原位生长晶须增韧氧化铝陶瓷刀具及切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的SiC晶须增韧氧化铝陶瓷刀具在高速切削时,其中的SiC晶须易与淬硬钢产生化学反应,而且SiC与氧化铝间的热膨胀失配较严重;同时在制备晶须增韧陶瓷刀具时,存在晶须分散困难、制备成本高和危害人体健康等问题,因此本文采用原位合成复相粉末,研制成功了原位生长TiC晶须增韧氧化铝陶瓷刀具材料,系统研究了碳热还原法中TiC晶须的生长机理、原位生长TiC晶须增韧氧化铝陶瓷刀具材料复相粉末制备工艺及机理、热压烧结工艺、力学性能、显微结构、增韧机理、切削性能及刀具磨损机理。
     研究了碳热还原法中TiC晶须的生长机理,提出了熔滴表面输运机制和SLLS晶须生长机理,研究了SLLS晶须生长机理中的晶须生长方式和影响晶须产量与长径比的主要因素。结果表明,在碳热还原法生长TiC晶须的过程中,Ni熔滴是引导晶须生长的触媒相,NaCl熔滴是传质相,NaCl熔滴通过对反应物颗粒和Ni熔滴的粘附及NaCl熔滴自身的蒸发,不断向Ni熔滴输运反应物颗粒,维持晶须的连续生长。在SLLS晶须生长机理中,存在着反应生长、熟化生长和连接生长三种晶须生长方式。采用搅拌混料方式、添加足以粘附所有原材料颗粒的传质相、提高触媒相的含量、提高升温速度以及根据传质相的蒸发速度和触媒相对原材料颗粒的溶解速度控制生长容器内外的气氛交换速度等,都能够提高晶须产量。调节触媒相与传质相在含量上的配比则可以改变晶须的长径比。SLLS机理采用触媒液滴引导从固相原材料中生长晶须,因此不仅具有VLS机理适合大部分晶须生长并对晶须生长状态具有较好可控性的优点,而且具有SLS机理适合于规模化生产的优点,是继VLS机理后又一种重要的晶须生长机理。
     研究了原位生长TiC晶须增韧氧化铝陶瓷刀具材料复相粉末的制备工艺和机理。结果表明,碳热还原法是制备复相粉末的理想工艺,氧化铝基体与TiC晶须前驱体粉料之间具有良好的化学相容性。湿磨混料可使晶须在基体粉末中分散生长,最佳生长温度是1480℃。当碳含量为标准化学计量比的97%左右时,刀具材料具有较好的综合力学性能。采用高温区保温的晶须生长工艺有利于提高化合碳含量,降低游离碳含量,提高刀具材料的力学性能,因此最佳的晶须生长工艺是二步保温法,即在1480℃左右保温60min,然后继续在1700℃左右保温30min。Ni和NaCl的最佳含量(摩尔比)为TiO_2∶Ni∶NaCl=1∶0.05∶0.5。振实装料和氧化铝相变可以抑制基体晶粒长大和团聚,改善刀具材料的力学性能。
     研制成功了原位生长TiC晶须增韧氧化铝陶瓷刀具材料ATW30。在理想的烧结工艺下,ATW30的抗弯强度可达800MPa,断裂韧度可达7.63MPa·m~(1/2),硬度可达19.5GPa。提出将陶瓷刀具材料中晶须与基体间的界面结合强度划分为热力学结合强度和机械结合强度两类,由于在足够高的烧结温度下才能形成晶须与基体间较高的界面热力学结合强度,因此在以热力学结合强度为主的晶须增韧陶瓷刀具材料ATW30中,只有达到一定的烧结温度,才能够保证刀具材料具有较高的断裂韧度。在原位生长晶须增韧陶瓷刀具材料中发现了大量晶内型晶须,并在包裹晶内型晶须周围的基体晶粒中发现了位错群。大量晶内型晶须及位错群有利于提高刀具材料的致密度和力学性能。
     建立了反映了断裂韧度和裂纹扩展面积实效比、弹性模量及断裂表面能之间关系的裂纹扩展面积实效比增韧模型。结果表明,影响刀具材料ATW30弹性模量和断裂表面能的主要因素是材料组分。晶须-基体界面的剥离和沿晶断裂均能提高刀具材料ATW30的裂纹扩展面积实效比和断裂韧度。采用实效比增韧模型预测了陶瓷刀具材料ATW30的断裂韧度,其预测值(8.85MPa·m~(1/2))与实测值(7.63MPa·m~(1/2))基本吻合,证明了该模型的正确性。裂纹扩展面积实效比增韧模型不涉及刀具材料的具体增韧机理,具有更广泛的普适性,对研制新型陶瓷刀具材料具有重要的理论指导意义。
     研究了陶瓷刀具材料ATW30切削淬硬40Cr、45~#钢和T10A时的切削性能和刀具磨损机理,并与陶瓷刀具SG4进行了对比。结果表明,ATW30的抗磨损能力明显优于SG4。ATW30在低速切削淬硬40Cr时的抗磨损能力优于高速切削,其中低速切削时的主要磨损机理是磨粒磨损,高速切削时的主要磨损机理是磨粒磨损和粘结磨损。ATW30在高速切削淬硬45~#钢和T10A时的抗磨损能力优于低速切削,主要磨损机理是磨粒磨损,这表明ATW30与45~#钢及T10A的亲和力较小,具有良好的化学稳定性。
SiC whiskers are generally used in whisker toughening Al_2O_3 ceramic tool materials. However, the compound SiC can react with the element Fe when machining hardened steels in high cutting speed and its thermal expansion coefficient is too low to be an ideal toughening additive to the Al_2O_3. Moreover, the application of whisker in ceramic tool materials is still limited by such disadvantages as difficult dispersion, a high