TiAl金属间化合物力学性质及理论机制的计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiAl合金由于具有密度小,高温性能好等诸多优点,在航天、航空等行业深受青睐,然而力学性质尤其脆性大限制了其广泛应用。为致力将TiAl合金发展成实际应用的航空、航天材料,目前国内外科研工作者在采用合金化及热加工等手段来改善其脆性等方面开展了大量工作,本论文选取TiAl合金作为研究对象,依托改善TiAl合金力学性质的部分实验结果为背景,建立合金形成热、弹性常数等微观物理量与合金体系相结构稳定性、力学性质等宏观性能的对应关系,通过第一性原理的计算方法获得TiAl合金的微观物理特征量及各种电子结构信息,在研究TiAl合金基本物理性质的基础上,以Zn、Co、Fe、Sc、Nb、V、Cu、Cr原子置换TiAl中的Al来考查合金化效应对体系结构稳定性与力学性质的影响,基于电子机制的分析,探讨合金化提高TiAl体系力学性质的理论机制。
     计算了富Al和富Ti两种TiAl合金体系的平衡晶格常数、合金形成热、态密度和能带,发现平衡晶格常数计算值与实验值和他人计算值基本吻合;富Al的TiAl合金的结构稳定性优于富Ti的TiAl合金;富Al的TiAl合金的结构稳定性优于富Ti的TiAl合金的主要原因在于富Al的TiAl合金在费米能级上的成键电子数少于富Ti的TiAl合金。
     计算了Zn、Co、Fe、Sc、Nb、V、Cu、Cr合金化富Al的TiAl合金体系的合金形成热与态密度,发现合金化原子置换TiAl中的Al后,体系的合金形成热均为负值,合金化后TiAl体系均能形成稳定结构;合金化原子占据TiAl中的Al原子的能力由强到弱的次序依次是Zn、Co、Fe、Sc、Nb、V、Cu、Cr;合金化后结构的稳定性由好到差依次是Zn、Co、Fe、Sc、Nb、V、Cu、Cr;合金化后结构稳定性的强弱主要取决于费米能级附近电子杂化成键作用的强弱。
     计算了Zn、Co、Fe、Sc、Nb、V、Cu、Cr合金化富Al的TiAl合金体系的弹性常数、杨氏模量E、剪切模量G、体模量B、泊松比v和电子密度,发现合金化后使TiAl合金的硬度降低,硬度高低次序为:V-TiAl>Nb-TiAl> Cr-TiAl> Sc-TiAl>Co-TiAl> Zn-TiAl>TiAl>Fe-TiAl>Cu-TiAl;以G/B衡量,合金化体系延性逐渐变差顺序为:Fe-TiAl> Cr-TiAl> Co-TiAl> TiAl>V-TiAl> Nb-TiAl >Cu-TiAl> Zn-TiAl> Sc-TiAl;以C12-C44衡量,合金化体系延性逐渐变差顺序为:Fe-TiAl> Cr-TiAl> Co-TiAl> Cu-TiAl>V-TiAl> Nb-TiAl>Zn-TiAl> Sc-TiAl> TiAl; Fe、Cr、Co合金化均能都提高TiAl合金的延性;合金化后TiAl合金的原子平均价键强度由大到小的次序为:Fe-TiAl>Cr-TiAl>Co-TiAl> V-TiAl> TiAl>Nb-TiAl>Zn-TiAl>Cu-TiAl>Sc-TiAl;电子密度的分析结果较好解释了Fe、Cr.Co合金化后能提高TiAl的延性的原因。
TiAl alloy has been wildly used in aeronautics,astronautics and many other industries due to the advantages of low density and good high temperature performance,However, its further applications has been limited by some mechanical properties,especially brittleness.At present,the researchers of domestic and foreign have done many works to improve the brittleness by alloying,hot-working and other means in order to develop the TiAl alloy to aeronautics and astronautics materials in the practical application.This thesis take the TiAl alloying as the research object,improve the properties based on some results of experiments,establish the corresponding relationships between the micro-physical of alloy heat of formation and elastic constant and macro-properties of phase structure stability and the mechanical propertie,investigate the alloying effects to the influence of the stability of architecture and mechanical properties by putting Zn,Co,Fe,Sc,Nb,V,Cu,the Cr atom into the TiAl to replace the Al atoms,which based on the basic physical properties of TiAl alloys(micro-physical characteristics and electronic structure information)by the calculations of first principle,and probe the alloying theory mechanism of improving the mechanical properties of TiAl from the analysis of electronic mechanisms.
