含β/B2相TiAl合金的锻造及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiAl合金具有低密度、高强度、优异的阻燃能力和抗氧化性以及优良的抗蠕变性能和抗疲劳性能等优点,成为航空航天领域最具竞争力的结构材料。然而TiAl合金高温变形能力差以及室温塑性低等不足,制约了该合金实际工程化的应用。Beta-gamma TiAl合金具有优异的高温变形能力,拓宽了TiAl合金的热加工工艺窗口。本文围绕两种Beta-gamma TiAl合金—Ti-43Al-9V-Y和Ti-43Al-5V-4Nb (at.%),采用锻造的方法制备这两种合金锻坯,并系统研究了合金的组织和力学性能。
     采用真空自耗电极电弧炉熔炼技术,研制出大尺寸的Ti-43Al-9V-Y(at.%)合金铸锭,该铸锭尺寸为Ф220mm×800mm。通过特种包套锻造技术,在温度为1200°C,总变形量为80.8%,变形速率为0.01s~(-1)左右的条件下,制备出大尺寸的Ti-43Al-9V-Y合金锻坯,其尺寸达到Ф500mm×46mm,该锻坯组织均匀性较好。铸态Ti-43Al-9V-Y合金由块状的γ相和β/B2相以及少量的α_2和YAl2相组成。锻态Ti-43Al-9V-Y合金由γ/(β/B2)/α_2层片晶团以及分布在层片晶团界面处块状的γ相和β/B2相组成,为双态组织,层片晶团尺寸约为30-50μm。采用不同的热处理技术,获得了不同形态的Ti-43Al-9V-Y合金组织,随着热处理温度的升高和时间的增加,块状的γ相和β/B2相逐渐形成了γ/(β/B2)层片晶团,当热处理条件为1350°C/8h时,获得了γ/(β/B2)/α_2全层片组织。
     拉伸性能测试结果表明,锻态Ti-43Al-9V-Y合金室温抗拉强度为834MPa,屈服强度为680MPa,延伸率为2.0%。随着测试温度的升高,抗拉强度和屈服强度下降,延伸率上升,在700°C时,抗拉强度为693MPa,屈服强度为589MPa,延伸率为12.0%。锻态合金经过1350°C/8h热处理获得γ/(β/B2)/α_2全层片组织后,其室温抗拉强度为863MPa,屈服强度为698MPa,延伸率为1.5%,当测试温度为700°C时,抗拉强度为571MPa,屈服强度为539MPa,延伸率为2.0%。三点抗弯性能测试结果表明,锻态Ti-43Al-9V-Y合金和经过1350°C/8h热处理获得γ/(β/B2)/α_2全层片组织后的合金,其KIC值分别为22.50MPa·m~(1/2)和21.16MPa·m~(1/2)。原位拉伸测试结果表明,锻态Ti-43Al-9V-Y合金在裂纹扩展的过程中,当遇到β/B2相时,主裂纹会发生偏转;经过1350°C/8h热处理获得γ/(β/B2)/α_2全层片组织后的合金,在裂纹扩展的过程中,当层片晶面与主裂纹呈较小的角度时,则主裂纹优先向层片界面方向偏转并沿层片界面扩展,产生层间开裂,当主裂纹扩展至与其呈较大角度的层片晶面时,则主裂纹必然要发生大的偏转,继续扩展方式可能为穿层片或沿层片,具体的扩展路径依赖于β/B2层片的厚度,如果β/B2层片厚度较小时,则会发生穿层片断裂,如果β/B2层片厚度较大时,则会发生沿层片断裂。纳米硬度测试结果表明,在锻态Ti-43Al-9V-Y合金中,γ相、γ/(β/B2)层片和β/B2相的纳米硬度分别为4.44Gpa、4.78Gpa和5.25Gpa,γ相和β/B2相的硬度相近。
     高周疲劳性能测试结果表明,锻态Ti-43Al-9V-Y合金在测试温度为700°C和750°C时,其疲劳强度分别为481.9MPa和415.3MPa;经过1350°C/8h热处理获得γ/(β/B2)/α_2全层片组织后的合金,在测试温度为700°C和750°C时,其疲劳强度分别为437.1MPa和392.4MPa。疲劳断口形貌分析表明,这两种组织的合金,其疲劳裂纹都萌生于内部的夹杂缺陷处,疲劳裂纹扩展区有疲劳辉纹存在,疲劳瞬断区都有静拉伸断口的微观特征。高温蠕变性能测试结果表明,锻态Ti-43Al-9V-Y合金,在温度为700°C,应力为200MPa、250MPa和300MPa的条件下,其蠕变时间分别为371h、182h和74h。在700°C时,当应力为200MPa-250MPa时其应力常数为3.0088,应力为250MPa-300MPa时,其应力指数为3.943;在指定应力250MPa下的蠕变激活能为326.68kJ·mol-1。高温蠕变变形机制为稳态过程受原子力扩散过程控制,发生位错滑移和晶界滑移,而动态过程是因为孔洞和裂纹引起,最终导致蠕变失效。
     系统研究了元素粉末的快速烧结和无包套锻造技术,并在温度为1300°C两步锻,变形量分别为30%和60%,变形速率为0.01s~(-1)左右的条件下,研制出致密度为98.9%的Ti-43Al-5V-4Nb(at.%)合金锻坯。该锻坯主要由γ、α_2和β/B2相以及还没有完全扩散的Nb组成。拉伸性能测试结果表明,Ti-43Al-5V-4Nb合金锻坯的室温抗拉强度为442.96MPa,延伸率为0.27%。采用不同的热处理技术,获得了不同形态的Ti-43Al-5V-4Nb合金组织。在热处理条件为1300°C/1h时,获得了γ/α_2全层片组织。拉伸性能测试结果表明,全层片组织合金室温抗拉强度为535MPa,延伸率为0.52%。随着测试温度的升高,抗拉强度下降,延伸率上升,在700°C时,抗拉强度为582MPa,延伸率为11.00%。
TiAl alloys are very promising structural materials for making structures andparts working at elevated temperatures in aerospace field, due to their low density,high specific strength, good high-temperature burning resistance and oxidationresistance, excellent creep and fatigue properties. However, the poor hotdeformability, low room-temperature ductility and fracture toughness limit theirpractical engineering applications. Beta-gamma TiAl alloys are deemed as a newgroup of TiAl alloys that attract scientists strong research interests because of theirexcellent hot deformability and wide hot processing condition window. In this paper,two types of beta-gamma TiAl alloys with nominal compositions of Ti-43Al-9V-Yand Ti-43Al-5V-4Nb (at.%) were prepared and then undergone high temperatureforging. Microstructure and mechanical properties of the two TiAl alloys wereinvestigated systematically.
