由苯直接催化氧化氨基化一步合成苯胺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,人们对化学合成更看重的是化学反应的高选择性和高收率,而忽视了反应物中原子的有效利用,有时难免造成既浪费资源又污染环境的尴尬局面。随着现代工业的发展,尤其是近年来绿色化学的发展,人们对环境和资源越来越关心和重视,并将绿色化学的基本思想应用于化学化工的众多领域。高原子利用率的反应越来越受到重视,希望在节约资源的同时减少或消除环境污染。
     C?H键的选择性活化和定向功能化,尤其是苯及相关芳香族化合物C?H键在温和条件下的选择性活化和定向功能化,是合成化学和绿色化学所面临的重大挑战之一。直接将氨基引入苯环合成苯胺属于这类研究的课题。以苯为原料,选择适当的胺化剂和氧化剂在一定的条件下一步直接合成苯胺,不但减少了中间产物和副产物的生成,而且提高了反应的原子利用率,副产物氢或水都对环境无害,是一种符合绿色合成化学理念的新方法。进行一步法合成苯胺新工艺的研究开发可望使苯胺工业朝着简单、清洁和绿色环保的方向发展。
     本文采用苯为起始原料,以氨水为氨基源,过氧化氢为氧化剂,在温和条件(低温、常压)下研究了由苯直接氧化氨基化合成苯胺的反应。由于苯环的特殊稳定性,要实现温和条件下苯环的C–H键、氨中的N–H键、过氧化氢中的O–O键的同时活化或优化活化三个中的1–2个以引发反应,催化剂的选择和制备是关键。本文在已有研究的基础上,采用Ni、Mo和/或Mn为主要催化活性组分,制备了系列负载型Ni/Al2O3、Mo/Al2O3、Mn/Al2O3、Mo–Ni/Al2O3和Mn–Ni/Al2O3催化剂,将其用于温和条件下苯的直接氧化氨基化反应。
     实验结果表明,单组分金属催化剂(Ni/Al2O3、Mo/Al2O3、Mn/Al2O3)对苯的胺化反应有一定催化活性,但对苯胺选择性很低;Ni物种可以实现苯环上C–H和氨的N–H键的同时活化,且还原形式的Ni物种能够相对提高对N–H键的活化能力;MoO3或还原形式的Mo物种也能够同时活化原料分子的C–H键和N–H键,且还原态的Mo物种更有利于提高C–H键的活化;还原态的Mn物种对胺化反应有一定活性,但Mn的氧化物没有催化活性。向Ni基催化剂中引入金属Mo或Mn后,其催化活性和选择性都有很大提高。不同Mo/Ni或Mn/Ni原子比的Mo–Ni/Al2O3和Mn–Ni/Al2O3催化剂对生成苯胺的活性和选择性不同:对Mn–Ni/Al2O3来说,在Mn/Ni原子比为0.16的催化剂上获得了最大的苯胺收率;对Mo–Ni/Al2O3来说,Mo/Ni原子比为1.7的还原的催化剂上获得了本文研究条件下最大的苯胺收率。
     催化剂的性能主要决定于催化剂的结构,本文对制备的各种催化剂进行了X射线衍射(XRD)和程序升温还原(TPR)表征。实验表明,Mo–Ni/Al2O3上还原态的Mo物种有利于苯环C–H键的活化,而还原态的Ni物种有利于活化氨中的N–H键,催化剂上NiMoO4的形成导致其催化活性下降;Mn–Ni/Al2O3催化剂上Ni和Mn物种之间或两者与载体之间的相互作用形成能使原料分子中C–H键和N–H键同时活化的催化活性相。本文研究条件下的苯、氨水、过氧化氢体系的苯的氧化氨基化反应是一个固体催化剂作用下的多相反应。苯酚是本实验条件下的主要副产物,通过催化剂的调变,可增大苯胺的选择性,降低副产物苯酚的选择性。
     本文还采用盐酸羟胺为胺化剂,考察了温和条件下醋酸-水介质中苯与盐酸羟胺合成苯胺的反应。选取NaVO3为均相催化剂,考察了介质的酸性、空气(氧)、NaVO3用量、进料比(nNH2OH/ nbenzene)、反应温度、反应时间、加料次序、Na+离子等对胺化反应的影响。实验结果表明,酸性的介质,尤其是有机酸介质(如醋酸的水溶液),有利于胺化反应的进行,醋酸不但为反应提供酸性环境,而且还起到使反应体系均相化的作用,另外也可能与钒中心发生配位,参与胺化反应,进而影响胺化反应机理。通过在开放和密闭体系中的反应对比,证实开放体系比密闭体系更有利于胺化反应进行,空气(氧气)的存在有利于提高目标产物苯胺的收率和选择性。在不引入其他杂阴离子的情况下,催化剂中的金属Na+离子对胺化反应有一定促进作用。对反应条件进行了优化,优化后的反应条件为:22.5 mmol苯,0.3 mmol NaVO3,n benzene/n NH2OH 1:1,VHOAc: VH2O = 4:1,80°C,反应4小时。在此条件下,得到的苯胺收率为64 mol%,苯胺选择性为95.6%,转化数为48摩尔苯胺/摩尔V,此结果好于已有文献报道值。
     研究了盐酸羟胺在反应条件下的分解反应,考察了温度、醋酸浓度、NaVO3用量、钒离子价态等因素对盐酸羟胺分解过程的影响,发现其适当的分解速度利于胺化反应的进行,其分解促进了活性氨基化物种的形成。
     采用51V核磁共振(51V NMR)、电子顺磁共振(EPR)、紫外-可见光谱(UV–VIS)等谱学手段对胺化反应过程中钒催化剂的状态变化进行了监测,对紫外-可见吸收光谱进行了理论模拟以帮助解谱,结合活性测试结果,提出并阐明了可能的苯氨基化反应的机理(自由基机理)。即:反应体系pH值低于1时,钒物种首先以VO2+形式存在,加入盐酸羟胺后,VO2+与NH2OH发生相互作用,VV被还原并主要生成VIV,部分NH2OH被氧化生成N2O从体系中排出;体系中可能存在VIII,但其很容易被空气氧化生成稳定的VIV物种;而VIV物种在羟胺、醋酸及氧气存在下可能被再氧化成VV;由于低价V较强的还原能力,体系中的NH2OH于是扮演氧化剂的角色,并被还原成质子化氨基-钒络合物(HO–VV–?NH3+),并作为活性氨基化试剂进攻苯环,生成质子化的氨基环己烯自由基中间体,该中间体被VV夺取一个电子后形成质子化的苯胺;VV最终被还原成VIV,完成一个催化循环。体系中的羟胺消耗完后,胺化反应就结束了,钒最终以四价形式存在。体系中VV的存在不仅导致低价钒物种的产生,而且直接参与中间体的芳构化并生成苯胺;低价的V与羟胺相互作用使得HO–VV–?NH3+得以形成。因此,体系中VV和VIV的共存才能使催化剂发挥最大的催化活性,而空气氧的存在能够使低价钒被再氧化为VV,因此有利于胺化反应进行。
     以钒为主要活性组分,设计制备了各种负载型的钒基催化剂,对其结构进行了X射线衍射(XRD)、X射线光电子能谱(XPS)以及漫反射紫外-可见吸收光谱(DRUV–VIS)等表征,将这些催化剂用于苯与盐酸羟胺合成苯胺的反应,对胺化反应条件进行了优化。实验表明,不同载体负载的钒基催化剂的活性不同,相同制备条件和反应条件下各催化剂的活性顺序为:γ-Al2O3 > TiO2> SiO2 > AC > HZSM-5 > CeO2,各催化剂上的V负载量与载体的性质有关,γ-Al2O3上负载的V含量最高,且该V/γ-Al2O3催化剂的活性也最高。以V/γ-Al2O3为催化剂,其上V的负载量影响催化剂的催化活性:V负载量越高,催化活性越高。当载体上V的实际含量低于5%时,V物种在载体表面上均匀分散;高于5%时,V物种在载体上堆积成少量V2O5和VO2晶相。改变V/γ-Al2O3催化剂前体浸渍溶液的钒原料及浸渍溶剂(水或草酸的水溶液)对催化剂的结构和催化活性影响不大;提高V/Al2O3催化剂前体的煅烧温度(高于700 oC),载体晶相结构发生相变(γ-Al2O3→θ-Al2O3),使得钒物种在载体表面发生堆积并形成聚合钒物种,提高了催化剂的催化活性和稳定性。将V10/γ-Al2O3反复使用5次,其催化活性降低至初始活性的一半,除了活性物种的流失外,固体催化剂在介质溶液中的破碎也是一个重要的原因。另外,酸性的反应介质有利于胺化反应的进行,但强酸的加入会导致固体催化剂的溶解和产物苯胺收率的降低。开放体系比密闭体系更有利于胺化反应进行;空气氧的存在有利于胺化反应。以V10/γ-Al2O3为催化剂,在2 mL苯为底物的情况下(nNH2OH?HCl: nbenzene= 1:1),在VHOAc:VH2O = 4:1的醋酸-水溶液中于80 oC反应4小时,得到了此条件下最大的苯胺收率(64%),此时的苯胺选择性为95.8%,此结果与均相反应结果相当。V/γ-Al2O3催化下的苯与盐酸羟胺的反应主要是一个多相催化下的反应,但溶液中溶脱的钒离子也对胺化反应有催化活性。
     将所制备的V10/γ-Al2O3催化剂用于其他芳香族化合物(如乙苯、二甲苯、氯苯、硝基苯)的氨基化反应,发现苯环上的C–H键均能被活化,但活化能力受苯环上取代基团的性质的影响。
