000). Gi and Gq/11 proteins are involved in dissemination of myeloid leukemia cells to the liver and spleen, whereas bone marrow colonization involves Gq/11 but not Gi. Blood.96: 691-698.
    Spencer A, Jackson J, Baulch-Brown C (2001). Enumeration of bone marrow 'homing' haemopoietic stem cells from G-CSF-mobilised normal donors and influence on engraftment following allogeneic transplantation. Bone Marrow Transplant.28: 1019-1022.
    Spiegel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B, Rechavi G, Vormoor J, Lapidot T (2004). Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood.103: 2900-2907.
    Srour EF, PlettAP, Dale DC, Liles C, Calandra GB, Orschell CM (2003). Enhancement of G-CSF mobilization of human BM CD34+ cells with AMD3100:substantial increase in the frequency of repopulating cells through tandem administration of G-CSF and AMD3100 [abstract]. Blood.102:455a.
    Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, Hollt V, Schulz S (2002). A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain:isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci.22:5865-5878.
    Szumilas P, Barcew K, Baskiewicz-Masiuk M, Wiszniewska B, Ratajczak MZ, Machalinski B (2005). Effect of stem cell mobilization with cyclophosphamide plus granulocyte colony-stimulating factor on morphology of haematopoietic organs in mice. Cell Prolif.38:47-61.
    Tavor S, Petit I, Porozov S, Avigdor A, Dar A, Leider-Trejo L, Shemtov N, Deutsch V, Naparstek E, Nagler A, Lapidot T (2004). CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res.64:2817-2824.
    Trigg ME, Gingrich R, Goeken N, deAlarcon P, Klugman M, Padley D, Rumelhart S, Giller R, Wen BC, Strauss R (1989). Low rejection rate when using unrelated or haploidentical donors for children with leukemia undergoing marrow transplantation. Bone Marrow Transplant.4:431-437.
    Ueda K, Hanazono Y, Shibata H, Ageyama N, Ueda Y, Ogata S, Tabata T, Nagashima T, Takatoku M, Kume A, Ikehara S, Taniwaki M, Terao K, Hasegawa M, Ozawa K (2004). High-level in vivo gene marking after gene-modified autologous hematopoietic stem cell transplantation without marrow conditioning in nonhuman primates. Mol Ther.10:469-477.
    Valenzuela-Fernandez A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D, Delaunay T, Lazarini F, Virelizier JL, Chignard M, Pidard D, Arenzana-Seisdedos F (2002). Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem.277:15677-15689.
    van der Loo JC, Xiao X, McMillin D, Hashino K, Kato I, Williams DA (1998). VLA-5 is expressed by mouse and human long-term repopulating hematopoietic cells and mediates adhesion to extracellular matrix protein fibronectin. J Clin Invest.102: 1051-1061.
    van Hennik PB, de Koning AE, Ploemacher RE (1999). Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice:implications for stem cell frequency assessment. Blood.94: 3055-3061.
    Voermans C, Kooi ML, Rodenhuis S, van der Lelie H, van der Schoot CE, Gerritsen WR (2001). In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood.97: 799-804.
    Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y, Fujimura Y, Tsuji T, Ikehara S, Sonoda Y (2003). SCID-repopulating cell activity of human cord blood-derived CD34-cells assured by intra-bone marrow injection. Blood.101: 2924-2931.
    Weiss L, Bullorsky E, Ashkenazi YJ, Slavin S (1988). Optimal time interval between myeloablative whole body irradiation and reconstitution with syngeneic bone marrow graft. Bone Marrow Transplant.3:207-210.
    Whetton AD, Lu Y, Pierce A, Carney L, Spooncer E (2003). Lysophospholipids synergistically promote primitive hematopoietic cell chemotaxis via a mechanism involving Vav 1. Blood.102:2798-2802.
    Wiesmann A, Spangrude GJ (1999). Marrow engraftment of hematopoietic stem and progenitor cells is independent of Galphai-coupled chemokine receptors. Exp Hematol.27:946-955.
    Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001). Physiological migration of hematopoietic stem and progenitor cells. Science.294:1933-1936.
    Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, Mills M, Wanzeck J, Janowska-Wieczorek A, Ratajczak MZ (2005). Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood.105:40-48.
    Yahata T, Ando K, Sato T, Miyatake H, Nakamura Y, Muguruma Y, Kato S, Hotta T (2003). A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood.101:2905-2913.
    Zanjani ED, Flake AW, Almeida-Porada G, Tran N, Papayannopoulou T (1999). Homing of human cells in the fetal sheep model:modulation by antibodies activating or inhibiting very late activation antigen-4-dependent function. Blood. 94:2515-2522.
    Zhao Y, Zhan Y, Burke KA, Anderson WF (2005). Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells. Exp Hematol.33:428-434.