     A large size Ti-43Al-9V-Y ingot (Ф220mm×800mm) was prepared by vacuumconsumable electrode arc furnace remelting (VAR). As-cast Ti-43Al-9V-Y alloyconsist of massive γ phase and β/B2phase, as well as a few α_2and YAl2phase. Alarge size Ti-43Al-9V-Y alloy pancake (Ф500mm×46mm) with a total deformationstrain of80.8%was prepared using specially canned forging technology carried outat1175°C and at a strain rate of0.01s~(-1). The as-forged Ti-43Al-9V-Y alloy showeduniform duplex microstructure consisting of γ/(β/B2)/α_2lamellar crystal clusterswith the size of approximately30~50μm, and block-like γ phase and β/B2phaseprecipitating at the boundaries of the lamellar colonies. Different microstructures ofTi-43Al-9V-Y alloy were obtained by different heat treatment techniques. These γand β/B2phases gradually transformed into γ/(β/B2)/α_2lamellar clusters withincreasing of heat treatment temperature and duration. A fullly γ/(β/B2)/α_2lamellarcluster microstructure was obtained when annealing at1350°C/8h.
     Tensile properties of Ti-43Al-9V-Y alloy with different processing states weretested. The as-forged Ti-43Al-9V-Y alloy exhibits excellent room temperaturetensile properties, with an ultimate tensile strength of863MPa, yield strength of698MPa and an elongation of2.0%. The ultimate tensile strength and yield strengthincrease while the elongation decrease with increasing of the test temperature. At700°C, the ultimate tensile strength and yield strength are693MPa and589MPa,respectively, and the elongation reaches12.0%. After heat treatment of1350°C/8h,Ti-43Al-9V-Y alloy with fully-lamellar microstructure has an ultimate tensilestrength of863MPa, yield strength of698MPa and elongation of1.5%at roomtemperature. As the tensile temperature increases to700°C, the ultimate tensilestrength and yield strength decrease to571MPa and539MPa respectively, while the elongation increases to2.0%. By means of the three-point bending tests, it is foundthat the as forged Ti-43Al-9V-Y alloy with duplex microstructure shows the bestfracture toughness, its KICvalue is high up to22.5MPa·m~(1/2), while forfully-lamellar microstructure after1350°C/8h heat treatment, its KICvalue is21.2MPa·m~(1/2). In situ tensile test was performed on as-forged Ti-43Al-9V-Y alloy. Theresults show that cracks deflect when meeting β/B2phase during propagation in thisalloy. After the alloy was heat-treated at1350°C for8h, γ/(β/B2)/α_2fully-lamellarmicrostructure was obtained. It is found that when the angle between the lamellarlayer interface and the crack is small, the crack deflects towards the direction oflayer interface and propagates along layer interface, resulting in interlayerdelamination. When a crack propagates to a layer interface which has a relativelylarge angle with the crack, the crack may propagate across the lamellae or along thelamellae interface, depending on β/B2lamellar size. If the size of β/B2lamellae issmall, fracture across the lamellar will occur; if the size is large, fracture along thelamellae interface will happen. Nano-hardness test shows that the nano-hardness ofγ phase, γ/(β/B2) lamina and β/B2phase is4.44GPa,4.78GPa and5.25GPa,respectively, in as-forged Ti-43Al-9V-Y alloy. The hardness of γ phase is close to thatof β/B2phase.