For a long time, more attentions have been paid on the high selectivity and high yield of chemical reactions than atomic efficiency of the reactants. Thus the wastes of resource and environment pollution were simultaneously encountered. With the development of modern industry, especially the development of green chemistry, people care more about the environment and the energy consumption, and tend to apply the basic ideas of green chemistry to every fields of chemistry and chemical industry. Therefore, increasing attentions is paid to better atomic efficiency, and the“greening”trends of global chemical manufacturing requires new processes that economize resource and reduce or even eliminate environmental pollutions. The selective activation and directional functionalization of C–H bonds, especially those of benzene and other aromatics under mild conditions, remains one of the most significant challenges in both synthetic and green chemistry. The introduction of amino-group into benzene ring to produce aniline is involved in this research. By using suitable aminating reagent and oxidant, the direct amination of benzene to aniline under certain conditions is a green synthetic process because it reduces the formation of intermediate products and by-products, and increases the atomic efficiency of the reactants. The exploitation of new method for the one-step synthesis of aniline will lead the development of aniline industry to a simple, clean, and green energy-conservative direction.
     The present thesis deals with the study of the direct oxy-amination of benzene to aniline with aqueous ammonia using hydrogen peroxide as the oxidant under mild reaction conditions (low temperature and atmospheric pressure). Because of the peculiar stability of benzene ring, the selection and preparation of the catalyst are the key to the co-activation of C–H bond of benzene, N–H bond of ammonia, and O–O bond of H2O2, or one or two of them under mild conditions to initiate the reaction. Based on the previous research results, Ni, Mo and/or Mn were used as the active components and a series of supported catalysts (i.e. Ni/Al2O3, Mo/Al2O3, Mn/Al2O3, Mo-Ni/Al2O3, and Mn-Ni/Al2O3) were prepared and used in the direct oxy-amination of benzene to aniline under mild reaction conditions.
     It was found that the one-component catalysts (Ni/Al2O3, Mo/Al2O3, and Mn/Al2O3) are active with lower selectivity to aniline. Nickel species on Ni/Al2O3 are active for the co-activation of C–H bond of benzene and N-H bond of ammonia, and the activation of N–H bond of ammonia is enhanced by the reduced forms of nickel species. Both of MoO3 and the reduced forms of Mo species are active for the activation of C–H bond and N–H bond of the reactants and the reduced forms of Mo species on Mo/Al2O3 makes a more remarkable increase of C–H bond activation than N–H bond activation. The reduced forms of Mn species are responsible for the amination, but its oxides are inactive. The addition of Mo or Mn into Ni/Al2O3 results in an increase of both the yield and selectivity to aniline comparing to the one-component catalysts. Different Mo/Ni or Mn/Ni atomic ratios of the catalysts result in different activities and selectivities to aniline. For the Mn-Ni/Al2O3 catalysts, the highest aniline yield was obtained on the catalyst with a Mn/Ni atomic ratio of 0.16. The reduced Mo-Ni/Al2O3 catalyst with a Mo/Ni atomic ratio of 1.7 showed the best catalytic amination activity under the reaction conditions investigated.
     The catalytic performance of the catalyst is mainly determined by its structure, thus X-ray diffraction (XRD) and temperature-programmed reduction (TPR) were employed to characterize the catalysts prepared. The results showed that, the reduced forms of supported Mo species on Mo-Ni/Al2O3 makes a more remarkable increase of C–H bond activation than N–H bond activation, and the reduction of nickel species favors the activation of N–H bond of ammonia. The formation of NiMoO4 on Mo-Ni/Al2O3 decreases the amination activity. The interaction of Mn and Ni species or the interaction between the metals and the support leads to the co-activation of the C–H and N–H bonds of the reactants. The oxyamination was proved to be a heterogeneously catalyzed reaction. Phenol is the main by-product in the experiment. The amination activity and selectivity of the catalysts can be improved by properly optimizing the compositions of the catalysts and corresponding preparation method.
