合金元素对定向凝固NiAl基合金组织及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了合金元素对定向凝固NiAl基合金显微组织及力学性能的影响。利用金相显微镜和扫描电子显微镜观察合金的显微组织,利用能谱仪和X射线研究元素分布和合金的相组成,测试了合金的硬度和高温压缩性能。
     定向凝固NiAl-Cr(Mo)-Hf合金的组织是由黑灰色的NiAl基体和灰白色的层片状Cr(Mo)相组成的共晶合金,Hf元素以Heusler相(Ni_2AlHf)形式在胞界上不连续分布的。热处理后,NiAl基体与Cr(Mo)相中均有第二相析出,胞界上不连续分布的Heusler相(Ni_2AlHf)消失,Hf元素弥散分布。热处理后,NiAl和Cr(Mo)层片状组织形貌基本没有变化,但Cr相有增厚的趋势。当应变速率为2.78×10~(-3) s~(-1)时,随着温度的升高,DS NiAl-Cr(Mo)-Hf合金的压缩屈服强度降低。
     定向凝固Ni-30Al-5Mo-0.5Hf合金由黑灰色NiAl相、灰白色Ni_3Al相及亮白色Mo相三相组成。合金横向组织为NiAl基体形成树枝晶,Ni_3Al相呈条状或块状分布于枝晶间,Mo相及Hf相分布于枝晶间及枝干处;合金的纵向组织为大量的条状Ni_3Al相分布于NiAl树枝晶中,枝晶间由亮白色的Mo相和大块不规则的Ni_3Al相组成。热处理后,合金的基本组织形貌没有变化, NiAl基体及Ni_3Al相中均有第二相析出。
     定向凝固NiAl-Cr(Mo)-Hf (Ho)合金由NiAl、Cr(Mo)相组成,Hf以白色固溶体形式沿着Cr(Mo)相分布,并在胞界处积聚,而Ho元素的分布较分散。随凝固过程中抽拉速度增加,共晶胞尺寸减小,片层间距也减小。高温处理后,同一抽拉速度的NiAl-Cr(Mo)-Hf(Ho)合金的共晶胞尺寸增加,并均有第二相析出。
     三种定向凝固NiAl基合金经高温热理后硬度值均没有太大变化。而定向凝固NiAl-Cr(Mo)-Hf(Ho)合金在温度相同时,随着抽拉速度的增加,合金的硬度值增高。
The effects of element alloy on the microstructure and mechanical property of the NiAl alloys were studied. The microstructure and phases composition were investigated by analysing methods of metallography, SEM, Energy Spectrometer and X-rays diffractometer. The hardness and high temperature compressive properties were tested.
     The directionally solidified NiAl-Cr(Mo)-Hf alloy is the eutectic alloy, and with the Heusler (Ni_2AlHf) phase at the cell boundary. The microstructure of DS NiAl-Cr(Mo)-Hf alloy is composed of the black gray NiAl substrate and grey white lamellar Cr(Mo) phase. The NiAl matrix and Cr(Mo) phase have both the second phase separation after heat treatment, and the Heusler (Ni_2AlHf) phase at the cell boundary disappears, but the lamellar microstructure of NiAl and Cr(Mo) does not basically change, and Cr phase has the accumulated tendency. At the strain rate of 2.78×10~(-3) s~(-1), the compression yield strength of DS NiAl-Cr(Mo)-Hf alloy reduces along with temperature increasing.
     The microstructure of DS Ni-30Al-5Mo-0.5Hf alloy is composed of the dark gray and gray matrix Ni_3Al phase and the bright white Mo phase. The transverse microstructure of the alloy is the dendritic NiAl matrix, Ni_3Al phase is distributed in the strip or block of dendritic rooms, Mo phase and the phase distribution of Hf between dendrites and branches in the department. The longitudinal microstructure of the alloy is Ni_3Al phase distribution of a large number of bars in the dendrites of NiAl, the dendrite by the bright white of the Mo phase and large irregular Ni_3Al phase. After the heat treatment, the alloy does not change the basic morphology, but NiAl and Ni_3Al phase matrix are the second-phase precipitates.
