自蔓延制备Al_4SiC_4及添加Al_4SiC_4对Al_2O_3-C耐火材料性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al_4SiC_4材料由于其高熔点(约2037℃)、良好的导热性和抗高温熔体、熔渣的侵蚀性[1],在功能耐火材料方面有着良好的应用前景。将其作为添加剂添加到含碳材料中,来改善含碳材料性能日益引起人们的关注。
     本课题对高温自蔓延法制备Al_4SiC_4粉体进行了较为系统的研究,并通过采用自制的Al_4SiC_4粉体作为添加剂添加到铝碳质材料中,研究其对材料性能的影响。
     结果表明:
     1、粉体制备方面:
     (1)采用点燃的C和Ti粉混合物为化学炉,可以通过高温自蔓延反应制备Al_4SiC_4粉体,而在常规自蔓延合成条件下反应不能进行。
     (2)Al_4SiC_4的合成反应分两步进行:首先由单质Al、Si和C反应生成SiC和Al_4C_3,然后再由SiC和Al_4C_3反应合成Al_4SiC_4。
     (3)C含量过量30%的配比能够制备出不含Al_4C_3相、Al_4SiC_4含量可达80%的粉体。
     (4)金属Al粉粒度的减小有利于Al_4SiC_4相的发育。
     2、性能研究方面:
     (1)Al_4SiC_4的添加可降低含碳材料的显气孔率,提高结构致密度,一定程度改善材料的常温性能,显著提高试样的高温抗折强度。
     (2)Al_4SiC_4先于C发生氧化反应,生成固态物质沉积在气孔内或固体表面,形成莫来石致密保护层,抑制氧化性气体的扩散,同时还原出C,对含碳材料具有自修复作用,对提高含碳材料抗氧化性具有显著效果。
     (3)Al_4SiC_4具有优良的抗水化性,可改善金属Al对含碳材料带来的不利影响,替代含金属Al的添加剂具有较好的应用前景。
     (4)在熔钢接触面处,Al_4SiC_4氧化形成莫来石致密层,可以减缓石墨的氧化溶解及熔钢的渗透,可显著提高材料的抗熔钢侵蚀性和冲刷性。
     由以上结果综合考虑得出,高温自蔓延法是制备Al_4SiC_4粉体的一种有效途径,该方法简便快捷,能耗低。利用这种方法制备的Al_4SiC_4粉体作为添加剂加入到铝碳材料中可有效改善材料的高温性能,尤其在抗氧化性、抗水化性和抗钢水冲刷性方面表现优异,弥补目前较普遍使用的含铝添加剂存在的缺陷,是一种理想的含碳材料添加剂。
Al_4SiC_4 has well application prospect in functional refractory materials due to its high melting-point (about 2037℃)、high thermal conductivity and higher corrosion resistance to high-temperature melt and slag. It has been of great interesting to add Al_4SiC_4 into carbon containing refractory as an additive to improve the properties of the materials.
     This experiment systematically studies the preparation of self-propagating high temperature synthesis of Al_4SiC_4 powders, and the influence on the properties of alumina-graphite material added to Al_4SiC_4 powders as an additive. Conclusions are drawn as following:
     1. Preparation
     (1) Al_4SiC_4 powders can be obtained by C.O.SHS(chemical oven SHS) with C and Ti mixture powders ,but it can’t be synthesized by common SHS.
     (2) The synthesis of Al_4SiC_4 powders includes two steps: first of all, SiC and Al_4C_3 are reacted from simple substance of Al、Si and C, then Al_4SiC_4 is synthesized by SiC and Al_4C_3.
     (3) Powders with 80wt% of Al_4SiC_4 powders but without Al_4C_3 phrase are obtained from the composition with 30% of carbon.
     (4) To minish the crystal gravesize of metal Al powders is in favor of the growth of Al_4SiC_4.
     2. The effect on properties
     (1) The addition of composition Al_4SiC_4. can decrease the apparent porosity, increase the density of structure, improve the cold modulus of rupture (CMOR) of the alumina-graphite materials to a certain extent and markedly increase the hot modulus of rupture (HMOR).
     (2) Because Al_4SiC_4 is oxidized before the graphite, the created solid matter deposits into the pore or at the surface of solid and then forms a dense protective layer of mullite, and C can serves as a barriev for the diffusion of oxygen from the exterior into the interior, which provides the self-repair and remarkable effect on the oxidation resistance of the carbon containing refractory with Al_4SiC_4.
     (3) Al_4SiC_4 has excellent hydration resistance, and is helpful to advided the bad effect of the metal Al on the carbon containing refractory, and can replace the additives metal Al, therefore, it has a better application prospect.
     4)At the contact face of melt steel, Al_4SiC_4 forms a dense layer of mullite by oxidation, which makes the oxidizing dissolving of graphite and the penetration of the melt steel to slower, so as to markedly improve the corrosion resistance to the melt steel of the materials.
     In conclusion, Self-propagating high temperature synthesis is an effective preparation way of Al_4SiC_4 powders, which is quick and simple, with lower energy consumption. The obtained powder has excellent properties which meet the demands of the additive of carbon containing refractory, is remarkably improve the properties in room and high temperature of the alumina-graphite materials, especially, in resistance to oxidation, hydration and erosion of melt steel. Therefore, it may remedy the defect of the common Al containing additive, and can be used better than additive to carbon containing refractory.