cost, healthy hazard, etc. Therefore, a TiC whisker toughening Al_2O_3 matrix ceramic tool material is successfully fabricated by an in situ growth technology. The growth mechanisms of TiC whisker, the fabrication for mixture powder of in situ growth whisker toughening Al_2O_3 matrix ceramic tool material, as well as the fabrication, mechanical properties, microstructure, toughening mechanisms, cutting performance and tool wear mechanisms of the in situ growth whisker toughening Al_2O_3 matrix ceramic tool are investigated.
     The growth mechanisms of TiC whisker synthesized by a carbothermal reduction technology are investigated. A flux globe surface transport mechanism and a SLLS (solid-liquid-liquid-solid) whisker growth mechanism are proposed. The growth patterns and the factors affecting the yield and aspect ratio of the whisker in the SLLS mechanism are investigated. It is shown that the Ni is the accelerant phase to induce the growth of TiC whiskers and the NaCl is the transport phase in the carbothermal reduction technology. Based on the surface wettability and evaporation of NaCl flux globes, the raw materials can be transported as solid particles directly to the Ni droplet to sustain the growth of TiC whiskers. There are three whisker growth patterns in the SLLS mechanism such as reaction, Ostwald ripening and coalescence growth. The yield of whiskers in the SLLS mechanism can increase by the means of mixing the raw materials in a blender, increasing the transport phase content to adhere the majority of raw material particles, increasing the accelerant phase content, elevating the heating rate and adjusting the exchanging rate of the protective atmosphere between inside and outside of the reaction container according to the evaporating rate of the transport phase and the dissolving rate of the accelerant phase to raw material particles. The aspect ratio of whiskers can be controlled by such a method as to adjust the content ratio of the accelerant phase to the transport phase in the precursor. Because that the growth of whiskers is reduced by accelerant droplets from solid raw materials, the SLLS mechanism has the advantages of both the VLS mechanism and the SLS mechanism such as wide application in growth of varied whiskers, controllable growth state and commercial foreground, will be an important whisker growth mechanism just as the VLS mechanism.
