NiAl含量对Ti(C,N)基金属陶瓷组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对金属间化合物NiAl的性能、制备方法和Ti(C,N)基金属陶瓷的研究进展进行了综述。在此基础上,用金属间化合物NiAl取代TiC-10TiN-30Ni-15Mo-7.5WC-1.5C -0.6Cr3C2(wt%)中部分或全部粘结相Ni,制备了9种不同成分的Ti(C,N)基金属陶瓷,并采用离心粒度分析仪、热重分析仪(TGA)、金相显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线能量色散谱仪(EDS)、硬度计、抗弯强度测试仪等手段,探讨了NiAl含量对Ti(C,N)基金属陶瓷组织结构和性能的影响,为更高温度场合使用的Ti(C,N)基金属陶瓷成分设计提供一些理论指导。
     含20wt%NiAl、不含NiAl的两种金属陶瓷真空烧结过程中组织结构演变过程表明,前者的合金化起始温度为1450℃,比后者大约高200℃。含20wt%NiAl的金属陶瓷在900℃~1350℃温度区间烧结时,合金化过程不明显;1450℃~1600℃温度区间烧结时,合金化过程很充分,具有典型的芯-壳结构,核心硬质相为Ti(C,N)固溶体,环形相为(Ti,W,Mo)(C,N)固溶体,粘结相为固溶了大量Mo、W和Ti的NiAl固溶体。
     在NiAl含量为10~30wt%的范围内,随着NiAl含量增加,Ti(C,N)基金属陶瓷的硬质相晶粒越细小、分布越均匀,且被环形相包覆越好,组织越致密。含30wt%NiAl的金属陶瓷室温力学性能最佳,抗弯强度710MPa、硬度88.2HRA;800℃~1150℃温度区间恒温氧化3h后,增重速率最低,这有利于其在更高的温度下推广使用。
In this thesis, the properties and preparing methods of intermetallic compound NiAl and the development of Ti(C,N)-based cermets were reviewed. Based on the above work, nine Ti(C,N)-based cermets were prepared by replacing a part or the whole of Ni in TiC-10TiN-30Ni-15Mo-7.5WC-1.5C-0.6Cr3C2 (wt%) with NiAl. The influences of NiAl content on the microstructures and properties of Ti(C,N)-based cermets were investigated, in order to supply some theoretic references for their composition design used at higher temperature, by means of centrifugal particle-size analyzer, thermogravitic analyzer (TGA), optical microscopy (OM), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS).
     According to the microstructure evolutions of two cermets with 20wt% and without NiAl during vacuum sintering, it was found that the initial alloying temperature of the former was 1450℃, which was higher about 200℃than that of the latter. For the former, it didn’t obviously alloy at the temperature between 900℃and 1350℃, and it obviously alloyed at the temperature between 1450℃and 1600℃, and it had a classical core-rim microstructure which consisted of ceramic phase Ti(C,N), rim phase (Ti,W,Mo)(C,N), and binder phase NiAl containing much Mo, W and Ti.
     In the range of 10~30wt% NiAl, ceramic phase became smaller, distributed more evenly, were surrounded completer by rim phase and microstructure became denser with the increase of NiAl content. Moreover, Ti(C,N)-based cermets with 30wt% NiAl had the highest mechanical properties at room temperature which were transverse rupture strength 710MPa and hardness 88.2HRA, and had the lowest liveweight growth after isothermal oxidizing at the temperature between 800℃and 1150℃for 3h which was helpful for their usage at higher temperature.
