AZ31B镁合金CO_2气体激光表面改性的组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁矿产资源丰富,镁合金具有密度小,比强度、比刚度高,减振性能好,抗辐射能力强等优点,成为继钢铁和铝材料之后的第三大金属工程应用材料,被誉为“21世纪绿色工程材料”。但是镁合金材料的耐腐蚀性差,硬度、耐磨损性也较差,在某种程度上制约了它的广泛应用。因此,采用表面改性技术提高镁合金的耐磨损性和耐腐蚀性等综合性能,进行适当的表面强化,具有重要的现实意义。
     本文采用5kW横流CO2气体激光对AZ31B镁合金表面进行激光熔凝和激光熔覆处理,以期提高镁合金表面的耐磨性能和耐腐蚀性能;研究了激光熔凝层、低熔点Al熔覆层和高熔点的Ni60合金熔覆层的激光表面改性工艺,分别从显微组织、物相、显微硬度、磨损性能以及电化学腐蚀性能等对比分析了原始镁合金和表面改性层。
     首先,对AZ31B镁合金进行了激光熔凝处理,呈月牙状的熔凝层与基体结合良好,没有裂纹、气孔等缺陷。选取激光功率和扫描速度这两个影响激光加工的决定因素进行了分析,发现随着激光功率的增加或扫描速度的减小,熔宽和熔深都增大。熔凝层由α-Mg和β-Mg17Al12组成,而且晶粒比基体明显得到细化。受细晶强化和沉淀强化等的综合作用,熔凝层的显微硬度、耐磨性以及耐腐蚀性都得到提高,显微硬度提高了13.64~93.75%,耐磨性提高了37.14~62.86%,腐蚀电位正移了43~109mV,腐蚀电流密度降低了近一个数量级。
     考虑到Mg与Al的良好冶金结合性能,接着在AZ31B镁合金表面激光熔覆了低熔点的Al涂层,熔覆层中没有明显的裂纹和气孔等缺陷。Al熔覆层中的物相以Al、Mg17Al12和Al3Mg2为主,并形成了树枝状和梅花状这两种组织形态,从熔覆层底部到表面,晶粒尺寸逐渐减小。与原始AZ31B镁合金相比,受Al固溶体、细晶强化和沉淀强化等的综合作用,熔覆层的显微硬度、耐磨性以及耐腐蚀性的提高程度更大,显微硬度提高了455~733%,耐磨性提高了40~80%,腐蚀电位正移了93~183mV,腐蚀电流密度降低了1.5个数量级左右。
     最后,在AZ31B镁合金表面首次成功激光制备了在钢铁材料中最常用的高熔点的Ni60合金,得到了与基体结合良好的没有明显的裂纹和气孔的合金层。熔覆层物相由Mg和多种金属间化合物MgNi2、Mg2Ni、Mg2Ni3Si、Mg2Si、FeNi等组成,呈现Ni60合金的典型的树枝晶形态。在细晶强化、固溶强化以及第二相强化等的综合作用下,熔覆层的显微硬度和耐磨性都得到很大程度的提高,显微硬度提高了656~1102%,耐磨性提高了71.43~91.43%。而Ni60合金熔覆层的电化学腐蚀性能由于Ni元素、Ni-Mg金属间化合物及含有Ni和Cr元素的Mg固溶体所致而得到改善,腐蚀电位正移了136~417mV,腐蚀电流密度降低了2~3个数量级。当激光功率P=4000W扫描速度v=180mm/min时腐蚀电位最高为-1142mV,比原始镁合金正移了417mV,腐蚀电流密度降低了两个多数量级。
Magnesium mineral resources are rich, magnesium alloys are considered as“green engineering materials in the 21st century”and become the third metallic engineering applying materials after steel and aluminum materials because of their low density, high specific strength and rigidity, as well as good shock absorption, and anti-radiation. However, the low corrosion resistance, bad hardness and wear resistance have limited the application of Mg alloys in a way. Therefore, by taking the surface modification technology, the improvement of the abrasion resistance and corrosion resistance of Mg alloy has the improvement practical significance.
     In this paper, the techniques, such as laser surface melting and laser surface cladding which used to improve the surface wear resistance and corrosion resistance of magnesium are carried out to AZ31B magnesium alloy by CO2 gas laser. The laser surface modification techniques of melting layer, low melting point Al cladding layer and high melting point Ni60 alloy cladding layer are studied, and the magnesium substrate and the modified layer are analysed contrastively from aspects such as the microstructure, phase, microhardness, wear and corrosion resistance of modified layer are analysed.