     The synthesis of aniline from benzene and hydroxylamine hydrochloride in acetic acid–water media under mild conditions was also studied. Using NaVO3 as the catalyst, its catalytic performance in the amination was investigated in detail. The influence of the acidity of the reaction media, the presence of air (oxygen), the amount of NaVO3 used, the feed ratio (nNH2OH/nbenzene), the reaction temperature, the reaction time, the feed order, and the presence of Na+ cation on the amination were investigated. It was found that, a relatively acidic reaction medium, especially an organic acid such as acetic acid-water medium, is advantageous for the present homogenously catalyzed amination. Acetic acid, used in the present study, actes not only as a good solvent for mixing the reactants into one phase, it also supplies an acidic surrounding, perhaps even coordinates with the vanadium center and affects the mechanism of the titled amination reaction. It was proved that the amination reaction takes place more efficiently in open air than in a closed system. The presence of air (oxygen) is favorable for the enhancement of the aniline yield and selectivity. Without the introduction of other anions, the Na+ cation in the catalyst favors the amination. The optimized reaction conditions investigated in the present work are: n benzene/n NH2OH 1:1, HOAc: H2O (v/v) 4:1, conducted at 353 K for 4 h under atmospheric pressure. Satisfactory aniline yield and turnover (64 mol%, 48 mol aniline per mol V), with a selectivity of 95.6% to aniline, were obtained under the optimized reaction conditions.
     The decomposition of hydroxylamine hydrochloride under the reaction conditions was studied to understand its function during the amination process. The effects of temperatures, the concentrations of acetic acid, the amount of NaVO3 used, the valences of vanadium, etc., on the decomposition of hydroxylamine hydrochloride were investigated in detail. It was found that an appropriate decomposition rate of hydroxylamine favors the amination, probably because the decomposition process is involved in the formation of active aminating agent.
     Several spectroscopic techiniques, including 51V NMR, EPR, and UV-VIS, were used to monitor the variation of the valence of vanadium in the amination process. A computational study on the UV-Vis spectra of some typical vanadium complexes was carried out using the time dependent DFT (TD-DFT) method to help explain the electronic spectra. A free radical mechanism is proposed based on both the results of spectroscopic and activity measurements as well as quantum chemical calculation. The proposed mechanism involves the interaction of a VO2+ cation with hydroxylamine to form the lower-valent vanadium species, mainly VIV. Gaseous N2O is evolved during this redox course. The probably formed VIII species is unstable in open air and is oxidized to the relatively stable VIV. The VIV species, however, would also be probably oxidized to VV in the presence of hydroxylamine, acetic acid, and atmospheric oxygen. On account of the relatively stronger reductive power of lower-valent vanadium species, the hydroxylamine present in the system then acts as oxidative agent and is reduced to a protonated amino-vanadium complex (HO-VV-?NH3+), then attacks the benzene ring to give a protonated aminocyclohexadienyl radical intermediate, which is subsequently oxidized by VV species to form protonated aniline accompanying the regeneration of lower-valent vanadium species, completing the catalytic cycle. The exhaustion of hydroxylamine stops the formation of HO-VV-?NH3+ which further results in the termination of the amination process. In addition, it is clear that the presence of the VV species is essential for the amination process, because they are not only involved in the production of lower-valent vanadium species, but also in the re-aromatization of the aminocyclohexadienyl radical intermediate to form aniline. The lower-valent vanadium species are further involved in the formation of the active protonated amino-vanadium radical species. Atmospheric air favors the co-existence of VV and VIV, which is crucial for the amination progress.
     Using vanadium as the main active component, various supported vanadium-based catalysts were designed and prepared. The structures of these catalysts were characterized by means of X-ray diffraction (XRD), X-photoelectron spectroscopy (XPS), and Diffuse reflectance UV-VIS (DRUV-VIS) spectroscopy. The as-prepared catalysts were used in the direct amination of benzene to aniline with hydroxylamine hydrochloride. The amination conditions were optimized. It was found that the activities of these catalysts with different supports are different. The activity of the supported catalysts with identical preparation conditions and reaction conditions are as follows:γ–Al2O3 > TiO2 > SiO2 > activated carbon > HASM-5 > CeO2. The actual vanadium loadings on the supports are related with the characters of the supports. The V/γ–Al2O3, with the highest vanadium loading, shows the best catalytic performance in the amination reaction. Using V/γ–Al2O3 as the catalyst, different vanadium loadings on the supports results in different catalytic activities, that is, the more of the vanadium loaded, the higher of the activity. The vanadium species are well dispersed onγ–Al2O3 when the vanadium content on the support is lower than 5%, and deposites on the support to form a small amount of V2O5 and VO2 when the vanadium content is higher than 5%. The variation of the impregnating solution has no obvious effect on the structure and performance of theγ–Al2O3 supported catalyst. The increase of the calcination temperature (above 700 oC) transforms theγ–Al2O3 phase toθ–Al2O3, and favors the formation of crystalline vanadium species on the support, and further results in the increment of the catalytic performance. The activity of V/γ–Al2O3 decreases to half after five consequent runs, this is attributed to the loss of active metals and the dissolution of the solid catalyst in the solution. In addition, an acidic reaction medium is favorable for the amination, but the addition of strong acid results in the dissolution of the catalyst and the decrease of the aniline yield. The amination takes place more efficiently in open air than in closed system. The presence of air (oxygen) favors the amination. Over the V/γ–Al2O3 catalyst, an aniline yield of 64%, with a selectivity of 95.8%, was obtained when using 2 mL of benzene in acetic acid-water solution (VHOAc: VH2O = 4:1) at 80 oC for 4 h. This value is comparable with that obtained in homogeneous NaVO3 catalyzed amination system. It was proved that the V/γ–Al2O3 catalyzed amination is mainly a heterogeneously catalyzed reaction, and the leaching vanadium ions are also responsible for the amination, although this contribution is not as high as the heterogeneous catalysis.
     The amination of other aromatics (i.e. ethylbenzene, dimethyl benzene, chlorobenzene, and nitrobenzene) was carried out over V/γ–Al2O3. It was found that the C–H bond in benzene ring could be activated but this activation is influenced by the nature of the substituted groups.
引文
[1] Thomas B. R., William T., Enhanced: Toward Greener Chemistry, Science 1999, 284: 1477
    [2] Trost B. M., On Inventing Reactions for Atom Economy, Acc. Chem. Res. 2002, 35: 695.
    [3] Sheldon R. A., Organic Synthesis-Past, Present and Future [J]. Chemistry & Industry 1992, 7: 903-906.
    [4] Bonchio M., Conte V., Di Furia F., Modena G., Metal Catalysis in Oxidation by Peroxides. 31. The Hydroxylation of Benzene by VO(O2)(PIC)(H2O)2: Mechanistic and Synthetic Aspects, J. Org. Chem. 1989, 54: 4368.
    [5] Mantegazza M. A., Leofanti G., Petrini G., Padovan M., Zeccina A., Bordiga S., in: Corberan V. C., Bellon S. V. (Eds.), New Developments in Selective Oxidation, 1993, p. 51.
    [6] 胡常伟, 李贤均, 绿色化学原理和应用, 北京, 中国石化出版社, 2002 , pp. 27~34
    [7] 王福安,任保增,绿色过程工程引论,北京,化学工业出版社,2002,pp. 20~21.
    [8] Labinger J. A., Bercaw J. E., Understanding and exploiting C–H bond activation, Nature 2002, 417: 507
    [9] Shilov A. E., Shul_pin G. B., Activation of C–H Bonds by Metal Complexes, Chem. Rev. 1997, 97: 2879
    [10] Dyker G., Transition Metal Catalyzed Coupling Reactions under C–H Activation, Angew. Chem. Int. Ed. 1999, 38: 1698.