     The calculate results of the lattice constant,heat of formation,electronic density of state and energy band of Al-rich and TiAl-rich are fairly good agreement between theoretied and experimental results showed by the previous researches,and the structure of Ti-Al of Al-rich is more stable than Ti-rich,mainly because the number of the bonding electrons is less in fermi level.
     According to the results of the heat of formation and density of state by replacing the Zn,Co,Fe,Sc,Nb,V,Cu,Cr into the Al,the TiAl alloying system is a stable structure due to the heat of formation is negative,the descending order of capability of the above atoms to replace Al is Zn,Co,Fe,Sc,Nb,V,Cu,Cr,and the structural stability of alloy from good to bad followed by Zn,Co,Fe,Sc,Nb,V,Cu,Cr,which depends on the bonding strength near the fermi level.
     According to the results of Eonstants modulus (E),Young's modulus(Y),Shear modulus(G),Bulk modulus(B),Poisson's ratio and the velectron density of the above alloy-system.We learn that alloying can reduce the hardness of TiAl alloy,the descending order of hardness is V-TiAl> Nb-TiAl> Cr-TiAl> Sc-TiAl> Co-TiAl> Zn-TiAl> TiAl> Fe-TiAl> Cu-TiAl,the ductility of alloyed system gradually deteriorated in the order of Fe-TiAl> Cr-TiAl> Co-TiAl> TiAl> V-TiAl> Nb-TiAl > Cu-TiAl> Zn-TiAl> Sc-TiAl measured by G/E and Fe-TiAl> Cr-TiAl> Co-TiAl> TiAl> V-TiAl> Nb-TiAl> Cu-TiAl> Zn-TiAl> Sc-TiAl measured by C12-C44,the descending order of average bond strength is Fe-TiAl> Cr-TiAl> Co-TiAl> V-TiAl> TiAl> Nb-TiAl> Zn-TiAl> Cu-TiAl> Sc-TiAl and the alloying of Fe,Cr,Co can improve the ductility form the results of the electron density.
引文
[1]张永刚,韩雅芳,陈国良等.金属间化合物结构材料.国防工业出版社,2001
    [2]陶辉锦,彭坤,谢佑卿等.Ti-Al金属间化合物脆性问题的研究.粉末冶金材料科学与工程,2007,(6):21-25
    [3]刘轶,侍新淋.TiAl金属间化合物研究.沈阳航空工业学院学报,2001,(3):27-29
    [4]龚伟平,陈腾飞,刘彬等.相图计算在TiAl基金属间化合物结构设计中的计算,粉末冶金材料科学与工程,2006,(8):206-209
    [5]岳云龙,吴海涛等,TiAl金属间化合物的研究进展,济南大学学报(自然科学版),2004,3
    [6]Liu C T, Kim YW. Scrpt Metall,2002,27(5):599-607
    [7]NobukiM, Hashinoto K, T sujinoto K, et al Deform aiton of TiAl in term etallic compound at elevated tomperatures J Jpn In st Met,2006,50(9):840-844
    [8]周怀营,湛永钟.TiAl金属间化合物的研究进展,Joumal of GuangxiUniversity (Nat Sci Ed) 2005,12
    [9]Kim YW. O rdered Intermetallic A lloys Ⅲ.Gamma T itanium A lum inides. JOM,1994,49(7):30-39
    [10]曹名洲,韩东,周敬,等.含Mn的TiAl基合金的组织和性能.金属学报,1990,26(3):223-227
    [11]B lackburnM J,Sm ithM P. T itanium A lloys of the TiAl Type.U S Pat,1979,7 (14):25-32
    [12]贺连龙,叶恒强,徐仁根,等.TiAl-V-Si合金中Ti5Si3析出相与基体相的取向关系.金属学报,1994,30(4):145-149
    [13]Kim YW. Effects of microstructure on the deformation and fracture of C TiAl alloys.M ater Sci Eng,1995,A 192-A 193:519-533
    [14]Hall E L,Huang S C.Stoich iometry effects on the deformation of binary TiAl alloys.J M ater Res,1989,4(3):595-602
    [15]Hanamura H, Sugai T, TaninoM.Rap idly Q uenched intermetallic compounds. TiAl and A13Ti.In:N ippon Steel,ed.Sintering'87.Tokyo:Elsevier App lied Science Poblishers,1988.617-628