     The fabrication for mixture powder of in situ growth TiC whisker toughening Al_2O_3 matrix ceramic tool material is investigated. The results show that the carbothermal reduction technology can be used to prepare the mixture powder, the chemical compatibility between the Al_2O_3 matrix and the precursor for TiC whiskers is ideal. Ball milling in ethonal medium can be used to prepare the precursor to synthesize homogeneou mixture powder in which the TiC whiskers is well dispersed. The ideal growth temperature for TiC whiskers in Al_2O_3 matrix powder is 1480℃. The mechanical properties of the Al_2O_3 ceramic tool material toughened by in situ growth of TiC whiskers can be improved when the carbon content in the precursor decreases to be 97% of the stoichiometric content. Synthesizing at a higher temperature can decrease the element carbon content in the mixture powder by increasing the compound carbon content in the TiC whiskers, which can also improve the mechanical properties of the tool material, therefore the ideal fabrication technology of the mixture powder is to be firstly heated to 1480℃and held for 60min duration, subsequently heated to 1700℃and held for 30min duration. The ideal content (molar ratio) of Ni and NaCl in the precursor is that TiO_2:Ni:NaCl=1:0.05:0.5. A vibration operation to full the precursor powder into react container and the phase transformation fromγ-Al_2O_3 toα-Al_2O_3 can both be used to control the growth and aggregation of the Al_2O_3 matrix grains, improve the mechanical properties of the ceramic tool material.
     An in situ growth TiC whisker toughening Al_2O_3 ceramic tool material ATW30 is successfully fabricated. The flexure strength, fracture toughness and Vickers hardness of ATW30 are 800MPa, 7.63MPa·m~(1/2) and 19.5GPa, respectively. A new concept is suggested that the interface bonding strength of whisker-matrix can be divided into two kinds such as the thermal bonding strength and the mechanical bonding strength. The fracture toughness of ATW30 can be improved by fabrication at a higher temperature because that the whisker-matrix interface bonding strength in ATW30 is mainly formed by the thermal bonding strength that can be strengthened at a higher temperature. Large amount of intragranular TiC whiskers and dislocation configuration are observed in ATW30, which can improve the density and mechanical properties of the material.
     The model for the ratio of practical area to effective area of crack propagation is established in which the relationship among the ratio of practical area to effective area of crack propagation, elastic modulus, fracture surface energy and fracture toughness is investigated. The results show that the main factor affecting the elastic modulus and fracture surface energy of ATW30 is the composition. The ratio of practical area to effective area of crack propagation of ATW30 is increased by the intergranular fracture and the debond on the whisker-matrix interface. The verification of the model on the ceramic tool material ATW30 shows that the calculated fracture toughness value (8.85MPa·m~(1/2)) is in consistent with the measured value (7.63MPa·m~(1/2)). Because that the concrete toughening mechanism need not to be related, the model has more universal applicability and important theoretical guidance significance to the study on advanced ceramic tool materials.
    The cutting performance and tool wear mechanisms of the ceramic tool material ATW30 when machining hardened steels such as 40Cr, 45~# and T10A are investigated and compared to the ceramic tool material SG4. The results show that the wear resistance ability of ATW30 is superior to SG4. The wear resistance ability of ATW30 when machining hardened 40Cr in low cutting speed is superior to that in high cutting speed. The main wear mechanism is abrasive wear in low cutting speed whereas abrasive wear and adhesive wear in high cutting speed. The wear resistance ability of ATW30 when machining hardened 45~# and T10A in high cutting speed is superior to that in low cutting speed. The wear mechanism is abrasive wear, indicating that the ceramic tool material ATW30 has excellent chemical stability and very low affinity when machining such hardened steels as 45~# and T10A.