    [11] Bergman R. G., C–H activation, Nature 2007, 446(22): 391.
    [12] Fokin A. A., Schreiner P. R., Selective Alkane Transformations via Radicals and Radical Cations: Insights into the Activation Step from Experiment and Theory, Chem. Rev. 2002, 102: 1551
    [13] Fokin A. A., Schreiner P. R., Metal-free, Selective Alkane Functionalizations, Adv. Synth. Catal. 2003, 345: 1035
    [14] Burch R., Crittle D. J., Hayes M. J., C–H bond activation in hydrocarbon oxidation on heterogeneous catalysts, Catalysis Today 1999, 47: 229.
    [15] Liang L. C., Chien P. S., Huang Y. L., Intermolecular Arene C-H Activation by Nickel (II),J. Am. Chem. Soc. 2006, 128: 15562.
    [16] Driver T. G., Day M. W., Labinger J. A., Bercaw J. E., Mechanism of C-H Bond Activation of Alkyl-Substituted Benzenes by Cationic Platinum (II) Complexes, Organometallics 2005, 24: 3644.
    [17] Thomas R. C., Sridhar V., Carbon hydrogen and carbon heteroatom bond activation using iridium (I) complexes, Inorganica Chimica Acta 2004, 357: 2863.
    [18] Janine T. C., Simon L., C H and N H activation by Pt (0) in N- and O-heteroaromatic compounds, Journal of Organometallic Chemistry 2004, 689: 1315.
    [19] Milko E. van der Boom, Shyh-Yeon Liou, Linda J. W. S. Yehoshoa Ben-David, David M., Nickel promoted C H, C C and C O bond activation in solution, Inorganica Chimica Acta 2004, 357: 4015.
    [20] Chen H., Sabine S., Thomas C. S., John F. H., Thermal, Catalytic, Regiospecific Functionalization of Alkanes, Science, 2002, 287(5460): 1995.
    [21] Jia C., Piao D., Juzo O., Lu W., Kitamura T., Fujiwara Y., Efficient Activation of Aromatic C–H bonds for Addition to C–C multiple bonds, Science 2002, 287(5460): 1992.
    [22] 皮现玉,梁成雪,苯胺的合成方法与应用,氯碱工业,1999,6:34.
    [23] 杨庆荣,苯胺的生产现状及市场分析,河南化工,2005,22:12.
    [24] 李玉芳,苯胺的生产技术及国内外市场分析,化工科技市场,2003,26(1):20.
    [25] 洪仲芩,化工有机原料深加工[M].北京:化学工业出版社,1997:568.
    [26] 孟庆茹,苯胺的生产与市场分析,江苏化工,2004,32(4):53.
    [27] 梁诚,中国石油和化工,2001,5:54.
    [28] 李明,伍小明,MDI 的生产技术及市场分析,化工科技市场,2006,29(6),12.
    [29] 市场纵览精细化工原料及中间体,2006,1:39.
    [30] 吕咏梅,苯胺生产与市场,中国石油和化工(综合版):38.
    [31] 伍桂松,苯胺行业结构研究,石油化工技术经济,2006,22 (2):34.
    [32] 李晓平,2005国内苯胺的生产消费情况及发展建议,氯碱工业,2006,2:29.
    [33] 金栋,苯胺的生产及市场分析,四川化工与腐蚀控制,2002,5(6):45.
    [34] 洪仲芩,化工有机原料深加工,北京,化学工业出版社,1997:568.
    [35] 傅建国,王勋章,中国化工报,1999 年12 月22 日第5版.
    [36] 刘艳杰,蒋巍,阎丽萍,苯胺的生产技术及市场分析,天津化工,2003,17(6):37.
    [37] 尚平, 卜欣立, 张坤玲,苯胺的生产技术进展,河北化工,2006,29(9):14.
    [38] 贾志刚,李方实,液相催化加氢法制取芳胺的研究进展[J],化工时刊,2004,18 (1):1.
    [39] 李速延,周晓奇,苯胺生产技术研究进展,工业催化,2006,14(12):7.
    [40] 张健,孙长江,苯胺技术及市场分析,化工科技,2002 ,10 (1):41.
    [41] Thomas C. L., Preparation of aromatic amines, [p]. Canadian Patent 553988, 1958-3-4.
    [42] Schmerling L., Preparation of aromatic amines, [p]. US Patent 2948755, 1960-8-9.
    [43] Squire E.N., Mills G., Synthesis of aromatic amines by reaction of aromatic compounds with ammonia, [p]. US 3919155, 1975-11-11; [p]. US Patent 3929889, 1975-12-30.
    [44] Delpesco T. W., Del W., Synthesis of aromatic amines by reaction of aromatic compounds with ammonia, [p]. US Patent 4031106, 1977-6-21.
    [45] Hara K., Amination and cyanation of aromatic compounds, [p]. JP Patent 06/293715, 1994-10-21.
    [46] Hagemeyer A., Borade R., Desrosiers P., Guan S., Lowe D. M., Poojary D. M., Turner H., Weinberg H., Zhou X. P., Armbrust R., Fengler G., Notheis U., Application of combinatorial catalysis for the direct amination of benzene to aniline, Appl. Catal. A 2002, 227: 43.
    [47] Desrosiers P., Guan S. H., Hagemeyer A., Lowe D. M., Lugmair C., Poojary D. M., Turner H., Weinberg H., Zhou X. P., Armbrust R., Fengler G., Notheis U., Application of combinatorial catalysis for the direct amination of benzene to aniline, Catal. Today 2003, 81: 319-328.
    [48] Becker J., H?lderich W. F., Amination of benzene in the presence of ammonia using a group Ⅷ metal supported on a carrier as catalyst, Catal. Lett. 1998, 54:125.
    [49] Hǒlderich W., Becker J., Preparation of amino-substituted aromatic hydrocarbons, [p]. DE Patent 19634110A1, 1998-2-26.
    [50] Poojary D., Borade R., Hagemeyer A., Dube C., Zhou Z. P., Nothels U., Armbrust R., Rasp C., Amination of aromatic hydrocarbons and heterocyclic analogs thereof, [p]. PCT WO 00/69804, 2000-11-23.
    [51] Axon S. A., Jackson S. D., Class P. R. R., Process for the production of aromatic amines, [p]. PCT WO 99/10311, 1999-3-4.
    [52] Stitt H. E., Jackson S. D., Amine production, [p]. PCT WO 00/09473, 2000-2-24.
    [53] Durante V. A., Wijeskera T. P., Oxidative amination of benzene to aniline using molecular oxygen as the terminal oxidant, [p]. US Patent 5861536, 1999-1-19.
    [54] Chen T., Hu C. W., Fu Z. J., Tian A. M., Chin. Sci. Bull. 2002, 47: 1937. 陈彤,胡常伟,付真金,田安民,直接胺化绿色合成芳胺研究新进展,科学通报,2002,47(14):1041.