     The microstructre of directionally solidified NiAl-Cr(Mo)-Hf(Ho) is composed of NiAl and Cr(Mo) phase, The element of Hf with the white crystallology along the Cr(Mo) phase distribution,and exists in the eutectic cell boundary. Element of Ho is dispersive and irregular. With withdrawal rate increasing, the size of fir-tree crystal cell reduces, the lamellar spacing also decreases.After heat treatment, the size of fir-tree crystal cell increases with same withdrawal rate, and the NiAl phases precipitate Cr(Mo) phases and Cr(Mo) phases precipitate NiAl phases.
     The three directionally solidified NiAl base alloys do not basically change after the high temperature heat treatment,But in the same temperature,with the withdrawal rate decrease, The directionally solidified NiAl-Cr(Mo)-Hf(Ho) alloy hardness elevated .
引文
1 Miracle D B. The physics and mechanical properties of NiAl. Acta Metal Meter, 1993, 41(3): 649-678.
    2 Dimiduk D M. Gamma Titanium Alloys-an assessment within the competition of aerospace structural materials. Mater Sci Eng, 1999, 263 A: 281-292.
    3 Darolia R. NiAl alloys for high-temperature structural applications. JOM, 1991, 46(1): 44-49.
    4 Noebe R D, Bowman R R, Nathal M V. Physical property of the B2 compound NiAl. Inter Mater Rev, 1993, 38(6): 193-201.
    5郭建亭,任维丽,周建. NiAl合金化研究进展.金属学报, 2002, 38(6): 667-672.
    6韩萍,孙广天,齐义辉.微量B对NiAl的显微组织和性能的影响.辽宁工程技术大学学报, 2009, 28(3): 464-466.
    7邢占平,于立国,郭建亭. NiAl-TiC原位复合材料的室温韧化机制研究.材料工程, 1997(5): 20-22.
    8杨福宝,郭建亭,周继扬.机械合金化合成NiAKl/HfB2复合材料的组织与力学性能.金属学报, 2001, 37(5): 483-487.
    9崔传勇,陈玉喜,郭建亭,等.定向凝固NiAl-Cr(Mo,Hf)合金的显微组织及力学性能研究.材料工程, 2001(1): 3-6.
    10孙岩,刘瑞岩,张俊善,等. NiAl基金属间化合物研究进展.材料导报, 2003, 17(7): 10-13.
    11 C.Barrett and T.B.Massalski,strucrure of metals, 3end, Chap 10, New York, Pergamon press,1980.
    12 A.E.Dwight, Intermetallic conpounds, ed, J.H.Westbrook, Chap 10, Huntington, NY, R.E.Keeger pub, 1977.
    13 R.D.Noebe, R.R.Bowman and M.V.Nathal, Inter.Mater.Rev, 1993, 38: 193.
    14 Walston W S.HighTemperature Ordered Intermetallic Alloys V. I Baker etal.eds, MRS, Pittsburgh, PA, 1993, 288: 257-262.
    15 A.Taylor and N.J.Doyle. Further studies on the nickel-aluminium system. I.β-NiAl andδ-Ni_2Al3 phase fieldsJ. Appl.Cryst, 1972, 5: 201.
    16 P.Georogopoulos and J.B.Cohen. Thermodynamics of intermetallic B2-phases A generalized model. Scr.Metall, 1971, 11: 147.
    17 G.W.West. Nuclear magnetic resonance and lattice parameter measurements inβ-NiAl. Phys. Status Solidi(a), 1973, 20: 647.