引文
[1]李红霞编.耐火材料手册北京冶金工业出版社2007
    [2]彭小艳等.低碳镁碳质耐火材料的抗氧化性研究耐火材料2005,5:337~340
    [3]贺智勇等. ZrB2对低碳镁碳材料抗氧化性能的影响耐火材料2006,4:280~282
    [4]魏明坤等.碳材料的高温抗氧化研究进展.江苏陶瓷2003,1:24
    [5]张文杰,李楠.碳复合耐火材料北京:科学出版社
    [6]王海军等.碳/碳复合材料抗氧化行为的研究进展材料科学与工程学报,2003,1:117
    [7]张勤学.添加剂对铝碳质长水口性能的影响.硕士学位论文,西安建筑科技大学,2003
    [8]王晓阳译自修复耐火材料的研制国外耐火材料,2004,5:48~50
    [9]李有奇、柯昌明等铝碳质滑板材料抗氧化研究进展材料导报,2005,10:77~79
    [10]李新建、李楠等含碳耐火材料的防氧化方法耐火材料,2006,2:133~135
    [11]山口明良加入含碳耐火材料中的Al和SiC的性状耐火物,1983,11:3~8
    [12]T.Rymon-Lipinski.含碳耐火材料金属添加剂的抑制氧化作用国外耐火材料,1989,9:54~58
    [13]刘新彧、石干等铝碳滑板的高温强度、断裂行为和氧化过程与添加物Al、Si的关系耐火材料, 1995,2:79~82,87
    [14]郑海忠等.抗氧化剂对再生铝镁碳砖抗氧化性能的影响武汉科技大学学报,2003,1:11~13
    [15]金从进等铝锆碳材料的抗氧化性研究耐火材料,2000,5:265~267
    [16]刘国齐等Si粉和Al粉对N2保护热处理铝碳材料性能和显微结构的影响耐火材料,2005,4:241~245
    [17]杨现峰.铝碳质耐火材料抗热震性研究.洛阳:洛阳耐火材料研究院,2004
    [18]刘宇. Al2O3-SiO2-C系组成对连铸用铝碳质长水口性能的影响.硕士学位论文,西安建筑科技大学,2003,6
    [19]桂明玺译.铝碳质水口添加ZrN的效果.国外耐火材料,1996,6:17~21
    [20]曹慧译.连铸用铝碳质耐火材料的抗热震性.国外耐火材料,1996,12:50~53
    [21]向井,宏楠.浸入式水口在炉渣—钢水界面局部蚀损的机理和防止措施.国外耐火材料,1991,10:62~70
    [22]K.Mukai等.炉渣—金属界面处铝碳质耐火材料的侵蚀.国外耐火材料,1988,3:46~56
    [23]野村光一等.长寿命铝碳质连铸长水口的开发.世界钢铁,1999,3:62~66
    [24]杨彬,李红霞.连铸用功能耐火材料的发展.《耐火材料》创刊四十周年特刊,2006,40:35~48
    [25]刘国齐,王金相,杨彬等.添加剂对N2保护热处理铝碳材料性能和结构的影响.钢铁冶金新技术及耐火材料应用技术研讨会论文集,2005.5
    [26]Inoue Z, Inomata Y,Tanaka H. X-ray crystallographic data on aluminum silicon carbide,α-Al4SiC4 and Al4Si2C5. J Mater Sci,1980,15(9):575-580
    [27]Barzak V J. Jam Ceram Soc[J],1961,6:299
    [28]Inoue Z, Inomata Y, Tanaka H J. J Mater Sci[J],1980,15:575
    [29]黄小萧,温广武. Al4SiC4陶瓷的高温氧化行为.稀有金属材料与工程.2006,35(2)189~194
    [30] Yamaguchi A,Zhang S. J Ceram Soc Japan[J],1995,103(1):20
    [31]Inoue K,Yamaguchi A.Synthesis of Al4SiC4. J Am Ceram Soc,2003,86(6):1028-1030
    [32]邓承继、李涛等.固相反应合成Al4SiC4材料.耐火材料.2005,39(4)246~248,252
    [33]程强译含碳耐火材料中的抗氧化剂性状.国外耐火材料1996,6:58~63
    [34]姚金灵等译含碳耐火材料添加Al4SiC4的作用.国外耐火材料1996,2:35~39
    [35] M iyamo to Y, et al. H igh2p ressure self2combustion sintering fo r ceram ics. Comm Am Ceram Soc, 1984, C: 224~225
    [36]傅正义,袁润章.自蔓延高温合成材料新技术.武汉工艺大学学报,1991,13(3): 28
    [37]梁叔全,郑子樵.材料的自蔓延高温合成.硅酸盐学报, 1993,21(3):261
    [38]张锐,张霞.材料制备新技术—自蔓延高温合成[J ].硬质合金,2000,17(2): 72.
    [39]许兴利,韩杰才,杜善义.自蔓延合成理论研究与进展(1).功能材料,1996,27(6):223~227
    [40]贾光耀,郭志猛,王耀明等.自蔓延合成技术的发展与应用.现代技术陶瓷,2003,96(2):16~21
    [41] J.B.Holt,Z.A.Munir,J.Material Sci.,1986;21:251~259
    [42] 10.Z.A.Munir,Bull.Am.Ceram.Soc.,1988;67:349
    [43] Rhode WH; J Am Ceram Soc,1981,64(1):19
    [44]张文杰,李楠.碳复合耐火材料.北京:科学出版社,1990
    [45]山口良朋.加入含碳耐火材料中的SiC和Al的性状.国外耐火材料.1984.3:57~62
    [46]崔素芬,张银亮译《JOURNAL OF THE CERAMIC SOCIETY OF JAPAN>1995,No1,25-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700