    [55] 陈彤,付真金,祝良芳,胡常伟,田安民,Ni-Zr-Ce/Al2O3 催化剂上 H2O2 作氧化剂直接使苯氧化胺化一步合成苯胺研究,化学学报,2003,61:1701.
    [56] 夏云生,祝良芳,李桂英,胡常伟,镍-钒催化剂作用下由苯直接氧化氨化合成苯胺,物理化学学报,2005,21:1337.
    [57] Minisci F., Novel Application of Free-Radical Reactions in preparative Organic Chemistry, Synthesis, 1973, 1–25.
    [58] Diversi P., Ermini L., Ingrosso G., Lucherini A., Pinzino C., Sagramora L., The reaction of benzene with diethylamine in the presence of an iridium (I)/mercury (II) based system: a model route for the direct amination of aromatic hydrocarbons, J. Organomet. Chem. 1995, 494, C1–C3.
    [59] Coulson D. R., Amination of aromatic compounds in liquid hydrogen fluoride, US Pat. 3 832 364, 1974-8-27.
    [60] Biernacki W., Ann. Soc. Chim. Pol. 1971, 45: 1683.
    [61] Biernacki W., Ann. Soc. Chim. Pol. 1972, 46: 623.
    [62] Biernacki W., Ann. Soc. Chim. Pol. 1973, 47: 963.
    [63] Minisci F., Stolfi M., Frigerio S., Belg. Pat. 853 667, 1977-4-15.
    [64] Kuznetsova N. I., Kuznetsova L. I., Detusheva L. G., Likholobov V. A., Pez G. P., Cheng H., Amination of benzene and toluene with hydroxylamine in the presence of transition metal redox catalysts, J. Mol. Catal. A 2000, 161: 1.
    [65] Anastas P. T., Warner J. C., Green Chemistry: Theory and Practice, New York: Oxford university press, 1998: 29-57.
    [66] Anastas, P. T.; Bartlett, L. B., Kirchhoff, M. M.; Williamson, T. C., The role of catalysis in the design, development, and implementation of green chemistry, Catal. Today 2000, 55: 11.
     [67] Mantegazza M. A., Leofanti G., Petrini G., Padovan M., Zeccina A., Bordiga S., in: Corberan V.C., Bellon S. V. (Eds.), New Developments in Selective Oxidation, 1993, p. 51, G.E.C.
    [1] Schmerling L., Preparation of aromatic amines, [p]. US 2948755, 1960-8-9.
    [2] Squire E. N., Mills G., Synthesis of aromatic amines by reaction of aromatic compounds with ammonia, [p]. US 3919155, 1975-11-11; [p]. US 3929889, 1975-12-30.
    [3] Delpesco T. W., Del W., Synthesis of aromatic amines by reaction of aromatic compounds with ammonia, [p]. US 4031106, 1977-6-21.
    [4] Hara K., Amination and cyanation of aromatic compounds, [p]. JP 06/293715, 1994-10-21.
    [5] Hagemeyer A., Borade R., Desrosiers P., Guan S., Lowe D. M., Poojary D. M., Turner H., Weinberg H., Zhou X. P., Armbrust R., Fengler G., Notheis U., Application of combinatorial catalysis for the direct amination of benzene to aniline, Appl. Catal. A 2002, 227: 43.
    [6] Desrosiers P., Guan S. H., Hagemeyer A., Lowe D. M., Lugmair C., Poojary D. M., Turner H., Weinberg H., Zhou X. P., Armbrust R., Fengler G., Notheis U., Application of combinatorial catalysis for the direct amination of benzene to aniline, Catal. Today 2003, 81: 319-328.
    [7] Becker J., H?lderich W. F., Amination of benzene in the presence of ammonia using a groupⅧ metal supported on a carrier as catalyst, Catal. Lett. 1998, 54: 125.
    [8] Hǒlderich W., Becker J., Preparation of amino-substituted aromatic hydrocarbons, [p]. DE 19634110A1, 1998-2-26.
    [9] Poojary D., Borade R., Hagemeyer A., Dube C., Zhou Z. P., Nothels U., Armbrust R., Rasp C., Amination of aromatic hydrocarbons and heterocyclic analogs thereof, [p]. PCT WO 00/69804, 2000-11-23.
    [10] Axon S. A., Jackson S. D., Class P. R. R., Process for the production of aromatic amines, [p]. PCT WO 99/10311, 1999-3-4.
    [11] Stitt H. E., Jackson S. D., Amine production, [p]. PCT WO 00/09473, 2000-2-24.
    [12] Durante V. A., Wijeskera T. P., Oxidative amination of benzene to aniline using molecular oxygen as the terminal oxidant, [p]. US 5861536, 1999-1-19.
    [13] 陈彤,胡常伟,付真金,田安民,直接胺化绿色合成芳胺研究新进展,科学通报,2002,47(14):1041.
    [14] 陈彤,付真金,祝良芳,胡常伟,田安民,Ni-Zr-Ce/Al2O3 催化剂上 H2O2 作氧化剂直接使苯氧化胺化一步合成苯胺研究,化学学报,2003,61:1701.
    [15] 夏云生,祝良芳,李桂英,胡常伟,镍-钒催化剂作用下由苯直接氧化氨化合成苯胺,物理化学学报,2005,21:1337.
    [16] Ferdous D., Dalai A. K., Adjaye J., A series of NiMo/Al2O3 catalysts containing boron and phosphorous Part I Synthesis and characterization, Appl. Catal. A 2004, 260: 137.
    [17] Harlin M. E., Backman L. B., Krause A. O. I., Jylh? O. J. T., Activity of Molybdenum Oxide Catalyst in the Dehydrogenation of n-Butane, J. Catal. 1999, 183: 300.
    [18] Chu Y., Wei Z., Yang S., Li C., Xin Q., Min E., NiMoNx/γ-Al2O3 catalyst for HDN of pyridine, Appl. Catal. A 1999, 176: 17.
    [19] Grange P., Catal. Rev. Sci. Eng. 1980, 21: 135.
    [20] Olorunyolemi J., Kydd R., Gallium–Aluminum Mixed Oxides as Supports for Ni–Mo Catalysts: Characterization and Reactivity for Cumene Cracking and Thiophene HDS Reactions, J. Catal. 1996, 158: 583.
    [21] Xiao T., SuhartantoT., York A. P. E., Sloan J., Green M. L. H., Effect of molybdenum additives on the performance of supported nickel catalysts for methane dry reforming, Appl.Catal. A 2003, 253: 225.
    [22] Hu C. W., Yao J., Yang H. Q., Chen Y., Tian A. M., On the Inhomogeneity of Low Nickel Loading Methanation Catalyst, J. Catal. 1997, 166: 1.
    [23] Dufresne P., Payen E., Grimblot J., Bonnelle J. P., Study of Ni-Mo-γ-Al2O3 Catalysts by X-ray Photoelectron and Raman Spectroscopy. Comparison with Co-Mo-γ-Al2O3 Catalysts. J. Phys. Chem. 1981, 85: 2344.
    [24] Zieliński J., Morphology of nickel/alumina catalysts, J. Catal. 1982, 76: 157.