    Zheng Y, Sun A, Han ZC (2005). Stem cell factor improves SCID-repopulating activity of human umbilical cord blood-derived hematopoietic stem/progenitor cells in xeno-transplanted NOD/SCID mouse model. Bone Marrow Transplant.35: 137-142.
    Zhong JF, Zhan Y, Anderson WF, Zhao Y (2002). Murine hematopoietic stem cell distribution and proliferation in ablated and nonablated bone marrow transplantation. Blood.100:3521-3526.
    [1]Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS lett.2002,530 (1-3):239-243.
    [2]Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C, Nadal-Ginard B, Leri A, Kajstura J, Quaini E, Anversa P. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA.2003,100 (18) 10440-10445.
    [3]Urbanek K, Torella D, Sheikh F, DeAngelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, Bolli R, Leri A, Kajstura J, Anversa P. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA.2005,102 (24):8692-8697.
    [4]Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I. Adult cardiac Sca-1-positive cells differentiate into beating cardiomycytes. J Biol Chem.2004, 279 (24):11384-11391.
    [5]Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell.2003,114 (6):763-766.
    [6]Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Bohm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA.2005,102 (25):8966-8971.
    [7]Goldman BI, Wurzel J. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med.2001,344 (15):1750-1757.
    [8]Richards M, Huibregtse BA, Caplan AI, Goulet JA, Goldstein SA. Marrow delived progenitor cell injections enhance new bone formation during distraction. J Orthop Res.1999,17:900-908.
    [9]Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest.1999,103 (5) 697-705.
    [10]Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart improving function and survival. Proc Natl Acad Sci USA.2001,98:10344-10349.
    [11]Ma J, Ge JB, Zhang SH, Wang Y, Yu Y, Sun AJ, Shi JH, Cheng LL, Shu XH, Wang KQ. Improved Cardiac Function in the Infarcted Rats by Intravenous Transplantation of Bone M arrow M esenchymal Stem Cell. Chin J Clin Med. 2004,11 (02):151-153,170.
    [12]Zhang SH, GE J JB, QIAN JY, Sun AJ, Pan WM, Lin JY, Xu DL, Hu HF, Zhang F, Ma JY, Yao K, Wang QB, Liu XB, Yao RM, Shen A, Cui SJ, Wang H, Feng Q, Zou YZ, Wang KQ, Hu K. Effects of Bone Marrow Cell Transplantation by Coronary Delivery on the Different Basic Cardiac Function Degrees and Its Mechanisms. Chin J Clin Med.2005,12 (6):993-995.
    [13]Wang Jian-an, Fan You-qi, Li Chang-lin, He H, Sun Y, Lv BJ. Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function. J Zhejiang Univ SCI.2005,6(4):242-248.
    [14]Wang JA, Li CL, Fan YQ, He H, Sun Y. Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart. J Zhejiang Univ Sci.2004,5 (10):1279-1285.
    [15]Chen J, Wang JA, Luo RH, Hu XY, Xie XJ, Li JH, He AN, Sun Y. Effects of mesenchymal stem cells transplantation on post-infarction ventricular remodeling in rats. Chin J Emer Med.2006,15 (4):310-314.
    [16]Wang JA, Luo RH, Zhang X, Xie XJ, Hu XY, He AN, Chen J, Li JH. Bone marrow mesenchymal stem cell transplantation combined with perindopril treatment attenuates infarction remodelling in a rat model of acute myocardial infarction. J Zhejiang Univ Sci B.2006,7(8):641-647
    [17]Hu X, Wang J, Chen J, Luo R, He A, Xie X, Li J. Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. Eur J Cardiothorac Surg.2007,31 (3):438-43.
    [18]Wang JA, Hu XY, et al. Transplantation of Hypoxia preconditioned MSC Improves Infarcted Heart Function via Enhanced Survival of Implanted Cells and Angiogenesis. Eur J Cardiothorac Surg (In Press).
    [19]Wang JA, He AN, Jiang Y, Gui C, et al. The anti-apoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. The Canadian Journal of Cardiology (Accepted).
    [20]Wang JA, Wang SP, et al. Voltage-dependent Potassium Channels are Involved in Staurosporine-Induced Apoptosis of Rat MSC.Cell Biology International. Doi: 10.1016/J.Cellbi,2007.10.003 (In Press).
    [21]Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation.2001, 103 (5):634-637.
    [22]Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Circulation.2002,106 (24):3009-3012.
    [23]Liu YR, Chen JZ, Wang XX, Zhu JH, Xie XD, Sun J. Changes of endothelial progenitor cells from peripheral blood in patients with coronary heart diseases. J Zhejiang Univ Sci B.2005,34 (2):163-166.
    [24]Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, Nurzynska D, Kasahara H, Zias E, Bonafe M, Nadal-Ginard B, Torella D, Nascimbene A, Quaini F, Urbanek K, Leri A, Anversa P. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res.2005,96 (1) 127-137
    [25]Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature.2003,425(6961): 968-973.