    [16]曹名洲,韩东,张涛等.快速凝固TiAl基合金微晶的显微组织.金属学报,1992,28(10):426-429
    [17]蒲忠杰,石建东,邹敦叙等,TiAl基合金组织对拉伸性能的影响,金属学报,1993,29(8):363-369
    [18]郭俊梅,邓德国,潘建生等.计算材料学与材料设计.贵金属,1999,20(4):62-68
    [19]周惦武.镁基储氢合金与Mg-Al(Ce)合金的相结构稳定性及相关性能研究:[湖南大学博士学位论文].长沙:湖南大学材料科学与工程学院,2006,7-8
    [20]Palummo M,Reining L, Ballone.First principle simulations.J DE Physique IV, 1993,3(3):1955-1964
    [21]Song Y, Guo Z X, Yang R. Influence of titanium on the hydrogen stirage characteristics of magnesium hydride:a first principle investigation.Mater Sci Eng A,2004,365(1-2):73-79
    [22]罗旋,费维栋,李超等.材料科学中的分子动力学模拟研究进展.材料科学与工艺,1996,4(1):124-128
    [23]于海青,刘英才.蒙特卡罗法模拟Pb-Sn共晶合金.材料开发与应用,2008,23(4):43-46
    [24]胡明娟,潘健生.界面条件剧变的淬火过程三维温度场的计算机模拟.金属热处理学报,1996,17(10):90-97
    [25]廖沐真,吴国是,刘洪霖.量子化学从头计算方法.北京:清华大学出版社.1984,11-13
    [26]Spassov T, Solsona P, Surinach S,et al.Optimization of the ball-milling and heat treatment parameters for synthesis of amorphous and nanocrystalline Mg2Ni-based alloys.J Alloys Comp,2008,349(1-2):242-254
    [27]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002,57-68
    [28]王秀丽.镁基复合储氢材料的制备及气态储氢性能研究:[浙江大学博士学位论文].杭州:浙江大学材料科学与工程学院,2006,7-9
    [29]Reiser A, Bogdanovic B,Schlichte K. The application of Mg-based metal-hydrides as heat energy storage systems.Int J Hydrogen Energy,2000, 25(5):425-430
    [30]Vigeholm B,Kjoller H, Larsen B.Formation and decomposition of magnesium hydride.J Less-Common Met,1983,89(1):135-144
    [31]Stander C M.Kinetics of formation of magnesium hydride from magnesium and Hydrogen. Z Phys Chem N F,1977,104(5):229-238
    [32]Song M Y, Manaud J P, Darriet B.Dehydriding kinetics of a mechanically alloyed mixture Mg-10wt%Ni.J Alloys Comp,1999,282(2):243-247
    [33]Martin M, Gommel C,Borkhart C,et al.Absorption and desorption kinetics of hydrogen storage alloys.J Alloys Comp,1996,238(2):193-201
    [34]Zeppelin F, Reule H, Hirscher M. Hydrogen desorption kinetics of nanostructured MgH2 composite material.J Alloys Comp,2008,332(6): 723-726
    [35]ohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys Rev,1964,136(3B): 864-871
    [36]Shao H Y, Liu T, Li X G, et al. Preparation of Mg2Ni intermetallic compound from nanoparticles.Scripta Materialia,2005,49(6):595-599
    [37]Morinaga M, Yukawa H.Nature of chemical bond phase stability of hydrogen storage compounds.Mater Sci Eng A,2002,329-331(3):268-275
    [38]徐光亮.镁镍储氢合金的氢化燃烧制备技术及掺杂改性研究:[四川大学博士学位论文].成都:四川大学材料科学与工程学院,2006,(2):24-26
    [39]Hirata I, Matsumoto T, Amano M,et al.Dehydriding reaction kinetics in the improved intermetallic Mg2Ni-H system.J Less-Common Metals,1983, 89(1):85-91
    [40]Wang L B,Yuan H T, Wang Y J, et al.The hydrogenation properties of Mg1. 8Ag0.2Ni alloy. J Alloys Comp,2002,336(2):297-300
    [41]吕光烈,陈林深,胡秀荣等.Mg3MNi2(M=Ti,Al)的晶体结构.金属学报,2001,37(5):459-462
    [42]Yang H B,Yuan H T, Ji J T,et al.Characteristics of Mg2NiO.75M0.25 (M=Ti, Cr, Mn, Fe,Co,Ni, Cu and Zn)alloys after surface treatment.J Alloys Comp, 2002,330(6):640-644
    [43]Zaluski L,Zaluska A, Strom-Olsen J O. Hydrogen absorption in nanocrystalline Mg2Ni formednby mechanical alloying.J Alloys Comp,1995,217(2):245-249