    [25] Cordero R. L., Agudo A. L., Effect of water extraction on the surface properties of Mo/Al2O3 and NiMo/Al2O3 hydrotreating catalysts, Appl. Catal. A 2000, 202: 23.
    [26] Borowiecki T., Gac W., Denis A., Effect of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons III. Reduction of Ni-Mo/Al2O3 catalysts, Appl. Catal. A 2004, 270: 27.
    [27] Cordero R. L., G. Llambías F. J., Agudo A. L., Temperature-programmed reduction and zeta potential studies of the structure of and MoO3/SiO2 catalysts effect of the impregnation pH and molybdenum loading, Appl. Catal. 1991, 74: 125.
    [28] Park Y. C., Oh E. S., Rhee H. K., Characterization and Catalytic Activity of WniMo/Al2O3 Catalysts for Hydrodenitrogenation of Pyridine, Ind. Eng. Chem. Res. 1997, 36: 5083.
    [29] Robles J. M., Castellón E. R., López A. J., Characterization of Ni, Mo and Ni-Mo catalysts supported on alumina-pillared α-zirconium phosphate and reactivity for the thiophene HDS reaction, J. Mol. Catal. A 1999, 145: 169.
    [30] Qu L., Zhang W., Kooyman P. J., Prins R., MAS NMR, TPR, and TEM studies of the interactions of NiMo with alumina and silica-alumina supports, J. Catal. 2003, 215: 7.
    [1] Mantegazza M. A., Leofanti G., Petrini G., Padovan M., Zeccina A., Bordiga S., in: Corberan V. C., Bellon S. V. (Eds.), New Developments in Selective Oxidation, 1993, p. 51, G.E.C.
    [2] Butler A., Clague M. J., Meister G. E., Vanadium Peroxide Complexes, Chem. Rev. 1994, 94: 625.
    [3] Hata E., Takai T., Yamada T., Mukaiyama T., Chem. Lett. 1994: 1849.
    [4] Shilov A. E., Shul’pin G. B., Chem. Rev. 1997, 97: 2879; G. B. Shul’pin, Metal-catalyzed hydrocarbon oxygenations in solutions: the dramatic role of additives: a review, J. Mol. Catal. A 2002, 189: 39; Shul’pin G. B., lachter E. R., Aerobic hydroxylation of hydrocarbons catalysed by vanadate ion, J. Mol. Catal. A 2003, 197: 65.
    [5] Yamanaka I., Morimoto K., Soma M., Otsuka K., Oxidation of methane and benzene with oxygen catalyzed by reduced vanadium species at 40°C, J. Mol.Catal. A: Chem. 1998, 133: 251.
    [6] Ishida M., Masumoto Y., Hamada R., Nishiyama S., Tsuruya S., Masai M., Liquid-phase oxygenation of benzene over supported vanadium catalysts, J. Chem. Soc., Perkin Trans. 1999, 2: 847.
    [7] Masumoto Y., Hamada R., Yokota K., Nishiyama S., Tsuruya S., Liquid-phase oxidation of benzene to phenol by vanadium catalysts in aqueous solvent with high acetic acid concentration, J. Mol. Catal. A: Chem. 2002, 184: 215.
    [8] Shilov A. E., Shul’pin G. B., Homogeneous catalytic oxidationof hydrocarbons by molecular oxygen (Chapter IX), Homogeneous catalytic oxidation of hydrocarbons by peroxides and other oxygen atom donors (Chapter X), Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Kluwer Academic Publishers, Dordrecht, 2000.
    [9] Aakel L. E., Launay F., Atlamsani A., Brégeault J.-M., Efficient and selective catalytic oxidative cleavage of a-hydroxy ketones using vanadium-based HPA and dioxygen, Chem.Commun. 2001: 2218.
    [10] Maeda Y., Kakiuchi N., Matsumura S., Nishimura T., Uemura S., Oxovanadium complex-catalyzed oxidation of propargylic alcohols using molecular oxygen, Tetrahedron Lett. 2001, 42: 8877.
    [11] Tracey A. S., Crans D. C. (Eds.), Vanadium Compounds: Chemistry, Biochemistry, and Therapeutic Applications, Oxford University Press, New York, 1998.
    [12] Rehder D., The coordination chemistry of vanadium as related to its biological functions, Coord. Chem. Rev. 1999, 182: 297.
    [13] Baran E. J., oxovanadium (IV) and oxovanadium (V) complexes relevant to biologicalsystems, J. Inorg. Biochem. 2000, 80: 1.
    [14] Hirao T., Redox reactions via vanadium-induced electron transfer, J. Inorg. Biochem. 2000, 80: 27.
    [15] Velde F., Arends I. W. C. E., Sheldon R. A., Biocatalytic and biomimetic oxidations with vanadium, J. Inorg.Biochem. 2000, 80: 81.
    [16] Bhattacharyya S., Tracey A. S., Vanadium (V) complexes in enzyme systems: aqueous chemistry, inhibition and molecular modeling in inhibitor design, J. Inorg. Biochem. 2001, 85: 9; Tracey A. S., Hydroxamido vanadates: aqueous chemistry and function in protein tyrosine phosphatases and cell cultures, J. Inorg, Biochem. 2000, 80: 11.
    [17] Thompson K. H., Orvig C., Coordination chemistry of vanadium in metallopharmaceutical candidate compounds, Coord. Chem. Rev. 2001, 219–221: 1033.
    [18] Kuznetsova N. I., Kuznetsova L. I., Detusheva L. G., Likholobov V. A., Pez G. P., Cheng H., Amination of benzene and toluene with hydroxylamine in the presence of transition metal redox catalysts, J. Mol. Catal. A 2000, 161: 1.
    [19] Becke A. D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98: 5648.
    [20] Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron densit, Phys. Rev. B 1998, 37: 785.
    [21] Miehlich B., Savin A., Stoll H., Preuss H., Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr, Chem. Phys. Lett. 1989, 157: 200.
    [22] Schaefer A., Horn H., Ahlrichs R., Fully optimized contracted Gaussian basis sets for atoms Li to Kr, J. Chem. Phys. 1992, 97: 2571.
    [23] Schaefer A., Huber C., Ahlrichs R., Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, J. Chem. Phys. 1994, 100: 5829.
    [24] Cancès M. T., Mennucci B., Tomasi J., A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, J. Chem. Phys. 1997, 107: 3032.
    [25] Cossi M., Barone V., Mennucci B., Tomasi J., Ab initio study of ionic solutions by a polarizable continuum dielectric model, Chem. Phys. Lett. 1998, 286: 253.
    [26] Cossi M., Scalmani G., Rega N., Barone V., New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution, J. Chem. Phys. 2002, 117: 43.
    [27] Adamo C., Scuseria G. E., Barone V., Accurate excitation energies from time-dependent density functional theory: Assessing the PBE0 model, J. Chem. Phys. 1999, 111: 2889.
    [28] Gorelsky S. I., SWizard, Department of Chemistry, York University: Toronto, ON, 1999; http://www.sg-chem.net.
