AZ91D镁合金表面激光Al合金化改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有低的密度和高的阻尼减震性能以及良好的可成型性和切削加工性能,因此近年来其在工业应用中受到越来越多的重视,但是镁合金的室温强度低、耐磨性差和耐蚀性差大大限制了作为工程结构材料的应用范围。因此,采用表面改性技术以增强镁合金表面化学和力学性能具有重要的现实意义。为此本文以AZ91D镁合金为研究对象,采用激光表面合金化技术提高镁合金表面性能。利用现代微观分析技术和性能检测手段,对改性层微观组织结构、性能特征随激光工艺参数的变化规律进行了系统分析。在试验中找到显著提高镁合金耐蚀性、耐磨性最佳的激光合金化工艺参数。
     实验结果表明,激光合金化改性层分为合金化区、结合区和热影响区。合金化区鱼骨状组织为α-Mg和梅花状组织为α-Mg+β-Mg17Al12的组织,灰色基体为少量的α-Mg和较多β-Mg17Al12的组织。改性层同样是由α-Mg和金属间化合物β-Mg17Al12构成,并且β-Mg17Al12相的含量较基体镁合金均有明显增加。不同激光工艺参数下改性层的腐蚀速率远远低于基体。激光功率一定时,扫描速度为3mm/s为最佳。扫描速度一定时功率为1.5kW时,耐蚀性最佳。改性层最终凝固组织呈明显的梯度分布特征,最高强度出现在亚表层中。在功率为2kW时,不同扫描速度下亚表层平均硬度约在150-330HK范围内,较基体(70HK)约提高100-370%。其中扫描速度为10mm/s时为最佳,较基体约提高250-370%。在扫描速度为7mm/s时,功率为2.5kW为最佳,较基体提高约250-470%。在磨粒磨损机制下,改性层耐磨性的高低与硬度试验结果基本相吻合,即硬度越高耐磨性越好。在功率为2kW时,扫描速度为9mm/s时耐磨性最好;扫描速度为7mm/s时,功率2.5kW为最佳。
Magnesium alloys have low densities, high-damping shock absorption properties and good molding and machining performance, so in recent years magnesium alloy is increasing attention in the field of industries application. However, the magnesium at room temperature low strength, alloy wear resistance poor and corrosion resistance poor, as a major constraint on the structure of engineering materials applications. Therefore, by taking the surface modification technology, the improvement of the chemical and mechanical properties of Mg alloys has the important practical significance. In this paper, the AZ91D magnesium alloy used for researching, laser surface alloying is carried out to improve the surface properties of Mg alloy. The microstructure and properties of the coatings, as well as the influence of processing parameters on them, were investigated by modern micro-analysis techniques and performance analysis facility.
     The results show that laser-modified alloy layer is divided into alloying zone, the bond zone and heat-affected zone. The microstructure of fishbone in alloying zone isα-Mg and the microstructure for the plum blossom isα-Mg +β-Mg17Al12, gray substrate is a small amount ofα-Mg and more Mg17Al12. The modified layer is constituted by theα-Mg and metal compoundsβ-Mg17Al12, and the content ofβ- Mg17Al12 is increased than the substrate Mg alloy. The corrosion rate of modified layer is far lower than the substrate under different laser technology parameters. When the scanning speed is 3mm/s, the best corrosion resistance was got under certain laser power. The best corrosion resistance was got when power is 1.5kW under certain scanning speed, modified-final solidification structure is obvious gradient distribution, and the intensity maximum was in the subsurface. When the power is 2kW, under the different scanning speed the average hardness is between 150-330HK in the sub-surface, which is raise about 100-370% than the substrate (70HK). the hardness raised about 250-370% than substrate when the scanning speed is 10mm/s. When the scanning speed is 7mm/s, the power is 2.5kW the best hardness was got, increasing about 290-470% than the matrix. With the abrasive wear mechanism, the wear resistance of modified layer coincides the hardness test results, that is, the hardness is higher, the wear resistance is better. The best wear resistances were got when the power is 2kW and the scanning speed is 9mm/s, and the scanning speed is 9mm / s, the power 2.5 kW.
引文
[1]陈振华,严红革,陈吉华等.镁合金[M].北京:化学工业出版社,2004:417-424.
    [2]敦学锋,魏建锋,张忠明.镁合金与超高强度镁合金[J].铸造技术,2002,23(3): 133-136.
    [3]吕宜振,王渠东,曾小勤等.镁合金在汽车上的应用现状[J].汽车技术,1999,(8): 28-31.
    [4]杨彬.镁合金研究及制备发展概况[J].铸造设备研究,2001,(1):36-38.
    [5] Mordike B L, Ebert T. Magensium properties-application-potential[J]. Material Science and Engineering, 2001,302:37-45.