     First of all, the laser melting to AZ31B is carried out. The melted layer which likes waned moon has a good bonding with the matrix, and there is few crack and pore in the melted layer. Laser power and scan speed which affect the laser processing principally are analysed, the experimental results show that the melted width and melted depth all increase along with the increase of laser power or the decrease of scan speed. The melted layers mainly consist ofα-Mg andβ-Mg17Al12, and the grains of melted layer are smaller than base metal. Due to the fine-grained and precipitation strengthening, the microhardness、wear resistance of melted layer have the significant improvement, the microhardness raises by 13.64~93.75%,the wear resistance raises by 37.14~62.86%. Moreover, the corrosion voltages move 43~109mV to positive direction than as-received magnesium alloy, the corrosion current density was less by one magnitude than AZ31B alloy.
     Then, in view of the well metallurgy bonding performance, Al layer is prepared on AZ31B magnesium alloy surface by laser cladding, there are few crack and pore in cladded layer. Al、Mg17Al12 and Al3Mg2 are formed in cladding layer, the branch grain and a mass of fine microstructures like club are formed. The dimension of grains minish from the top to bottom of the cladded layer gradually. The microhardness, the wear resistance enhanced more greatly because of Al solid solution, fine-grained and precipitation strengthening, the microhardness raises by 455~733%,the wear resistance raises by 40~80%, and the corrosion voltages move 93~183mV to positive direction than as-received magnesium alloy, the corrosion current density was less by one magnitude than AZ31B alloy.
     Finally, high melting point Ni-60 alloy layer which is the most common cladding material of those used on steel materialhigh melting point is attained on the surface of AZ31B magnesium alloy by laser cladding successfully for the first time, and there are few crack and pore in the cladded layer. The Ni-60 cladded layers mainly consist of Mg、MgNi2、Mg2Ni、Mg2Ni3Si、Mg2Si and FeNi, and show itself typical branch grain of Ni-based alloy. Under the compositive effect of fine-grained、solid solution strengthening and second phase strengthening, the microhardness and wear resistance enhance mostly, the microhardness raises by 656~1102% , the wear resistance raises by 71.43~91.43%%. The electricity chemistry corrosion resistance also improved due owing to Ni element、Ni-Mg metal compound and Mg solid solution which has Ni and Cr element. The corrosion voltages move 136~417mV to positive direction than as-received magnesium alloy, the corrosion current density was less by two to three magnitude than AZ31B alloy. Especially, when laser power is P=4000W, scan speed is v=180mm/min, the corrosion voltage is the most positive of -1142mV, move 417mV to positive direction than as-received magnesium alloy, the corrosion current density was less by two magnitude than AZ31B alloy.
引文
[i]黎文献.镁及镁合金[M].长沙:中南大学出版社, 2005
    [ii]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].机械工业出版社, 2002
    [iii] Kojima Y. Project of platform science and technology for advanced magnesium alloys[J]. Materials Transactions, 2001, 42(7): 1154 ~ 1159