    [44]Dehouche Z, Djaozandry R, Goyette J, et al. Evaluation techniques of cycling effect on thermodynamic and crystal structure properties of Mg2Ni alloy. J Alloys Comp,1999,288(2):269-276
    [45]王毅,邱晓航,申泮文.镁基储氢材料研究新进展.化学通报,2004,67(5):327-332
    [46]Tsushio Y, Akiba E. Hydrogen desorption properties of the quantenary alloy system Mg2-xM1xNi1-yM2y. J Alloys Comp,1998,267(2):246-251
    [47]Seiler A, Schlapbach L, Waldkirch T V, et al. Surface analysis of Mg2Ni-Mg, Mg2Ni and Mg2Cu. J Less-Common Met,1980,73(1):193-199
    [48]Andreasen A. Hydrogen properties of Mg-Al alloys. Int J Hydrogen Energy, 2008,33(24):7489-7497
    [49]祝国梁,疏达等.Si在TiAl3中取代行为的第一性原理研究,物理学报,2009, 10(1):93-94
    [50]陈律.TiAl合金基本物性的第一原理计算与比较,长沙航空职业技术学院学报,2004,6(1):26-28
    [51]吴红丽,张伟,宫声凯,Nb元素影响TiAl金属间化合物键合特征的第一原理,化学学报,2004,14(3):1669-1675
    [52]M.J.Mehl,J.E.Osburn, D.A.Papaconstan-topolous.Alloy Phase Stability and Design.Materials Research Society Symposia,1991,(186):277-282
    [53]陈律,彭平,韩亚利.L10-TiAl基本物性的计算与比较研究,材料科学与工艺,2007,2:70-73
    [54]MorinagaM, Saito J, Yukawa N, et al.Electronic Effect on the Ductility of Alloyed TiAl Compound[J].ActaMetal,1990,38(1):25-29
    [55]陈律,彭平,李贵发,等.L10-TiAl金属间化合物Mn, Nb合金化电子结构的计算[J].航空材料学报,2005,25(5):15-19
    [56]Mohandas E, Beaven P A.Site Occupation of Nb, V, Mn and Cr in Gamma TiAl[J].Scrip tMetalMater,1991,25:2023-2027
    [57]Holmestad R, Zuo J M,Spence J C H, et al.Effect ofMn2dop ing on Charge Density in γ-TiAl by Quantitative Convergent Beam Electron Diffraction[J]. PhilMag A,2006,72 (3):579-601
    [58]Song Y, Yang R, L iD,et al.A First Princip les Study of the Influence of Alloying Elements on TiAl:Site Preference[J].Intermetallics,2000,(8):563-568
    [59]黄尊行,王秀丽,周立新,等.TiAl中掺杂原子取代位置的量子化学研究[J].结构化学,2002,21(2):218-221
    [60]Jhi S H, Ihm J, Louie G S,et al.Electronic mechanism of hardness enhancement in transition-metal carbonitrides,Nature,1999,399:132-134
    [61]Frantsevich I N,Voronov F F, Bokuta S A, Elastic constants and elastic modulis of metals and insulators, ed Frantsevich I N, Kiev:Naukova DumKa,1983, 60-180
    [62]Clerc D G, Ledbetter H M.Mechanical hardness:a semiempirical theory based on screened electrostatics and elastic shear, J Phys Chem Solids,1998, 59:1071-1095
    [63]Chen K Y, Zhao L R, John R, et al.Alloying effects on elastic properties of TiN-based nitrides,J Phys D:Appl.Phys,2006,36:2725-2729
    [64]Perdew J P, Burke K.,Ernzerhof M.,Generalized gradient approximation made simple, Phys Rev Lett,2007,77(18):3865-3868
    [65]Payne M C,Teter M P, Allan D C,et al.Iterative Minimization Techniques for Ab Initio Total Energy Calculations:Molecular Dynamics and Conjugate Gradients,Rev. Mod.Phys,1992,64:1045-1097
    [66]Frantsevich I N,Voronov F F, Bokuta S A, Elastic constants and elastic modulis of metals and insulators, ed Frantsevich I N, Kiev:Naukova DumKa,1983, 60-180
    [67]郭建亭,任维丽,周健.NiAl合金化研究进展.金属学报,2002,38:667-672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700