    [26]Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature.2002,416 (6880):542-545
    [27]Kamihata H, Hiroaki M, Takashi N, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances colateral perfusion and regional function via side supply of angioblasts, angiogenic ligands and cytokines. Circulation.2001,104 (10):1046-1052.
    [28]Ding CD, Cao KJ, Shan QJ, Zou JG, Chen ML, Jin Y. Mechanism of myeloid mesenchymal stem cell transplantation in cardiac autonomic nervous function after myocardial infarction. Chin J Clin Reh.2006,13 (10):24-28.
    [29]Pak HN, Qayyum M, Kim DT, Hamabe A, Miyauchi Y, Lill MC, Frantzen M, Takizawa K, Chen LS, Fishbein MC, Sharifi BG, Chen PS, Makkar R. Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a Swine model of myocardial infarction. J Cardio-vasc Electrophysiol.2003,14 (8):841-848.
    [30]Lian F, Zhu HS, Zheng JH, et al. The research of bone marrow mesenchymal stem cell transformation into myocytes in vitro. Chin J Exp Surg.2002,19(5) 454-456.
    [31]Pijnappels DA, Schalij MJ, van Tuyn J, Ypey DL, de Vries AA, van der Wall EE, van der Laarse A, Atsma DE. Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovasc Res.2006,72 (2):282-291
    [32]Mills WR, Mal N, Kiedrowski MJ, Unger R, Forudi F, Popovic ZB, Penn MS, Laurita KR. Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol.2007,42 (2):304-314.
    [33]Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong PH, Marban E, Abraham MR. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation.2006,113 (15):1832-1841.
    [34]Poh KK, Sperry E, Young RG, Freyman T, Barringhaus KG, Thompson CA. Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells:safety of a high dose, "off-the-shelf", cellular cardiomyoplasty strategy. Int J Cardiol 2007,117 (3):360-364
    [35]S.Y. Lim, YS. Kim, Y. Ahn, M.H. Jeong, M.H. Hong, S.Y. Joo, K.I. Nam, J.G. Cho, P.M. Kang, J.C. Park, The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc Res.2006,70 (3): 530-542.
    [36]Huang RC, Yao K, Zhou YZ, Ge L, Qian JY, Yang J, Yang S, Niu YH, Li YL, Zhang YQ, Zhang F, Xu SK, Zhang SH, Sun AJ, Ge JB. Long term follow-up on emergent intracoronary autologous bone marrow mononuclear cell transplantation for acute inferior-wall myocardial infarction. Chin J National Med.2006,86(16): 1107-1110.
    [37]Li GC, Li GS, Zhang J, Li WQ, Zhou Q. The empirical study of autologous bone marrow mesenchymal stem cell transplantation for dilated cardiomyopathy in rabbit. Chin J Cardiology.2004,32 (12):1095-1098.
    [38]Li WQ, Li Y, Li GC, Zhang J, Li GS. Effect of autoulogous bone mesenchymal stem cell transplantation on the heart function and plasma BNP of dilated cardiomyopathy. Chin J Emerg Med.2005,14 (7):559-562.
    [39]ZHANG Yao, LI Yong-li, ZHANG Shuo, Li LL, Hao DX, Gao M, Xu Y, Zhao SD. Effect of autologous bone mesenchymal stem cells transplantation on the heart function of dilated cardiomyopathy. Chin J Endemiology.2007,26 (3):273-276.
    [40]Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation.2005,112 (8):1128-1135.
    [41]Zhu SG, Xiong LH, Xie HF, Xiao SH, Hua P, Liao HY. Improvement of Cardiac Function and Promotion of Angiogenesis after Transplantation of Autologous Bone Marrow Mononuclear Cells to Chronic Ischemic Myocardium in Swine. J SUN Yat-sen Univ (Med Sci).2006,27 (3):293-296.
    [42]Brehm M, Strauer BE. Successful therapy of patients in therapy-resistant cardiogenic shock with intracoronary autologous bone marrow stem cell transplantation. Dtsch Med Wochenschr.2007,132 (38):1944-1948
    [43]Ma N, Ladilov Y, Moebius JM, Ong L, Piechaczek C, David A, Kaminski A, Choi YH, Li W, Egger D, Stamm C, Steinhoff G. Intramyocardial delivery of human CD 133+ cells in a SCID mouse cryoinjury model:Bone marrow vs. cord blood-derived cells. Cariovasc Res.2006,71(1):158-169.
    [44]Li J, Zhang N, Wang J. Improved antiapoptotic and antiremodeling potency of bone marrow mesenchymal stem cells by anoxic preconditioning in diabetic cardiomyopathy. J Endocrinol Invest.2008,31 (2):103-110.
    [45]Li J, Zhang N, Wang J, Luo R, Jiang J, Wang J. Bone marrow mesenchymal stem cells induces angiogenesis and attenuates the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes.2008,116 (2):104-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700