    [iv]丁文斌.镁合金表面熔覆层的制备与性能研究[D].上海交通大学, 2007
    [v]左铁钏等. 21世纪的先进制造——激光技术与工程[M].北京:科学出版社, 2007
    [vi] Nobuto Y, Hiroshi N, Ari I. Characteristics of ion beam modified magnesium oxide films[J]. Thin Solid Film, 2004, 447-448: 377 ~ 382
    [vii] Rotshtein V P, Ivanov Yu F, Proskurovsky D I, et al. Microstructure of the near-surface layers of austenitic stainless steels irradiated with a low-energy, high-current electron beam[J]. Surface and Coatings Technology, 2004, 180 - 181: 382 ~ 386
    [viii]武洪臣,姚振中,冯建基等.先进涂层技术——EB-PVD[J].航空制造技术, 2005, 5: 28 ~ 30
    [ix]梁春林,刘宜汉,韩变华等.镁合金表面处理研究现状及发展趋势[J].表面技术, 2006, 35(6): 57 ~ 64
    [x]曾爱萍,薛颖,钱宇蜂等.镁合金的化学表面处理[J].腐蚀与防护, 2000, 2: 55 ~ 56
    [xi] Martin R Elgar. The surface treatment of magnesium alloys for aerospace application[J]. Finishing Foundry Trade Journal, 1998(7): 554 ~ 556
    [xii] Avid Hawkeq, Albright D L A. Phoshpate-Permanganate Conversion Coating for Magnesium[J]. Metal Finishing, 1995(10): 34 ~ 38
    [xiii]杨黎晖,李峻青,张密林.镁合金表面处理技术的研究进展[J].中国腐蚀与防护学报, 2008, 28(5): 316 ~ 320
    [xiv]吴敏,吕柏林,梁平.镁及其合金表面处理研究现状[J].表面技术, 2005, 34(5): 13 ~ 15
    [xv]王维青,潘复生,左汝林.镁合金腐蚀及防护研究新进展[J].兵器材料科学与工程, 2006, 29(2): 73 ~ 77
    [xvi]郭洪飞,安茂忠.镁及镁合金阳极氧化技术[J].轻合金加工技术, 2003, 31(12): 1 ~ 5
    [xvii]杨晓飞,林文光,毛广雷.镁合金表面处理的现状及趋势[J].汽车工艺与材料, 2007, 3: 10 ~ 13
    [xviii] Normand B. Tribological properties of plasma sprayed aluminum titania coatings, toleand control of the microstructure, Surf[J]. Coat Tech, 2000, 123: 278 ~ 287
    [xix]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社, 2004
    [xx] Wang H Y, Jiang Q L, Li X L, et al. Effect of Al content on the selfpropagating high-temperature synthesis reaction of Al-Ti-C system in molten magnesium[J]. Journal of Alloys and Compounds, 2004, 366: L9~L12
    [xxi]陈岁元,刘常升.材料的激光制备与处理技术[M].北京:冶金工业出版社, 2006
    [xxii]张国顺.现代激光制造技术[M].北京:化学工业出版社, 2006
    [xxiii] Majumdar J D, Galun R. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy[J]. Materials Science and Engineering, 2003, 361(1): 119 ~ 129
    [xxiv] Ghazanfar Abbas. Effect of high power diode laser surface melting on wear resistance of magnesium alloy[J]. Wear, 2006, 260: 175 ~ 180
    [xxv] A.K.Mondal, S.Kumar, C.Blawert, et al. Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy[J]. Surface & Coatings Technology, 2008, 202: 3187 ~ 3198
    [xxvi]G. Abbas, Z. Liu, P. Skeldon. Corrosion behaviour of laser-melted magnesium alloys[J].Applied Surface Science, 2005, 247(1-4): 347 ~ 353
    [xxvii] Dube D, Frset M, Couture A, et al. Characterization and reformance of laser melted AZ91D and AM60B[J]. Materials Science and Engineering A, 2001, 299: 38 ~ 45
    [xxviii]高亚丽. AZ91HP镁合金激光表面改性[D].大连理工大学, 2007
    [xxix]陈菊芳,张永康,李仁兴等. AM50A镁合金激光表面熔凝层的强化效果与机理[J].中国有色金属学报, 2008, 18(8): 1426 ~ 1431
    [xxx]陈菊芳,张永康,许仁军. AM50镁合金表面激光熔凝层的组织与耐蚀性能[J].中国激光, 2008, 35(2): 307 ~ 310
    [xxxi] Galun R, Weisheit A. Laser surface alloying of magnesium base alloys[J]. Journal of Laser Applications, 1996, (8): 299 ~ 305
    [xxxii] Majumdar J D. Laser composite surfacing of a magnesium alloy with SiC Carbide[J]. Composite Science and Technology, 2003, 63: 771 ~ 778
    [xxxiii] Murayama Kyouji, Suzuki Atsuya, Kamado Shigcharu, et al. Improvement of wear resistance of magnesium by laser-alloying with Silicon[J]. Materials Transactions, 2003, 44(4): 531 ~ 538