    18 H.Jacobi and H.J.Engell. Optical properties of ternaryβelectronphases based on NiAl. Acta Metall, 1971, 19: 701.
    19 R.J.Wasilewski. Dislocation creep in the ordered intermetallic (Fe, Ni)Al phase. Trans. AIME, 1966, 236: 455.
    20 N.Rosovic and H.Warlimont. Absence of a martensitic phase transformation (even an embryonic phase) in potassium as determined by an ultrasound study. Phys. Status Solidi(a), 1977, 44: 609.
    21 N.Rosovic and E-Th Henig, Phys. Status Solidi(a), 1980, 57: 529.
    22 N.Rosovic and H.Warlimont, Phys. Status Solidi(a), 1979, 53: 283.
    23 M.R.Harmouche and A.Wolfenden. Diffusional transport and predicting oxidative failure during cyclic oxidation ofβ-NiAl alloys. J.Test.Eval, 1978, 15: 101.
    24 Pope D P and Darolia R.High-temperature Applications of Intermetallic Compounds.MRS Bulletin,1996,21(5): 30-34.
    25 M.R.Harmouche and A.Wolfenden.Temperature and composition dependence of young's modulus for ordered B2 polycrystalline CoAl and FeAl. J.Test.Eval, 1985, 13: 424.
    26 J.R.Hellman, D.A.Koss, C.A.Moose, R.R.Petrich and M.N.Kallas, HITEMP Review-1990, NASA CP-10051, 41-1.
    27 R.Darolia. Dispersion strengthening of intermetallics. J.Metals,1991, 43: 44.
    28郭建亭,崔传勇,齐义辉,周健,周兰章,李辉,王淑荷,发明专利,专利申请号: No.001148443.
    29 Cui C Y, Guo JT. Acta Metall sin, 1999, 35: 477.
    30 Miracle D B, Darolia R.In:Intermetallics Compounds, New York, John.Wiley&Sons, 1994, 36(2) : 53-58.
    31 D.B.Miracle.The ettects of extrusion peremeters on recrystallization kinetics texture and corresponding fracture toughness of NiAl. Acta Melall. Mater, 1993, 41: 649.
    32 R.D.Noebe, R.R.Bowman, M.V. Nathal, NASA Technical Paper, 1994, April, 3398.
    33 Hancock G.F, M.C.Donnell B.R, Phys, Status, Solidi(a), 1970, 4: 143.
    34 Lloyd C.H, Loretto H.M, Phys, Status, Solidi(a), 19970, 39: 163.
    35 Doarlia R.NiAl alloys for high-temperature structural applications.JOM, 1991, 43: 44-49.
    36 Rozner A G, Wasilewski R J.Tensile properties of NiAl and NiTi. J Inst Met, 1966, 94: 169-175.
    37 George E P, Liu C T. Brittle fracture and grain boundary chemistry of microalloyed NiAl. J Mater, Res, 1990, 5: 754-762.
    38 T.Hong and A.J.Freeman, MRS Symp Proc, 1989, 133: 75.
    39 T.Hong and A.J.Freeman. Effect of antiphase boundaries on the electronic structure and bonding character of intermetallic systems: NiAl.Phys.Rev.B, 1991, 43: 6446.
    40 R.Darolia, D.Lahrman, R.Field.Rapid solidification of intermetallic compounds. Scr.Metall.Mater, 1991, 26: 1007.
    41 D.R.Johnson, S.M.Joslin, B.F.Oliver, R.D.Noebe, J.D.Whittenberger, MRS Symp. Proc, 1992, 273: 87.
    42 D.R.Johnson, Chen.X.F, B.F.Oliver, R.D.Noebe, J.D.Whittenberger, Intermetallics, 1995, 3: 141.
    43 E.M.Schlson.Microstructure and mechanical properties of NiAl intermetallic compound synthesized by reactive sintering under pressure. Res.Mech.Lett, 1981, 1: 111.
    44 P.Nagpal and I.Baker. Microstructure and mechanical properties of NiAl intermetallic compound synthesized by reactive sintering under pressure. Scr.Metall.Mater, 1990,24: 2381.