     High-cycle fatigue tests show that the fatigue strength of as-forgedTi-43Al-9V-Y alloy is481.9MPa and415.3MPa at700°C and750°C, respectively.After1350°C/8h heat treatment, the fatigue strength at700°C and750°C decreasesto437.1MPa and392.4MPa, respectively. Fatigue fracture morphology analysisshows that fatigue crack nucleates at the internal shrinkage pores, or inclusions.Fatigue crack propagation region has fatigue crack, whereas fatigue instantaneousfault zone has the micro characteristics of the static tensile fracture. Hightemperature creep performance test results show that the creep time of as-forgedTi-43Al-9V-Y alloy at700°C is371h,182h and74h, corresponding to stress of200MPa,200MPa and250MPa, respectively. At700°C, when the stress is200MPato250MPa, the stress constant is3.0088. When the stress is in the range of250MPa to300MPa, the stress index is3.943at this temperature. Creep activationenergy is26.68kJ·mol-1under the stress of250MPa. High temperature creepdeformation mechanism is dislocation glide and grain boundary sliding.
     The rapid sintering of elemental powders and forging technology without packwere studied systematically. In addition, as strain rate is about0.01s~(-1), step forgingdeformation of30%and60%at1300°C was employed to fabricate Ti-43Al-5V-4Nb(at.%) alloy forging stock with density of98.9%. This forging stock is mainlycomposed of γ, α_2, β/B2phases and not fully diffused Nb. Test results show that thetensile strength and elongation of Ti-43Al-5V-4Nb alloy forging stock at roomtemperature are442.96MPa and0.27%, respectively. Many kinds of heat treatmentprocesses were performed on Ti-43Al-5V-4Nb alloy forging stock and different microstructures were obtained.1300°C/1h heat treatment leads to the formation ofγ/α_2fully-lamellar microstructure. The tensile strength of535MPa and elongationof0.52%in the alloy with fully-lamellar microstructure are obtained. With theincrease of test temperature, tensile strength declines and elongation increases. At700°C, tensile strength and elongation are582MPa and11.00%, respectively.
引文
[1]黄伯云.钛铝基金属间化合物[M].长沙:中南工业大学出版社,1998.
    [2] Doychak J. Metal-and intemetallic-matrix composites for aerospacepropulsion and power systems[J]. JOM,1992,7:46-51.
    [3] Dimiduk DM, Miracle DB, Ward CH. Development of intermetallic materialsfor aerospace systems[J]. Mater. Sci. Tech.,1992,8(4):367-375.
    [4] Appel F, Oehring M, Paul JDH, et al. Physical aspects of hot-workinggamma-based titanium aluminides[J]. Intermetallics,2004,12:791-802.
    [5] Gerling R, Clemens H, Schimansky FP. Powder metallurgical processing ofintermetallic gamma titanium aluminides[J]. Adv. Eng. Mater.,2004,6:23-38.
    [6] Kim YW. Ordered intermetallic alloys, Part III: Gamma TitaniumAluminides[J]. JOM,1994,7:30-39.
    [7] Norris G. Gearing up again[J]. Flight Int.,2006,169(5026):30-31.
    [8] Tetsui T, Shindo K, Kobayashi S, et al. A newly developed hot worked TiAlalloy for blades and structural components[J]. Scripta Mater.,2002,47:399-403.
    [9] Tetsui T, Shindo K, Kobayashi S, et al. Strengthening a high-strength TiAlalloy by hot-forging[J]. Intermetallics,2003,11:299-306.
    [10] Imayev VM, Imayev RM, Kuznetsov AV. Development of novel sheetrolling process of ingot-metallurgy γ-TiAl+Α2Ti3Al based alloys forproduction of sheets with enhanced mechanical properties[C]. In: LutjeringG, Albrecht J edited, Ti-2003Science and Technology. WILEY-VCH VerlagGmbH&Co. KGaA, Weinheim, Darmstadt, Germany,2004,2257-2264.
    [11] Bartolotta PA. Titanium Aluminide Technologies Successfully TransferredFrom HSR Program to RLV VentureStar Program[R]. NASA Glenn ResearchCenter,2005. http://ntis.library.gatech.edu/handle/123456789/2617.
    [12] Wu XH. Review of alloy and process development of TiAl alloys[J].Intermetallics,2006,14:1114-1122.
    [13] Kim YW. Gamma titanium aluminides: their status and future[J]. JOM,1995,47:39-41.
    [14] Clemens H, Wallgram W, Kremmer S, et al. Desing of Novel β-SolidifyingTiAl Alloys with Adjustable β/B2-phase Fraction and ExcellentHot-Workability[J]. Adv. Eng. Mater.,2008,10(8):707-713.
    [15] Das G, Kestler H, Clemens H, et al. Sheet gamma TiAl: status andopportunities[J]. JOM,2004,56(11):42-45.
    [16] Gerling R, Schimansky FP, Stark A, et al. Microstructure and MechanicalProperties of Ti-45Al-5Nb-(0-0.5C) Sheets[J]. Intermetallics,2008,16:689-697.
    [17] McAndrew JB, Kessler HD. Ti-36%aluminum as a base forhigh-temperature alloys[J]. J. Metal.,1956,8:1348-1352.
    [18] Kim YW. Trends in the development of gamma TiAl alloys[C]. Proceedingsof the First Symposium on Gamma Titanium Aluminides.1995,637-654.
    [19] Bartolotta PA, Krause DL. Titanium aluminide applications in the high speedcivil transport[C]. Proceedings of the Symposium on Gamma TitaniumAluminides.1999,3-10.
    [20] Bartolotta P, Barrett J, Kelly T, et al. The Use of Cast Ti-48Al-2Cr-2Nb in JetEngines[J]. JOM,1997,49(5):48-50.