引文
1 徐政,倪宏伟。现代功能陶瓷材料。北京:国防工业出版社,1998
    2 苏毅,李国斌,黄云祥。精细陶瓷的特性、应用及发展。云南冶金,1998,6(3):35-39
    3 陆辟疆等。精细化工工艺。北京:化学工业出版社,1996
    4 张长瑞,郝元恺。陶瓷基复合材料—原理、工艺、性能与设计。长沙:国防科技大学出版社,2001
    5 张宏泉,杨中民等。SiC 晶须晶板增韧 AIN 陶瓷的研究。陶瓷学报,1998(2):68-72
    6 S. A. Baldacim, C. A. A. Cairo, C. R. M. Silva. Mechanical properties of ceramic composites. Journal of Materials Processing Technology. 2001, 119: 273-276
    7 B. F. Sorensen, J. W. Holmes, E. L. Vanswijgenhoven. Rate of strength decrease of fiber-reinforced ceramic-matrix composites during fatigue. J. Am. Ceram. Soc. 2000, 83(6): 1469-1475
    8 X. Q. You, T. Z. Si, N. Liu, P. P. Ren, Y. D. Xu, J. P. Feng. Effect of grain size on the thermal shock resistance of Al_2O_3-TiC Ceramics. Ceramics International. 2005, 31: 33-38
    9 Z. S. Rak, J. Czechowski. Manufacture and properties of Al_2O_3-TiN particulate composites. J. Eur. Ceram. Soc. 1998, 18: 373-380
    10 L. S. Abovyan, H. H. Nersisyan, S. L. Kharatyan, R. Orru, R. Saiu, G. Cao, D. Zedda. Synthesis of alumina-silicon carbide composites by chemically activated self-propagating reactions. Ceramics International. 2001, 27: 163-169
    11 W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, P. S. Kou. Mechanical properties of Al_2O_3/ZrO_2 composites. J. Eur. Ceram. Soc. 2002, 22: 2827-2833
    12 S. J. Tang, A. T. Zehnder. Nickel-alumina interfacial fracture toughness using the thick foil technique. Engineering Fracture Mechanics. 2002, 69: 701-715
    13 Y. Q. Wu, Y. F. Zhang, X. X. Huang, J. K. Guo. Microstructural development and mechanical properties of self-reinforced alumina with CAS addition. J. Eur. Ceram. Soc. 2001, 21: 581-587
    14 金志浩,高积强,乔冠军。工程陶瓷材料。西安:西安交通大学出版社,2000
    15 宋桂明,周玉,雷廷权。晶须和相变复合增韧陶瓷的复合增韧模型。无机材料学报,1998,13 (2):195-200
    16 Y. Q. Fu, Y. W. Gu, H. J. Du. SiC whisker toughened Al_2O_3-(Ti, W)C ceramic matrix composites. Scripta Mater. 2001, 44: 111-116
    17 黄传真,艾兴。新型复相陶瓷刀具材料 JX-2-I 协同增韧补强机理的研究。陶瓷学报,1997 (4):200-204
    18 D. Ostrovoy, N. Orlovskaya, V. Kovylyaev, S. Firstov. Mechanical properties of toughened Al_2O_3-ZrO_2-TiN ceramics. J. Eur. Ceram. Soc. 1998, 18: 381-388
    19 郭景坤。陶瓷的脆性与增韧。硅酸盐学报,1987,10 (5):385-393
    20 张立德,牟季美。纳米材料学。沈阳:辽宁科学出版社。1994
    21 高濂,李蔚。纳米陶瓷。北京:化学工业出版社。2002
    22 K. Niihara. New design concept of structural ceramic-ceramic nanocomposites. J. Ceram. Soc. Jpn. 1991, 99: 974-982
    23 H. Z. Wang, L. Gao, J. K. Guo. The effect of nanoscale SiC particles on the microstructure of Al_2O_3 ceramics. Ceramics International. 2000, 26: 391-396
    24 L. Gao, H. Z. Wang, J. S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, S. D. D. L. Torre. Mechanical properties and microstructure of nano-SiC-Al_2O_3 composite desified by spark plasma sintering. J. Eur. Ceram. Soc. 1999, 19: 609-613
    25 H. L. Liu, C. Z. Huang, J. Wang, B. Q. Liu. Study on the multi-scale nanocomposite ceramic tool material. Key Engineering Materials. 2006, 315-316: 118-122
    26 T. Ohji, Y-K Jeong, Y-H Choa, K. Niihara. Strengthening and toughening mechanism of ceramic nanocomposites. J. Am. Ceram. Soc. 1998, 81(6): 1453-1460
    27 侯耀永,李理,张巨先。Al_2O_3/SiC_(nano) 纳米复合陶瓷材料微结构及强韧化机理研究。电子显微学报。1998,17(2):156-161