    [6]曹荣昌,柯伟,徐永波等.镁合金的最新进展及应用前景[J].金属学报, 2001, 51(1):2-13.
    [7]王渠东,丁文江.轿车用阻燃镁合金的研制[J].材料导报, 2000,(14):53-56.
    [8] Mordike B L. Magnesium and magnesium alloys[J]. J. Jnst Japan Inst Light Metals, 2001,5(1):2-13.
    [9] Eliezer D. Magnesium science technology and application[J]. Advanced Perfermance Mater. 1998,(5):201-212
    [10] D. S. Gnanamuthu. Laser Surface treatment, Application of Lasers in Materials Processing[M].1979.
    [11] L.S. Wenman et al. Properties of rapidly Solidified, Laser Surface Alloyed Low Carbon Steels[M]. Application of Lasers in Materials Processing,1979.
    [12]李国英.材料及其制品表面加工新技术[M].长沙:中南大学出版社,2002.7.
    [13] Peligrada A A, Zhou E, Mortona D, et al. Melt depth prediction model for quality control of laser surface glazing of inhomogeneous materials [J]. Optics & Laser Technology,2001,(33):7-13.
    [14]李明喜,何宜柱,孙国雄. Ni基合金/45#钢宽、窄带熔覆Co基合金的组织基[J].中国激光,2003,30(11) :1044-1048.
    [15]刘其斌,王存山,夏元良.宽带激光熔覆WCp/Ni基合金梯度涂层中WCp的溶解机理[J].材料热处理学报,2001,22(3) :33-36.
    [16]刘喜明,关振中.送粉式激光熔覆获得最佳熔覆层的必要条件及其影响因素[J].中国激光, 1999, 26(5): 470-476.
    [17]胡木林,谢长生,祝柏林.多道搭接激光熔覆镍基合金中裂纹断口形貌研究[J].材料热处理学报, 2001, 22(2): 23-26.
    [18] Zhong Minlin, Liu Wenjin, Yao Kefu, et al. Microstructural evolution in high power laser cladding of Stellite WC layers[M]. Surface and Coatings Technology, 2002, 157(2-3):128-137.
    [19]李智,马椿喻,刘相华等.激光表面合金化工艺进展[J].材料科学与工程, 1999, 17(2): 81-84.
    [20]刘江龙等.激光产生金属表层合金化的若干问题[J].应用激光,1988,(3):35-37.
    [21] Galun R, Weisheit A, Mordike B L. Laser surface alloying of magnesium base alloys[J]. Journal of Laser Applications, 1996 (8):299-305.
    [22] Majumdar J D, Maiwald T, Galun R, et al. Laser Surface alloying of an Mg alloy with Al+Mn to improve corrosion resistance[J]. Lasers in Engineering, 2002, 12 (3):147-169.
    [23] Majumdar J D, Chandra B R, Galun R, et al. Laser composite surfacing of a magnesium alloy with silicon carbide[J]. Composites Science and Technology, 2003, 63 (6):771-778.
    [24] Majumdar J D, Chandra B R, Mordike B L, et al. Laser Surface Engineering of a magnesium alloy with Al + Al2O3[J]. Surface and Coatings Technology, 2004, 179 (2-3):297-305.
    [25] Hiraga, H; Inoue, T; Kamado, S et al. Improving the wear resistance of a magnesium alloy by laser melt injection[J]. Materials transaction, 2001,42(7):1322-1325.
    [26] Hiraga, H; Inoue, T;Kojima, Y et al. Surface modification by dispersion of hard particles an magnesium alloy with laser[J]. Materials Science Forum, 2000, 350:253-258.
    [27] Majumdar J. Dutta, B. Ramesh Chandra, et al. Laser composite surfacing of a magnesium alloy with SiC Carbide[J]. Composite Science and Technology, 2003, 63:771-778
    [28] T.M. Yue, A.H. Wang, H C Man. Corrosion Resistance Enhancement of Magnesium ZK60/SiC Composite by Nd: YAG Laser Cladding[J]. Script a Materialia, 1999, 40(3):303-311.
    [29] A.H. Wang, T.M. Yue. YAG Laser Cladding of an Al2Si Alloy onto an Mg/SiC Composite for the Improvement of Corrosion Resistance[J]. Composites Science and Technology, 2001, 61:1549-1554.
    [30] T. M. Yue, A. H. Wang, H. C. Man. Improvement in the Corrosion Resistance of Magnesium ZK60/SiC Composite by Excimer Laser Surface Treatment[J]. Scripta Materialia, 1997, 38(2): 191-198.
    [31]刘静安.镁合金加工技术发展趋势与开发应用前景[J].稀有金属快报,2003, 22(3): 6-10
    [32]林肇琦.有色金属材料学[M].沈阳:东北大学出版社,1991.