引文
[1]郭建亭,谷月峰,林栋梁. Zr对Ni3Al晶界及力学性能的影响.金属学报, 1995, 31(3): 120~124
    [2]孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料.北京:机械工业出版社, 2002
    [3]张永刚.金属间化合物结构材料.北京:国防工业出版社, 2001
    [4] J. A. Seitchik and R .H. Walsley. Nuclear Magnetic Resonance Study of Al27 in NiAl. Phys. Rev., 1963, 131: 1473~1488
    [5] W. S. Walston and V. I. Baker. High Temperature Ordered Inter metallic Alloys. MRS Symposia Proceedings, 1993, 288: 257~262
    [6] P. Nagpal and I. Baker. Spatial Correlations in Metal Structures and Their Analysis. Mater. Character., 1991, 27: 167~176
    [7]姜肃猛,齐义辉. NiAl金属间化合物的制备技术.辽宁工学院学报, 2004, 24(5): 43~48
    [8] Misiolek. W, German. R. W. Reactive Sintering and Reactive Isostatic Compaction of Aluminide Matrix Composite [J]. Mater. Sci. Eng, 1991, A144: 1
    [9]王荣明,陶春虎,颜鸣嗥. TiB2颗粒增强NiAl/Fe基复合材料的显微组织研究[J].材料工程, 1999, (9): 9~12
    [10] S. Dymek, M. Dollar. Deformation Mechanisms and Ductility of Mechanically Alloyed NiAl. Mater. Sci. Eng, 1992, A152: 160~165
    [11] S. G. Pyo, J. N. Kim and P. Nash. Transmission electron microscopy characterization of mechanically alloyed NiAl powder and hot-pressed product. Mater. Sci. Eng, 1994, A181/182: 1169~1173
    [12] Z. G. Liu, J. T. Guo and Z. Q. Hu. Mechanical alloying of the Ni-Al(M) (M Ti,Fe) system. Mater. Sci. Eng, 1995, A192/193: 577~582
    [13] Z. G. Liu, J. T. Guo, and Z. Q. Hu. Mechanical alloying and characterization of Ni50Al25Ti25. J. Alloys. Compounds., 1996, 234(1): 106~110
    [14]周兰章,郭建亭,李谷松等. 97金属和陶瓷基复合材料学术研讨会论文集.张家界, 1997: 5
    [15] George. E. P, Liu. C. T. J. Comparison of grain boundary compositions in B-doped and B-free Ni3Al. Scripta Metallurgica., 1989, 23(6): 979~982
    [16] R. Darolia, R. D. Field. The effect of alloying on slip systems in <001> oriented NiAl single crystals. Acta Metallurgica et Materialia., 1991, 39(12): 2961~2969
    [17] Fu. C. L, Yoo. M. H. Deformation behavior of B2 type aluminides: FeAl and NiAl. Acta. Metall. Mater., 1992, 40: 703~711
    [18] Cotton. J. D, Kaufman. M. J, Noebe. R. D. Constitution of pseudobinary hypoeutecticβ-NiAl +α-V alloys. Scripta Metallurgica et Materialia, 1991, 25(8): 1827~1832
    [19] Bowman. R. R, Noebe. R. D, Raj. S. V. Observations on the brittle to ductile transition temperatures of B2 nickel aluminides with and without zirconium. Scripta Metallurgica, 1989, 23(12): 2049~2054
    [20] Darolia.R, Lahrman.D.F, Field.R.D, et al. Ordered Intermetallics Physical Metallurgy and Mechanical Behavior. NATO ASI, Boston, MA, 1992: 679
    [21] J. R.丁格尔波夫, W. B.克兰道夫著.施今译.金属陶瓷.上海:上海科技出版社, 1964
    [22] P.艾特梅尔, W.林戈.金属陶瓷进展.硬质合金, 1990, 7(1): 25~28
    [23] R. Kieffer, Hausen.H.H. Modern Development in P/M. New York: Plenum Press. 1971, 5: 201~203