    [21] Imayev R, Imayev V, Khismatullin T, et al. Development of multiphaseβ-solidifiying γ-TiAl alloys with enhanced mechanical properties[C].Proceeding of the Symposium on Gamma Titanium Aluminides.2008,239-247.
    [22] Tetsui T, Shindo K, Kaji S, et al. Fabrication of TiAl components by meansof hot forging and machining[J]. Intermetallics,2005,13:971-978.
    [23] Donald S, Kim YW. Sheet rolling and performance evaluation of betagamma(β-γ) alloys[C]. In: Ninomi M, Akiyama S, Ikeda M, editors. Ti-2007Science and Engineering. Kyoto, Japan: The Japan Institute of Metals;2007,1021-1024.
    [24] Appel F, Oehring M. Gamma-Titanium Aluminide Alloys: Alloy Design andProperties[C]. In: Titanium and Titanium Alloys; Fundamentals andApplications. Leyens C, Peters M, editors. Weinheim, Germany: Wiley-VCHGmbH&Co. KGaA;2003:89-152.
    [25] Zhang H, He LL, Ye HQ, et al. Crystallography of β precipitates in aTi-47Al-2W-0.5Si-0.5B alloy[J]. Mater. Lett.,2003,57:3864-3868.
    [26] Azad S, Mandal RK, Singh AK. Effect of Mo additions on the transformationbehavior of (α2+γ) based Ti-Al alloys[J]. Mater. Sci. Eng. A,2006,429:219-224.
    [27] Zhang D, Dehm G, Clemens H. Effect of heat-treatments and hot-isotaticpressing on phase transformation and microstructure in a β/B2containingγ-TiAl based alloy[J]. Scripta Mater.,2000,42(11):1065-1070.
    [28] Sautho G. Multiphase Intermetallic Alloys for Structural Applications[J].Intermetallics,2000,8:1101-1109.
    [29] McCullough C, Valencia JJ, Levi CG, et al. Phase Equilibria andSolidification in Ti-Al alloys[J]. Acta Metal. Mater.,1989,37(5):1321-1336.
    [30] Kobayashi S, Takeyama M, Motegi T, et al. Microstructure Control UsingBeta-titanium Phase for Wrought Gamma TiAl Based Alloys[C]. GammaTitanium Alumidides2003. Warrendale,2003:165-175.
    [31] Takeyama M, Kobayashi S. Physical Metallurgy for Wrought GammaTitanium Aluminides: Microstructure Control Through PhaseTransformations[J]. Intermetallics,2005,13:993-999.
    [32] Wang Y, Wang JN, Yang J, et al. Control of a Fine-Grained Microstructurefor Cast High-Cr TiAl Alloys[J]. Mater. Sci. Eng. A,2005,392:235-239.
    [33] Jin Y, Wang JN, Yang J, et al. Microstructure Refinement of Cast TiAl Alloysby β Solidification[J]. Scripta Mater.,2004,51:113-117.
    [34] Kustmer V, Oehring M, Chatterjee A, et al. An Investigation ofMicrostructure Formation During Solidification of Gamma TitaniumAluminide Alloys[C]. Gamma titanium aluminides2003. Warrendale,2003:89-96.
    [35] Naka S, Tomas M, Sanchez C, et al. Development of Third GenerationCastable Gamma Titaniu Aluminides[C]. Structural Intermetallics1997.Warrendale1997,313-315.
    [36] Imayev RM, Imayev VM, Oehring M, et al. Alloy Design Concepts forRefined Gamma Titanium Aluminide Based Alloys[J]. Intermetallics,2007,15:451-460.
    [37] Katterners UR, Lin JC, Chang YA. Thermodynamic Assessment andCalculation of the Ti-Al System[J]. Metall. Trans. A,1992,23:2081-2090.
    [38]张永刚,韩雅芳,陈国良等.金属间化合物结构材料[M].北京:国防工业出版社,2001:279-324.
    [39] Kestler H, Clemens H. Production, Processing and Application ofGamma(TiAl)-Based Alloys[C]. In: Titanium and Titanium Alloys. Leyens C,Peters M, editors. Wiley-VCH, Germany,2003,351-392.
    [40] Mercer C, Soboyejo WO. Hall-Petch relationships in Gamma titaniumaluminides[J]. Scripta Mater.,1996,35:17-22.
    [41] Appel F, Brossmann U, Christoph U, et al. Recent progress in thedevelopment of gamma titanium aluminide alloys[J]. Adv. Eng. Mater.,2000,2:699-720.
    [42]张绪虎,郎泽保. TiAl金属间化合物粉末冶金制备技术研究[J].宇航材料工艺,2007,26(7):53-55.
    [43] Lapin J. Creep behaviour of a cast TiAl-based alloy for industrialapplications[J]. Intermetallics,2006,14:115-122.
    [44] Cao GH, Liu ZG, Shen GJ, et al. Oxide precipitation in V-doped TiAl-basedalloys[J]. Mater. Sci. Eng. A,2002,328:177-180.
    [45] Kim YW. Intermetallic alloys based on gamma titanium aluminide[J]. JOM,1989,7:24-30.
    [46] Kim YW, Dimiduk DM. Progress in the understanding of Gamma TitaniumAluminides[J]. JOM,1991,43:40-47.
    [47] Chao J. First-principles study of site occupancy of dilute3d,4d and5dtransition metal solutes in L10TiAl[J]. Acta Mater.,2008,56:6224-6231.