    [29] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., et al., Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003.
    [30] Citterio A., Gentile A., Minisci F., Navaovini V., Sevralle M., Ventura S., Polar effects in free radical reactions. Homolytic aromatic amination by the amino radical cation,·+NH3: reactivity and selectivity, J. Org. Chem. 1984, 49: 4479.
    [31] Jia J., Pillai K. S., Sachtler W. M. H., One-step oxidation of benzene to phenol with nitrous oxide over Fe/MFI catalysts, J. Catal. 2004, 221: 119.
    [32] Panov G. I., Uriatre A. K., Rodkin M. A., Sobolev V. I., Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites, Catal. Today 1998, 41: 365.
    [33] Dubkov K. A., Ovanesyan N. S., Shteinman A. A., Starokov E. V., Panov G. I., Evolution of Iron States and Formation of α-Sites upon Activation of FeZSM-5 Zeolites, J. Catal. 2001, 207: 341.
    [34] Centi G., Perathoner S., Arrigo R., et al., Characterization and reactivity of Fe-[Al,B]MFI catalysts for benzene hydroxylation with N2O, Appl. Catal A-Gen. 2006, 307 (1): 30.
    [35] Motz J. L., Heinichen H., H?lderich W. F, Direct hydroxylation of aromatics to their corresponding phenols catalysed by H-[Al]ZSM-5 zeolite, J. Mol. Catal. A 1998, 136:175.
    [36] Yuranov I, Bulushev, D. A., Renken A., et al., Benzene hydroxylation over FeZSM-5 catalysts: which Fe sites are active? J. Catal. 2004, 227 (1): 138.
    [37] Hiemer, U, Klemm, E, Scheffler, F, et al., Microreaction engineering studies of the hydroxylation of benzene with nitrous oxide, Chem. Eng. J. 2004, 101 (1-3): 17.
    [38] Pillai, K. S., Jia, J. F., Sachtler, W. M. H., Effect of steaming on one-step oxidation of benzene to phenol with nitrous oxide over Fe/MFI catalysts, Appl. Catal. A-Gen. 2004, 264 (2): 133.
    [39] Centi G., Genovese C., Giordano G., et al., Performance of Fe-BEA catalysts for the selective hydroxylation of benzene with N2O, Catal. Today 2004, 91-2: 17.
    [40] Kachurovskaya N. A., Computational study of benzene-to-phenol oxidation catalyzed by N2O on iron-exchanged ferrierite, J Phys. Chem. B 2004, 108 (19): 5944.
    [41] F. Minisci, Novel Application of Free-Radical Reactions in preparative Organic Chemistry, Synthesis, 1973: 1–25.
    [42] Diversi P., Ermini L., Ingrosso G., Lucherini A., Pinzino C., Sagramora L., The reaction of benzene with diethylamine in the presence of an iridium(I)/mercury(II) based system: a model route for the direct amination of aromatic hydrocarbons, J. Organomet. Chem. 1995, 494, C1–C3.
    [43] Coulson D. R., Amination of aromatic compounds in liquid hydrogen fluoride, US Pat. 3 832 364, 1974-8-27.
    [44] Biernacki W., Ann. Soc. Chim. Pol. 1971, 45, 1683.
    [45] Biernacki W., Ann. Soc. Chim. Pol. 1972, 46, 623.
    [46] Biernacki W., Ann. Soc. Chim. Pol. 1973, 47, 963.
    [47] Sahbari J. J., Russell J. W., Method of manufacturing high purity oximes from aqueous hydroxylamine and ketones, [p] US Patent 6 235 935 B1, 2001-5-22.
    [48] Saraf S. R., Rogers W. J., Ford D. M., Mannan M. S, Integrating molecular modeling and process safety research, Fluid Phase Equilibria 2004, 222–223: 205.
    [49] Iwata Y., Koseki H., Hosoya F., Study on decomposition of hydroxylamine/water solution, Journal of Loss Prevention in the Process Industries 2003, 16: 41.
    [50] Cisneros L. O., Rogers W. J., Mannan M. S., Comparison of the thermal decomposition behavior for members of the hydroxylamine family, Thermochimica Acta 2004, 414: 177.
    [51] Wei C., Saraf S. R., Rogers W. J., Mannan M. S., Thermal runway reaction hazards and mechanisms of hydroxlamine with acid/base contaminants, Thermochimica Acta 2004, 421: 1.
    [52] Angus-Dunne S. J., Paul P. C., Tracey A. S., A 51V NMR investigation of the interactions ofaqueous vanadate with hydroxylamine, Can. J. Chem. 1997, 75: 1002.
    [53] Iwata Y., Koseki H., Decomposition of hydroxylamine/water solution with added iron ion, J. Hazard. Mater. 2003, 104: 39.
    [54] Cisneros L. O., Rogers W. J., Mannan M. S., Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water, J. Hazard. Mater. 2001, 82: 1.
    [55] Howarth O. W., Vanadium-51 NMR, Prog. Nucl. Magn. Reson. Spectrosc. 1990, 22: 453.
    [56] Crans D. C., Schelble S. M., Theisen L. A., Substituent effects in organic vanadate esters in imidazole-buffered aqueous solutions, J. Org. Chem. 1991, 56: 1266.
    [57] Tracey A. S., Gresser M., Vanadium (V) oxyanions: interactions of vanadate with 1,1,1-tris(hydroxymethyl)ethane and with the buffer tris(hydroxymethyl)aminomethane, Inorg. Chem. 1988, 27: 1269.
    [58] Chen Z., Cai S. H., Ye J. L., Huang P. Q., Zheng F. Q., Huang J. S., NMR studies on [VS4–Cun] (n=3, 4, 5, 6) clusters, Polyhedron 1999, 18: 1339.
    [59] Pribsch W., Rehder D., Preparation and vanadium-51 NMR characteristics of oxovanadium (V) compounds. Relation between metal shielding and ligand electronegativity, Inorg. Chem. 1985, 24: 3058.
    [60] Rehder D., Weidemann C., Duch A., Priebsch W., Vanadium-51 shielding in vanadium (V) complexes: a reference scale for vanadium binding sites in biomolecules, Inorg. Chem. 1988, 27: 584.
    [61] Cornman, C. R.; Stauffer, T. C.; Boyle, P. D., Oxidation of a Vanadium (V)-Dithiolate Complex to a Vanadium (V)- 2, 2-Disulfenate Complex, J. Am. Chem. Soc. 1997, 119(25): 5986.
    [62] Stephen E. D., Michael T. P., Application of Vanadium-51 and Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy to the Study of Iso- and hetero-polyvanadates, J.C.S. Dalton 1976: 2290.
    [63] Harrison A. T., Howarth O. W., High-field Vanadium-51 and Oxygen-17 Nuclear Magnetic Resonance Study of Peroxovanadates (v), J. Chem. Soc. Dalton Trans. 1985: 1173.
    [64] Saladino A. C., Larsen S. C., DFT calculations of EPR parameters of transition metal complexes: Implications for catalysis, Catalysis Today 2005, 105: 122.