    [33]董世运,王茂才.轻金属表面改性技术现状[J].航空工程与维修,1999(4): 43-45.
    [34]赵文轸,王汉功.国外铝合金激光表面改性研究进展[J].表面工程,1996(1): 43-47.
    [35] S. Igant, P. sallamand, D. Grevery, et al. Magnesium alloys laser cladding and alloying with side injection of aluminium powder[J]. Applied Surface Science, 2004,225(3):124-134.
    [36]吴国华,刘子利,樊一等.消失模铸造AZ91镁合金组织及耐蚀性研究[J].铸造,2005,54(8):76-771.
    [37] ASM Handbook Committee, ASM Handbook, Alloy Phase Diagrnms, Metals Park, Ohio, ASM I nter-national, Volume 3, 1992:248-249.
    [38]周玉.材料分析方法[M].北京:机械工业出版社,2003.
    [39] Kurz W, Fisher J. Fundamentals of Solidification[M]. Aedermannsdors, Switzerland: Transactions Technical Publications, 1989.
    [40] Tassin C, Laroudie F. Improvement of the wear resistance of 316L stainless steel by laser surface alloying[J]. Surface and Coatings Technology, 1996(80): 202-210.
    [41]张诗昌,魏伯康,林汉同等.钇及铈镧混合稀土对AZ91镁合金铸态组织的影响[J].中国有色金属学报,2001(11):99-102
    [42]陈长军,常庆明,张敏等. ZM5镁合金表面激光Al合金化行为的研究[J].应用激光,2007,27(4):261-268.
    [43]刘江龙.激光合金化的微观成分不均匀性的探讨[J].金属热处理学报, 1990(3), 11(1):39-42.
    [44]刘江龙.金属表面激光合金化过程的特征探讨[J].金属热处理学报,1991(6), 12(2):49-57.
    [45]刘江龙,刘朝.激光作用下合金化熔池内的熔体流动[J].重庆大学学报,1993(9), 16(5):109-114.
    [46]姚军. AZ91D镁合金激光熔覆与重熔层组织特征及其性能研究[D].吉林:吉林大学,2007:46-52.
    [47] Dube D, Frset M, Couture A et al. Characterization and Performance of laser melted AZ91D and AM60B[J]. Materials Science and Engineering A, 2001,299:38-45.
    [48] Mcintyre N S, Chen C. Role of Impurities on Mg Surfaces under Ambient Exposure Conditions[J]. Corrosion Science, 1998,40(10):1697-1709.
    [49]姚军. AZ91D镁合金激光熔覆与重熔层组织特征及其性能研究[D].吉林:吉林大学,2007:128-131.
    [50]张津,孙智富,汪崧扬等.镁合金表面热喷铝工艺及防腐性研究[J].表面技术,2003,32(3):8-10.
    [51]徐萍. Ce、Nd、Sr对AZ91镁合金显微组织和腐蚀性能的影响[D].武汉:武汉理工大学,2005,:56-78.
    [52] Ambat Rajan, Aung Naing, Zhou W. Evaluation of effects on corrosion behavior of AZ91D magnesium alloy[J]. Corrosion Science, 2000,42:1433-1455.
    [53] Song G L, Atrens Andrej, Wu X L et al. Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corrosion Science, 1998,40:1769-1791.
    [54]黄亮.铝和稀土元素对镁合金在NaCl溶液中腐蚀行为的影响[D].上海:中国科学院上海冶金研究所,2001:35-36.
    [55]马幼平,陆旭忠,徐可为.镁合金ZM5高频感应表面合金化改性层的腐蚀行为[J].稀有金属材料与工程,2003,32(3):191-193.
    [56] Nussbaum G, Sainfort P et al. Strengthening Mechanisms in the Rapidly Solidified AZ91 Magnesium Alloy[J]. Scripta Metallurgica. 1989,23:1079.
    [57] M. Mabuchi, K. Higashi, Strengthening mechanisms of Mg-Si alloy[J]. Materialia, 1996,44(11):4611-4618.
    [58] W.S. Miller, F.J. Humphreys, Strengthening mechanisms in particulate metal matrix composites[J]. Scripta Metallurgica et Materialia, 1991,25:33-38.
    [59] R.M. Aikin, Jr. and L. Christodoulou, The role of equiaxed particles on the yield stress of composites[J], Scripta Metallurgica Materialia, 1991,25:9-14.
    [60]张津,张宗和.镁合金及其应用[M].北京:化学工业出版社,2004.
    [61]张剑锋,周志芳.摩擦磨损与抗磨技术[M].天津:天津科技翻译出版公司,1993,3
    [62]束德林.金属力学性能[M]..北京:机械工业出版社,1999:69-72.
    [63] Hornbogen E, Micostructure and Wear[J]. Metallurgical Aspects of Wear, 1981:23-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700