    [48] Li BH, Chen YY, Hou ZQ, et al. Microstructure and mechanical properties ofas-cast Ti–43Al–9V-0.3Y alloy[J]. J. Alloys Compd.2009,473:123-126.
    [49] Campbell JP, Rithchie RO, Venkateswara Rao KT. The effect ofmicrostructure on fracture toughness and fatigue crack growth behavior inγ-titanium aluminide based intermetallics[J]. Metall. Mater. Trans. A,1993,30(3):563-577.
    [50] Chan KS, Kim YW. Effects of lamellae spacing and colony size on thefracture resistance of a fully-lamellar TiAl alloy[J]. Acta Metall. Mater.,1995,(43)2:439-451.
    [51] Kim YW, Dimiduk DM. Structural Intermetallics, TMS, Warrendale,1997,531.
    [52] Appel F, Wagner R. Microstructure and deformation of two-phase γ-titaniumaluminides[J]. Mater. Sci. Eng. R,1998,22(5):187-268.
    [53] Bohn R, Fanta G, Klassen T, et al. Mechanical behavior and advancedprocessing of nano-and submicron-grained intermetallic compounds based onγ-TiAl[J]. Scripta Mater.,2001,44:14791482.
    [54] Maruyama K, Yamaguchi M, Suzuki G, et al. Effects of Lamellar BoundaryStructural Change on Lamellar Size Hardening in TiAl Alloy[J]. Acta Metall.Mater.,2004,52:5185-5194.
    [55] Zhang WJ, Deevi SC, Chen GL. On the Origin of Superior High Strength ofTi-45Al-10Nb Alloys[J]. Intermetallics,2002,10:403-406.
    [56] Paul JDH, Appel F, Wagner R. The compression Behaviour of NiobiumAlloyed γ-titanium Alumidides[J]. Acta Metall. Mater.,1998,46:1075-1085.
    [57] Mohandas E, Beaaven PA. Site Occupation of Nb, V, Mn and Cr inGamma-TiAl[J]. Script Metal. Mater.,1991,25:2023-2027.
    [58] Rossouw CJ, Forwood CT, Gibson MA, et al. Zone-axis convergent-beamelectron diffraction and ALCHEMI analysis of Ti-Al alloys with ternaryadditions[J]. Phil. Mag. A,1996,74:77-102.
    [59] Hao YL, Yang R, Cui YY, et al. The effect of Ti/Al ratio on the siteoccupancies of alloying elements in γ-TiAl[J]. Intermetallics,2000,8:633-636.
    [60] Perdrix F, Trichet MF, Bonnentien JL, et al. Relationships betweenInterstitial Content, Microstructure and Mechanical Properties in FullyLamellar Ti-48Al Alloys with Special Reference to Carbon[J]. Intermetallics,2001,9:807-815.
    [61] Perdrix F, Cornet M, Bigot J, et al. Variations in the α2/γ lamellarmicrostructure in Ti48Al alloys as a function of cooling rate and oxygencontent[J]. J. Phys.,2000,10:15-20.
    [62] Perdrix F, Trichet MF, Bonnentien JL, et al. Influence of nitrogen on themicrostructure and mechanical properties of Ti-48Al alloy[J]. Intermetallics,2001,9:147-155.
    [63] Tian WH, Nemoto M. Gamma Titanium Aluminides, Warrendale,1995,689.
    [64] Nam CY, Wee DM, Wang P, et al. Microstructure and Toughness ofNitrogen-doped TiAl Alloys[J]. Intermetallics,2002,10(2):113-127.
    [65] Christoph U, Appel F, Wagner R. Dislocation dynamics in carbon-dopedtitanium aluminide alloys[J]. Mater. Sci. Eng. A,1997,239/240:39-45.
    [66] Godfrey A, Hu D, Loretto MH. The Role of α2Phase in the Transmission ofSlip in Lamellar TiAl-based Alloys[J]. Phil. Mag. A,1998,77:287-297.
    [67] Wiezorek JMK, DeLuca PM, Mills MJ, et al. Deformation mechanisms in abinary Ti–48at.%Al alloy with lamellar microstructure[J]. Phil. Mag. Lett.,1997,75:271-280.
    [68] Chan KS, Kim YM. Influence of microstructure on crack-tip micromechanicsand fracture behaviors of a two-phase TiAl alloy[J]. Metall. Trans. A,1992,23(6):1663-1677.
    [69] Chan KS. Toughening mechanisms in titanium aluminides[J]. Metall. Trans.A,1993,24(3):569-583.
    [70] Yoo MH, Fu CL. Cleavage fracture of ordered intermelallic alloys[J]. Mater.Sci. Eng. A,1992,153:470-478.
    [71]莱茵斯C,皮特尔斯M编.陈振华等译.钛与钛合金[M].化学工业出版社,2005:124-138.
    [72] Noda T. Application of Cast Gamma TiAl for Automobiles[J]. Intermetallics,1998,6:709-713.
    [73]缪家士,林均品,王艳丽等.高铌钛铝基合金板材的高温包套轧制[J].稀有金属材料工程,2004,33:436-438.
    [74]张俊红,黄伯云,周科朝等.包套轧制制备TiAl基合金板材[J].中国有色金属学报,2001,11:1055-1058.