    45 K.Ishida, R.Kainuma, N.Ueno and T.Nishizawa, Metall.TransA, 1991, 22A: 441.
    46 K.S.Kumar, S.K.Mannan and R.Kviawanadham, Acta.Metall.Mater, 1992, 40: 1201.
    47 Patrick D K, Chang K M, Miracle D B and Lipsitt H A. HighTemperature Ordered Intermetallic Alloys IV, L Johnson et al. (MRS Symposia Proceedings, 213), MRS, Pittsburgh, PA, 267-272.
    48 Kostrubanic J, Koss D A, Locci I E and Nathal M. HighTemperature ordered Intermetallic AlloysIV. L Johnson et al.,(MRS SymPosia Proceedings, 213), MRS, Pittsburgh, PA, 679-684.
    49 Xudong Sun, Yeomans J A. Ductile Phase Toughened Brittle Materials. J Mater Sci technol, 1996, 12: 124-131.
    50 Sigl L S, Mataga P A, Dalgleish B J, Meecking R M, Evans A G. On the Toughness of Brittle Materials Reinforced with a Ductile Phase. Aeta Metall Mater, 1988, 36: 945-952.
    51 Evans A G. Perspective on the Development of High-Toughness Ceramics, J Am Ceram Soc, 1990, 73: 187-206.
    52 Guha S, Murroe P R. Room temperature deformation behavior of multiphase Ni-20Al-30Fe and its constituent phase. Mater Sci Eng, 1991, A131: 27-37.
    53 Ishida K, Kairema P, Ueno N, Nishizawa T. Ductility enhancement in NiAl-based alloys by mierostructure control. Metall Trans, 1991, 22: 441-446.
    54王淑荷,郭建亭,赖万慧.制备工艺对NiAl-30Fe-Y合金组织与性能的影响.航空学报, 1996, 17(l): 77-84.
    55赖万慧.三种NiAl基合金的抗氧化性能.腐蚀科学与防护技术, 1993, 5: 213-217.
    56 Li H, Guo J T, Sun C, Effect of yttrium and cerium on compression properties of Ni3Al-base alloys. Journal of Rare Earths, 1992, 10: 44-52.
    57周健. B、Mg、Hf、Zr对NiAl-Cr合金组织和力学性能的影响.中国科学院金属研究所硕士学位论文, 1999.
    58 George E p, Liu C T.Brittle fracture and boundary chemistry of microalloyed NiAl. J Mater Res, 1990, 5(4): 754-762.
    59 Chen R S, Guo J T, Wang S H, Zhou J Y. Influence of strain rate and temperature on tensile ductility of a multiphase Ni-25Al-15Cr intermetallic alloy. Mater Lett, 1999, 39: 200-205.
    60 Liu C T, Lee H E, George E P. Intergranular fracture tendency in NiAl doped with Boron and Carbon. Scr Metall Mater, 1994, 30: 387-392.
    61 Cline H.E, Walter J.L, Koch E.F and Osika L.M. Acta. Met, 1971, 19: 405-414.
    62徐春梅. NiAl-28Cr-5Mo-1Hf合金的高温氧化行为研究.中国科学院金属研究所博士学位论文,沈阳, 2002.
    63姜肃猛.定向凝固NiAl基合金的显微组织及力学性能.辽宁工业大学硕士学位论文, 2004.
    64崔传勇,郭建亭,齐义辉,叶恒强.定向凝固NiAl-28Cr-5.8Mo-0.2Hf合金的高温拉伸蠕变行为.金属学报, 2002, 38(4): 342-346.
    65齐义辉,郭建亭,崔传勇. NiAl-Cr(Zr)金属间化合物的高温蠕变.材料学报, 2001, 37(9): 957-960.
    66徐春梅,郭建亭,傅恒志.高温热处理对定向凝固NiAl-Cr(Mo)-Hf合金显微组织和显微硬度的影响.金属学报, 2004, 40(1):57-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700