    [65] Nizova G. V., Fink G. S., Stanislas S., Shul’pin G. B, Carboxylation of methane with CO orCO2 in aqueous solution catalyzed by vanadium complexes, Chem. Commun. 1998: 1885.
    [66] Castro M. M. C. A., Avecilla F., Geraldes C. F. G. C., Casreo B., Rangel M., Study of the oxidation products of the VO(dmpp)2 complex in aqueous solution under aerobic conditions: comparison with the vanadate–dmpp system, Inorg. Chim. Acta 2003, 356: 142.
    [67] Castro M. M. C. A., Avecilla F., Geraldes C. F. G. C., Castro B. Rangel M., Study of the oxidation products of the VO(dmpp)2 complex in aqueous solution under aerobic conditions: comparison with the vanadate–dmpp system, Inorg. Chim. Acta 2003, 356: 142.
    [68] Kuska H. A., Rogers M. T., in: Kaiser E. T., Kevan L. (Eds.), Electron Spin Resonance of First Tansition Metal Complexes Ions, Intersience, New York, 1968, pp. 219.
    [69] 黄君礼,鲍治宇,紫外吸收光谱法及其应用. 北京:中国科学技术出版社,1992:15.
    [70] 于剑峰,吴通好,郑莹光,孙家钟,苯酚过氧化氢羟基化过程的 UV–VIS 及 ESR 谱研究.化工科技,1998,6(1):33–38.
    [71] Lever A. B. P., Inorganic Electronic Spectroscopy (second edition), Elsevier: Amsterdam, 1984.
    [72] Centi G., Perathoner S., Trifiro F., Aboukais A., Aissi C. F., Guelton M., Physicochemical characterization of V-silicalite, J. Phys. Chem. 1992, 96: 2617.
    [73] Dutoit D. C. M., Schneider M., Fabrizioli P., Baiker A., Vanadia-Silica Low-Temperature Aerogels: Influence of Aging and Vanadia Loading on Structural and Chemical Properties, Chem. Mater. 1996, 8: 734.
    [74] Yu T. H., Hu C. W., Wang X. Q., Direct amination of toluene with hydroxylamine in the presence of vanadium-based catalysts, Chem.Lett. 2005, 34: 406.
    [1] Wagner C. D., Davis L. E., Riggs W. M., The energy dependence of the electron mean free path, Surf. Interface Anal. 1986, 2: 53.
    [2] Andersson A., Bovin J. O., Walter P., Ammoxidation of 3-picoline: An activity and high resolution electron microscopic investigation of vanadium oxide catalysts [J]. J. Catal. 1986, 98(1): 204.
    [3] Nag N. K., Massoth F. E., ESCA and gravimetric reduction studies on V/Al2O3 and V/SiO2 catalysts [J]. J. Catal. 1990, 124(1): 127.
    [4] Kuznetsova N. I., Kuznetsova L. I., Detusheva L. G., Likholobov V. A., Pez G. P., Cheng H., Amination of benzene and toluene with hydroxylamine in the presence of transition metal redox catalysts, J. Mol. Catal. A 2000, 161: 1.
    [5] Yu T. H., Hu C. W., Wang X. Q., Direct amination of toluene with hydroxylamine in the presence of vanadium-based catalysts, Chem.Lett. 2005, 34: 406.
    [6] Delichere P., Bere K. E., Abon M., Vanadyl pyrophosphate catalysts: Surface analysis by XPS and LEIS, Appl. Catal. A: Gen. 1998, 172: 295.
    [7] Moulder J. F., Stickle W. F., Sobol P. E., Bomben K. D., in: Chastain J., King R. C., Jr. (Eds.), Handbook of X-Ray Photoelectron Spectroscopy, Phys. Electronics Inc., Eden Prairie, USA, 1995.
    [8]Niwa Y., Kobayashi H., Tsuchiya T., X-ray photoelectron spectroscopy of tetraphenylporphinand phthalocyanine, J. Chem. Phys. 1974, 60 (3): 799.
    [9] Abon M., Bere K. E., Tuel A., Delichere P., Evolution of a VPO Catalyst in n-Butane Oxidation Reaction During the Activation Time, J. Catal. 1995, 156: 28.
    [10] Casalettoa M. P., Mattognob G., Massucci M. A., Alumina–supported vanadyl phosphates catalysts for the oxidative dehydrogenation of ethane: an XPS characterization, Applied Surface Science 2003, 211: 216.
    [11] Kondratenko E. V., Baerns M., Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O–the role of vanadia distribution and oxidant activation, Appl. Catal. A 2001, 222: 133.
    [12] Centeno M. A., mallet P., Carrizosa I., Odriozola J. A., Lanthanide Doped V2O5/Al2O3 Catalysts: structure–Activity relationship in the SCR of NOx, J. Phys. Chem. B 2000, 104: 3310.
    [13] Lischke G., Hanke W., Jerchkewitz H.-G., Olmann G., Investigations of catalytically active surface compounds: XVII. Influence of size and structure of vanadium oxide clusters on selectivity in the oxidation of n-butene, J. Catal. 1985, 91: 54.
    [14] Corma A., Lopez Nieto J. M., Paredes N., Preparation of V-Mg-O catalysts: nature of active species precursors, Appl. Catal. A 1993, 104: 161.
    [15] Schraml-Marth M., Wolaun A., Pohl M., Krauss H. L., Spectroscopic Investigation of the Structure of Silica-supported Vanadium Oxide Catalysts at Submonolayer Coverages, J. Chem. Soc. Faraday Trans. 1991, 87(16): 2635.
    [16] Centi G., Perathoner S., Trifiro F., Aboukais A., Aissi C. F., Guelton M., Physicochemical characterization of V-silicalite, J. Phys. Chem. 1992, 96: 2617.
    [17] Pantazidis A., Burrows A., Kiely C. J., Mirodatos C., Direct evidence of active surface reconstruction during oxidative dehydrogenation of propane over VMgO catalyst, J. Catal. 1998, 177: 325.
    [18] Shiju N. R., Anikumar M., Mirajkar S. P., Gopinath C. S., Rao B. S., Satyanarayana C. V., Oxidative dehydrogenation of ethylbenzene over vanadia-alumina catalysts in the presence of nitrous oxide: structure-activity relationship, J. Catal. 2005, 230: 484.
    [19] Lever A. B. P., Inorganic Electronic Spectroscopy (second edition), Elsevier: Amsterdam, 1984.
    [20] George J., Shylesh S., Singh A. P., Vanadium-containing ordered mesoporous silicas:Synthesis, characterization and catalytic activity in the hydroxylation of biphenyl, Appl. Catal. A. Gen. 2005, 290: 148.
    [21] Dutoit, D. C. M., Schneider, M., Fabrizioli, P., Baiker, A., Vanadia-Silica Low-Temperature Aerogels: Influence of Aging and Vanadia Loading on Structural and Chemical Properties, Chem. Mater. 1996, 8: 734.
    [22] Eon J. G., Olier R., Volta J. C., Oxidative Dehydrogenation of Propane on γ–Al2O3 Supported Vanadium Oxides, J. Catal. 1994, 145: 318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700