    [75] Frommeyer G, Kinppscheer S. Enhanced Superplasticity of Fine-GrainedGamma TiAl (Mo, Cr, Si) Alloys[C]. Proceeding of the10th WorldConference on Titanium, Hamburg,2003,2249-2256.
    [76] Appel F, Kestler H, Clemens H. Intermetallic Compounds: Principles andPractice-Progress[M]. Germany: Wiley-VCH,2002,3:617-722.
    [77] Semiatin SL, Seetharaman V, Weiss I. Hot workability of titanium andtitanium aluminide alloys-an overview[J]. Mater. Sci. Eng. A,1998,243:1-24.
    [78] He YH, Huang BY, Liu Y. Investigation of multi-step thermo-mechanicaltreatment of can-forged TiAl-based alloy[J]. Acta Metall. Sin.,1997,10(4):369-374.
    [79]李宝辉.含钇的TiAl基合金显微组织及性能的研究(D).博士学位论文.哈尔滨工业大学,2006.
    [80]杨非. Ti-45Al-9(V,Nb,V)合金的制备及高温变形行为研究(D).博士学位论文.哈尔滨工业大学,2010.
    [81]牛红志. Ti-43Al-6(Nb,Mo)-B合金的热变形行为及组织性能研究(D).博士学位论文.哈尔滨工业大学,2012.
    [82] Blum M, Fellmann HG, Franz H, et al. Commissioning of a prototype plantfor ecomonical mass production of TiAl-valves. Structural intermetallics. In:Hemker KJ, editor.2001, TMS, Warrendale,131-135.
    [83] Clemens H, Kestlr H. Processing and applications of intermetallic TiAl-basedalloys[J]. Adv. Eng. Mater.,2000,2:551-560.
    [84] Kim HY, Sohn WH, Hong SH. High temperature deformation ofTi-(46-48)Al-2W intermetallic compounds[J]. Mater. Sci. Eng. A,1998,251:216-225.
    [85] Koeppe C, Bartels A, Clemens H, et al. Optimizing the properties of TiAlsheet materials for application in heat protection shields or propulsionsystems[J]. Mater. Sci. Eng. A,1995,201:182-193.
    [86] Weeks CE. Evaluation of a gamma titanium aluminide for hypersonicstructural applications(D). Dissertation of the Degree of Master, GeorgiaInstitute of Technology,2005:10-46.
    [87] Hsiung LM, Nieh TG. Microstructures and properties of powder metallurgyTiAl alloys[J]. Mater. Sci. Eng. A,2004,364:1-10.
    [88] Bhatt J, Murty BS. On the conditions for the synthesis of bulk metallicglasses by mechanical alloying[J]. J. Alloys and Compd.,2008,459:135-141.
    [89]陈玉勇,于宏宝,张德良等.低温高能球磨Ti/Al复合粉显微组织结构演化[J].稀有金属材料与工程,2008,37(2):236-239.
    [90]于宏宝,陈玉勇,张德良.双步球磨法制备纳米晶结构TiAl基合金粉末的研究[J].稀有金属材料与工程,2009,38(4):686-690.
    [91] Couret A, Molenat G, Galy J, et al. Microstructures and mechanicalproperties of TiAl alloys consolidated by spark plasma sintering[J].Intermetallics,2008,16:1134-1141.
    [92]路新,何新波,曲选辉.放电等离子烧结制备高铌TiAl合金[J].稀有金属材料与工程,2008,37(12):2231-2235.
    [93]肖树龙,田竞,徐丽娟等.双步球磨与放电等离子烧结制备细晶TiAl合金[J].稀有金属材料与工程,2011,40(5):880-884.
    [94]于宏宝,陈玉勇,张德良等.热等静压法制备细晶γ-TiAl及可成形性研究[J].稀有金属材料与工程,2008,37(10):1824-1827.
    [95] Donale S, Kim YW. Sheet rolling and performance evaluation of beta gamma(β-γ) alloys[C]. In: Ninomi M, Akiyama S, Ikeda M, editors. Ti-2007Scienceand Engineering. Kyoto, Japan: The Japan Institute of Metals;2007,1021-1024.
    [96] Wallgram W, Schm lzer T, Cha L. Technology and mechanical properties ofadvanced γ-TiAl based alloy[J]. Int. J. Mater. Res.,2009,100(8):1021-1030.
    [97] Kim YW, Kim SL, Dimiduk DM, et al. Development of beta/γ Ti alloys,presented at the Intermational Workshop on Gamma Alloy Technology,Bamberg, Germany,2006.
    [98] Clements H, Appel F, Bartels A, et al. Processing and Application ofEngineering γ-TiAl Based Alloys[C]. Proceeding of the10thWorldConference on Titanium. Hamurgg,2003:2123-2136.
    [99] Liu ZC, Lin JP, Li SJ, et al. Effects of Nb and Al on the Microstructures andMechanical Properties of High Nb Containing TiAl Base Alloys[J].Intermetallics,2002,10:653-659.
    [100] Hu D. Effect of Composition on Grain Refinement in TiAl-Based Alloys[J].Intermetallics,2001,9:1037-1043.
    [101] Titsui T, Shindo K, Kobayashi S, et al. A Newly Developed Hot WorkedTiAl Alloy for Blades and Structural Components[J]. Scripta Mater.,2002,47:399-403.