    [24] Moskowitz, L. L. Terner. TiN improves Properties of Titanium Carbotride-base Materials. RM & HM, 1986, 5: 13~14
    [25]贺从训,夏志华,汪有明等. Ti(C,N)基金属陶瓷的研究.稀有金属, 1999, 23(1): 4~12
    [26]铃木寿等.日本金属学会会报(日), 1983, 22(4): 312
    [27]郑勇,范钟明,赵兴中等. TiN对Ti(C,N)基金属陶瓷组织和性能的影响.硬质合金, 1997, 14(3): 139~143
    [28]易建宏,唐新文,罗述东等.微波烧结技术的进展及展望.粉末冶金技术, 2003, 21(6): 351~354
    [29]李沐山.八十年代世界硬质合金技术进展.株洲:《硬质合金》编辑部出版,1992(3): 90
    [30]张杰.碳量对Ti(C,N)基金属陶瓷组织和性能的影响.粉末冶金技术, 1997, 15(2): 122~125
    [31]周泽华,丁培道. Ti(C,N)基金属陶瓷中添加成分的研究现状.材料导报, 2000, 14(4): 21~22
    [32]赵兴中,郑勇,刘宁等.含氮金属陶瓷的发展现状与展望.材料导报, 1994, 1: 17~21
    [33] M. Ehira, A. Eqami. Mechanical properties and Microstructures of Submicron Cermets. RM&HM, 1995, 13: 313~314
    [34]郑勇. Ti(C,N)基金属陶瓷中的添加剂.硬质合金, 1994, 11(2): 123~127
    [35]刘宁.添加AlN对Ti(C,N)基金属陶瓷力学性能和显微组织的影响.理化检验-物理分册, 1997, 33(1): 15~17
    [36]刘宁. Ti(C,N)金属陶瓷的制备及成分、组织和性能的研究. [博士学位论文].武汉:华中理工大学, 1994
    [37]贾佐城.超细晶硬质合金的发展.硬质合金, 2000(17): 58~63
    [38]刘宁. Ti(C,N)基金属陶瓷的组织性能及发展.硬质合金, 1992, 9(3): 166~171
    [39]刘宁,胡镇华,崔昆.钇对金属陶瓷力学性能何组织的影响.中国稀土学报, 1997, 15(1): 80~82
    [40]李鹏,胡耀波,熊惟皓.稀土元素Y对Ti(C,N)基金属陶瓷性能的影响.硬质合金, 2000, 17(2): 65~68
    [41] P. S. Gilman and J. S. Benjamin. Mechanical alloying. Annu. Rev. Mater. Sci., 1983, 13: 279
    [42] J. S. Benjamin and T. E. Volin. The mechanism of mechanical alloying. Metall. Trans., 1974, 5: 1929~1934
    [43] M. Atzmon. The effect of non-linear diffusion on solid state amorphization in Ni-Hf: experiment and simulation. Journal of Alloys and Compounds, 1993, 194(2): 213~220
    [44]郭建亭,周兰章,李谷松.纳米金属间化合物NiAl的机械合金化合成及性能.金属学报, 1999, 35(8): 846~850
    [45] R. Maric, K. N. Ishihara, P. H. Shingu. Structural Changes during Low Energy BallMilling in the Al-Ni System. J. Mater. Sci. Lett., 1996, 15: 1180
    [46]夏阳华.超细晶粒Ti(C,N)基金属陶瓷的研究. [硕士学位论文].武汉:华中科技大学图书馆, 2003
    [47]潘复生,汤爱涛,李奎等.碳氮化钛及其复合材料的反应合成.重庆:重庆大学出版社, 2005
    [48]索明源.多功能化学元素周期表.呼和浩特:内蒙古人民出版社, 1996
    [49] P. Ettmayer. Ti(C,N) cermets—Metallurgy and properties. International Journal of Refractory Metals and Hard Materials, 1995, 13: 343~351
    [50] T. Laoui, H. Zou, O. Van der Biest. Analytical electron microscopy of the core/rim structure in titanium carbonitride cermets. RM&HM, 1992, 11: 207~212
    [51]田春艳.含稀土元素的Ti(C,N)基金属陶瓷的组织和性能研究. [硕士学位论文].合肥:合肥工业大学图书馆, 1999
    [52]果世驹.粉末烧结理论.北京:冶金工业出版社, 1998
    [53] R. ahmal, P. J. Spencer. Thermal dynamic aspects of TiAl and TiSi oxidation: the Al-Ti-O and Si-Ti-O phase diagrams, Oxid. Met., 1991, 35(1/2): 53~68
    [54] S. Backer, A. Rahmel, M. Schorr, M. Schitze. Mechanism of isothermal oxidation of the intermetallic TiAl and of TiAl alloys, Oxid. Met., 1992, 38(5/6): 425~464
    [55]杨松岚. NiAl微晶涂层的高温氧化及其对NiAl-TiC复合材料的高温防护. [博士学位论文].沈阳:中国科学院金属研究所, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700