    [xxxiv] Murayama Kyouji, Suzuki Atsuya, Tohru, et al. Surface modification of magnesiumalloys by laser alloying using Si powder[J]. Materials Science and Forum, 2003, 419 - 422(2): 969 ~ 974
    [xxxv] J.Dutta Majumdar, B.Ramesh Chandra, B.L.Mordike, et al. Laser surface engineering of a magnesium alloy with Al+Al2O3[J]. Surface and Coatings Technoloy, 2004, 179: 297 ~ 305
    [xxxvi]陈长军,张敏等.在ZM5上预置Al-Y粉末激光合金化的研究[J].热加工工艺, 2007, 36(23): 33 ~ 37
    [xxxvii] CHEN Changjun, WANG Maocai, WANG Dongsheng, et al. Laser cladding of Al+Ir powders on ZM5 magnesium base alloy[J]. Rare Metals, 2007, 26(5): 420 ~ 425
    [xxxviii] Sorin Ignat, Pierre Sallamand, Dominique Grevey, et al. Magnesium alloys(WE43 and ZE41) characterization for laser applications[J]. Applied Sureface Science, 2004, 233: 382 ~ 391
    [xxxix] Bakkar A , Galun R , Neubert V. Microstructural characterizationand corrosion behaviour of laser cladded Al - 12Si alloy onto magnesium AS41/ carbon fiber composite[J]. Materials Science andTechnology, 2006, 22(3): 353 ~ 362
    [xl] Maiwald T, Galun R. Microstructure and corrosion properties of laser clads of magnesium base alloys for laser generated cylinder liners[J]. Lasers in Engineering, 2002, 12(4): 227 ~ 238
    [xli]杨晓飞,林文光等. AZ91D镁合金表面激光熔覆Al+Al2O3涂层研究[J].兵器材料科学与工程, 2007, 4(30): 20 ~ 23
    [xlii]黄开金,林鑫等. AZ91D镁合金表面激光熔覆Zr-Cu-Ni-Al/TiC复合粉末的组织与磨损[J].中国激光, 2007, 4(34): 549 ~ 553
    [xliii] Yao Jun, G.P.Sun, Hong-Ying Wang, et al. Laser(Nd:YAG) cladding of AZ91D magnesium alloys with Al+Si+Al2O3[J]. Journal of Alloys and Compounds, 2006, 407: 201 ~ 207
    [xliv]刘红宾,王存山等.镁合金表面激光熔覆Cu-Zr-Al非晶复合涂层[J].中国激光, 2006, 5(33): 709 ~ 713
    [xlv] Yao Jun, G.P.Sun, Hong-Ying Wang, et al. Laser(Nd:YAG) cladding of AZ91D magnesium alloys with Al+Si+Al2O3[J]. Journal of Alloys and Compounds, 2006, 407: 201 ~ 207
    [xlvi] Xu Yue, Li Sha. Corrosion Resistance of AZ91D Magnesium Alloy modified by rare earths-laser surface treatment[J]. Journal of Rare Earths, 2007, (25): 201 ~ 203
    [xlvii]周玉.材料分析方法[M].北京:机械工业出版社, 2004
    [xlviii] D.Dube, M.Fiset, A.Couture, et al. Characterization and performance of laser melted AZ91D and AM60B[J]. Materials Science and Engineering, 2001(299): 38 ~ 45
    [xlix]张津,张宗和.镁合金及其应用,北京:化学工业出版社, 2004
    [l]崔忠圻.金属学与热处理.北京:机械工业出版社, 1996
    [li]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,第2版, 2002
    [lii]束得林.金属力学性能.北京:机械工业出版社, 1999
    [liii]温诗铸.摩擦学原理[M].北京:清华大学出版社, 1990
    [liv]李凌杰,于生海,雷惊雷等. NaCl介质中AZ31镁合金的动态电化学腐蚀行为研究[J].兵器材料科学与工程, 2008, 31(6): 8 ~ 11
    [lv]马幼平,陆旭忠,徐可为.镁合金ZM5高频感应表面合金化改性层的腐蚀行为[J]. 稀有金属材料与工程. 2003, 32(3): 191 ~ 193
    [lvi]卫英慧,许并社等.镁合金腐蚀防护的理论与实践[M].北京:冶金工业出版社, 2007
    [lvii]王新洪,邹增大,曲仕尧.表面熔融凝固强化技术——热喷涂与堆焊技术[M].北京:化学工业出版社, 2005
    [lviii]徐滨士,刘世参.表面工程新技术[M].北京:国防工业出版社, 2002
    [lix]陈长军,常庆明,张敏等. ZM5镁合金表面激光Al合金化行为的研究[J].应用激光, 2007, 27(4): 261 ~ 268
    [lx]张诗昌,魏伯抗,林汉同等.钇及铈混合稀土对AZ91镁合金铸态组织的影响[J].中国有色金属学报, 2001, 2(11): 99 ~ 102
    [lxi] Ambat Rajan, Aung Naing, Zhou W. Evaluation of effects on corrosion behavior of AZ91D magnesium alloy[J]. Corrosion Science, 2000, 42: 1433 ~ 1455
    [lxii]张春华,张松,文効忠等. 6061Al合金表面激光熔覆Ni基合金的组织及性能[J].稀有金属材料与工程, 2005, 34(5): 701 ~ 704

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700