    [102] Hashimoto K, Kimura M, Mizuhara Y. Alloy Design of Gamma TitaniumAluminides Based on Phase Diagrams[J]. Intermetallics,1998,8:667-672.
    [103] Sun FS, Cao CX, Kim SE, et al. Alloying Mechanism of Beta Stablizers in aTiAl Alloy[J]. Metall. Mater. Trans. A,2001,32:1573-1589.
    [104] Daniel E. Laurin. Hot Isostatic Pressing and Heat Treatment Development ofPowder Metallurgy Beta Gamma Titanium Aluminide Alloys(D).Dissertation of the Degree of Master, Ottawa-Carleton Institute forMechanical and Aerospace Engineering,2010:56-58.
    [105] Kim YW. Advances in gamma alloy technology[C]. Presented at ASM/TMSSpring Symposium, Niskayuma, NY,2005.
    [106] Altenberger I, Scholtes B. Improvement of fatigue behaviour of mechanicallysurface treated materials by annealing[J]. Scripta Mater.,1999,41(8):873-881.
    [107] McDowell DL, Gall K, Horstemeyer MF, et al. Microstructure-based fatiguemodeling of cast A356-T6alloy[J]. Engineering Fracture Mechanics,2003,70(1):49-80.
    [108] Wang QG, Apelian D, Lados DA. Fatigue behavior of A356-T6aluminumcast alloys[J]. Journal of Light Metals,2001,1(1):73-84.
    [109] Bowen P, Chave RA, James AW. Cyclic crack growth in titaniumaluminides[J]. Mater. Sci. Eng. A,1995,192/193,443-456.
    [110] Recina V, Karlsson B. High temperature low cycle fatigue properties ofTi-48Al-2Cr-2Nb gamma titanium aluminides cast in different dimensions[J].Scripta Mater.,2000,43:609–615.
    [111] Blum W, Eisenlohr P, Breutinger F. Understanding creep-a review[J]. Metall.Mater. Trans. A,2002,33:291-303.
    [112]冯端等.金属物理学[M].北京:科学出版社,1999:561-595.
    [113] Hamzah E, Kanniah M, Harun M. Effect of chromium addition onmicrostructure and creep strength of as-cast Ti–48Al alloy[J]. Mater. Sci.Eng. A,2008,483/484:555-559.
    [114] Parthasaraty TA, Mendiratta MG, Dimiduk DM. Observations on the creepbehavior of fully-lamellar polycryatalline TiAl: Identification of criticaleffects[J]. Scripta Mater.,1997,37(3):315-321.
    [115] Schillinger W, Clemens H, Dehm G, et al. Microstructural stability and creepbehavior of a lamellar γ-TiAl based alloy with extremely fine lamellarspacing[J]. Intermetallics,2002,10(5):459-466.
    [116] Zhu HL, Seo DY, Maruyama K, et al. Grain boundary morphology and itseffect on creep of TiAl alloys[J]. Mater. Trans.,2004,45:3343-3348.
    [117] Zhu HL, Seo DY, Maruyama K, et al. Effect of lamellar spacing onmicrostructural instability and creep behavior of a lamellar TiAl alloy[J].Scripta Mater.,2006,54:1979–1984.
    [118] Bystrzanowski S, Bartels A, Clemens H, et al. Creep behaviour and relatedhigh temperature microstructural stability of Ti–46Al–9Nb sheet material[J].Intermetallics,2005,13(5):515-524.
    [119] Appel F. Mechanistic understanding of creep in gamma-base titaniumaluminide alloys[J]. Intermetallics,2001,9:907-914.
    [120] Bartholomeusz MF, Wert JA. The effect of thermal exposure onmicrostructural stability and creep resistance of a two-Phase TiAl/Ti3Allamellar alloy[J]. Metall. Mater. Trans. A,1994,25(11):2371-2381.
    [121] Gouma PI, Subramanian K, Kim YW, et al. Annealing studies of γ-titaniumaluminides alloyed with light elements for creep strengthening[J].Intermetallics,1998,6:689–693.
    [122] Suzuki M, Kimura T, Koike J, et al. Creep behavior and deformationsubstructures of Mg2Y alloy containing dilutecontent of zinc[J]. Mter. Sci.Forum,2003,432:593-598.
    [123] Kim YW. Gamma Titaniium Aluminides[C]. Las Vegas: TMS,1995:689.
    [124] Kim YW. Gamma Titaniium Aluminides[M]. Las Vegas: JOM,1994,7:30.
    [125] Beddoes J, Zhao L, Au P, et al. International Materials Reviews[J].1995,40(5):197-201.
    [126] Brossmann U, Oehring M, Appel F, et al. Microstructure and chemicalhomogeneity of high Nb gamma based TiAl alloys in different tonditions ofprocessing[J]. Structural Intermetallics, Warrendale, PA, TMS,2001,191-200.
    [127] Inkson BJ, Clemens H, Marien J. γ+α2+B2LAMELLAR DOMAINS INROLLED TiAl[J]. Scripta Mater.,1998,38:1377–1382.
    [128] Nishikiori S, Takahashi S, Satou S, et al. Mater. Microstructure and creepstrength of fully-lamellar TiAl alloys containing beta-phase[J]. Sci. Eng. A,2002,329-331:802-809.
    [129] Wang JG, Nieh TG. Creep of a beta phase-containing TiAl alloy[J].Intermetallics,2000,8:737-748.
    [130] Chen WR, Beddoes J, Zhao L. Effect of aging on the tensile and creepbehavior of a fully lamellar near γ-TiAl alloy[J]. Mater. Sci. Eng. A,2002,323:306-317.
    [131] Cheng TT. Effects of thermal exposure on the microstructure and propertiesof a γ-TiAl based alloy containing44Al-4Nb-4Zr-0.2Si-0.3B[J].Intermetallics,1999,7(9):995-999.
    [132]马凤仓.热加工对原位自生钛基复合材料组织和力学性能影响的研究(D).博士学位论文.上海交通大学,2006.
    [133] Tetsui T. Development of a TiAl turbocharger for passenger vehicles[J].Mater. Sci. Eng. A,2002,329-331:582-588.
    [134] Appel F, Oehring M, Paul JDH. Nano-scale design of TiAl alloys based onβ-phase decomposition[J]. Adv. Eng. Mater.,2006,8:371-376.
    [135] Clemens H, Chladil HF, Wallgram W, et al. In and ex situ investigations ofthe β-phase in a Nb and Mo containing γ-TiAl based alloy[J]. Intermetallics,2008,16(16):827-833.
    [136] Imayev V, Imayev R, Khismatullin T, et al. Superplastic behavior ofTi-43Al-7(Nb, Mo)-0.2B alloy in the cast+heat-treated condition[J]. ScriptaMater.,2007,57:193-196.
    [137] Kong FT, Xu XC, Chen YY, et al. Microstructure and mechanical propertiesof large size as-cast Ti-43Al-9V-0.2Y(at.%) alloy ingot from brim tocentre[J]. Materials and Design,2012,33:485-490.
    [138] Schloffer M, Iqbal F, Gabrisch H, et al. Microstructure development andhardness of a powder metallurgical multi phase γ-TiAl based alloy[J].Intermetallics,2012,22:231-240.
    [139] Niu HZ, Chen YY, Xiao SL, et al. Microstructure evolution and mechanicalproperties of a novel beta γ-TiAl alloy[J]. Intermetallics,2012,31:225-231.
    [140] Appel F, Beaven PA, Wagner R. Deformation processes related to interfacialboundaries in two-phase γ-titanium aluminides[J]. Acta Metall. Mater.,1993,41(6):1721-1732.
    [141] Yamaguchi M, Inui H. Sturctural Intermetallics, eds. Darolia R,Lewanddowski JJ, Liu CT etc., Metal. Mater. Society,1993,127.
    [142] Takeyama M. Microstructural evolution and tensile properties oftitanium-rich TiAl alloy[J]. Mater. Sci. Eng. A,1992,152,269-276.
    [143] Rao PP, Tangri K. Yielding and work hardening behaviour of titaniumaluminides at different temperatures[J]. Mater. Sci. Eng. A,1991,132:49-59.
    [144] Li YG, Loretto MH. Microstructure and fracture behaviour of Ti-44Al-xMderivatives[J]. Acta metall. Mater.,1994,42(9):2913-2919.
    [145]徐灏.疲劳强度[M].北京:高等教育出版社,1987.
    [146]孔凡涛,陈玉勇,田竞等.钇对Ti-43Al-9V合金组织性能的影响[J].稀有金属,2004,28(1):75-77.
    [147]钟鹏,田永江.失效分析基础[M].北京:机械工业出版社,1989.
    [148]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [149]黄明志,石德何,金志浩.金属力学原理[M].西安:西安交通大学出版社,1986:4-13.
    [150] Spigarelli S, ElMegtedi M, Regev M, et al. High Temperature Creep andSuperplasticity in a Mg-Zn-Zr Alloy[J]. J. Mater. Sci. Technol.,2012,28(5):407-413.
    [151] Hayes RW, McQuay PA. A first report on the creep deformation and damagebehavior of fine grained fully transformed lamellar gamma TiAl alloy[J].Scripta Metall. Mater.,1994,30(2):259-264.
    [152]陈国良,林均品.有序金属间化合物结构材料物理金属学基础[M].北京:冶金工业出版社,1999:195-198.
    [153]陈小群,黄伯云,贺跃辉等. TiAl基合金保温变形行为研究[J].稀有金属材料与工程,1996,25(5):22-27.
    [154]杨兵.元素粉末法制备TiAl基合金[J].粉末冶金技术,1999,17(4):286-290.
    [155]金格瑞,鲍恩,乌尔曼.陶瓷导论[M].北京:中国建筑出版社,1982:20-40.
    [156] Wang WM. Fu ZY, Mci BC, et al. SHS of NiAl TiB2Composites[J]. Int. J.SHS.,1993,2(4):349-355.
    [157] Bishri AH. Modeling non-Fourier heat conduction with periodic thermaloscillation using the finite integral transform[J]. Applied MathematicalModeling,1999,23(12):899-914.
    [158] Tang Z, Wang F, Wu W. Hot-corroxion behavior of TiAl-base intermetallics in moltensalts[J]. Oxidation of Metals,1999,51(3):235-250.
    [159] Wang GX, Dahms M. An overview: TiAl-based alloys prepared by elementalpowder metallurgy. Powder Metallurgy[J]. International,1992,24(4):219-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700