    28 M. Sternitzke. Review: Structural ceramic nanocomposites. J. Eur. Ceram. Soc. 1997, 17: 1061-1082
    29 张国军。颗粒增韧陶瓷的增韧机理。硅酸盐学报。1994,22 (3):259-269
    30 X. Ai, J. Zhao, C. Z. Huang, L. H. Zhang. Development of an advanced ceramic tool material-functionally gradient cutting ceramics. Materials Science and Engineering A. 1998, 248: 125-131
    31 Y. C. Chen, C. Z. Huang, X. Ai, B. Y. Wang. Ceramic-coated carbide tools by sol-gel process. Journal of Materials Science Letters. 2000, 19: 1469-1472
    32 吴义权,张玉峰,郭景坤。原位生长晶须增韧陶瓷基复合材料研究进展。材料导报。2000,14 (12):20-22
    33 P. F. Becher. Microstructure design of toughened ceramics. J. Am. Ceram. Soc. 1991, 74(2): 255-269
    34 邓建新,李兆前,艾兴。晶须增韧陶瓷基复合材料的进展。材料导报。1994(5):72-75
    35 王宝友,崔丽华,黄传真,艾兴。陶瓷刀具的发展与应用。工具技术,2001,35:3-7
    36 邹斌。新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究。山东大学博士学位论文,2003:1-10
    37 肖诗刚。现代刀具材料。重庆:重庆大学出版社,1992
    38 B. Mills. Recent development in cutting tool materials. Journal of Materials Processing Technology. 1996, 56: 16-23
    39 马来鹏,尹衍升。Al_2O_3 基陶瓷刀具及增韧机制。江苏陶瓷。2004,37 (2):9-11
    40 苗赫濯。新型陶瓷刀具的发展与应用。中国有色金属学报。2004,14:237-242
    41 黄传真,孙静,刘大志,刘含莲,邹斌。陶瓷刀具材料的研究现状。组合机床与自动化加工技术。2004 (10):1-3
    42 刘光华。现代材料化学。上海:上海科学技术出版社,2000
    43 黄传真。新型复相陶瓷刀具材料的研制及切削可靠性分析。山东工业大学博士学位论文,1994:1-13,35-36,93-118
    44 L. Mariappan, T. S. Kannan, A. M. Umarji. In situ synthesis of Al_2O_3-ZrO_2-SiCw ceramic matrix composites by carbothermal reduction of nature silicates. Materials Chemistry and Physics. 2002, 75: 284-290
    45 J. X. Deng, X. Ai. Wear behavior and mechanisms of alumina-based ceramic tools in machining of ferrous and non-ferrous alloys. Tribology international. 1997, 30(11): 807-813
    46 E. O. Ezugwu, Z. M. Wang, A. R. Machado. The machinability of nickel-based alloys: a review. Journal of Materials Processing Technology. 1999, 86: 1-16
    47 腾村佑次.Al_2O_3/SiC工具切削性能.粉体粉末冶金.1988,35(8):87~91
    48 G. Brandt, Flank and crater wear mechanisms of Al_2O_3 based cutting tools when machining steel. Wear. 1889, 112: 39-45
    49 许崇海。复相陶瓷刀具材料设计、仿真及其应用研究。山东工业大学博士学位论文,1998:172-197
    50 A. G. Evans. Perspective on the development of high-toughness ceramics. J. Am. Soc. 1990, 73(2): 187-206
    51 黄勇,张宗涛,江作昭。晶须补强陶瓷基复合材料界面研究进展。硅酸盐学报。1996,24 (4):451-458
    52 邓建新,李兆前,艾兴。晶须增韧陶瓷复合材料的界面行为研究。材料导报,1995 (4):67-69
    53 F. Ye, T. C. Lei, Y. Zhou. Interface structure and mechanical properties of Al_2O_3-20vol%SiCw ceramic matrix composite. Materials Science and Engineering A. 2000, 281: 305-309
    54 H. Nakamura, Y. F. Chen, K. Kimure, H. Tateyama, H. Hirosue. The effect of the reaction conditions on the morphology of coating layers of alumina hydrate on silicon carbide whiskers. Power Technology. 2001, 117: 270-278
    55 E. I. Givargizov: pp79 in Current Topics in Materials Science Vol. 1 Edited by E. Kaldis, (North-Holland Publishing Company, Amsterdam, The Netherlands 1978)
    56 刘孝敏。工程材料的微细结构和力学性能。合肥:中国科技大学出版社,2003
    57 徐兆瑜。晶须的研究和应用新进展。化工技术与开发。2005,34 (2):11-17
    58 C. Herring, J. K. Galt. Elastic and Plastic properties of very small metal specimens. Phys. Rew. 1952, 85: 1060-1061
    59 J. G. Lee, I. B. Cutler. Formation of SiC from rice hulls. J. Am. Ceram. Soc. Bull. 1975, 54: 195-198
    60 K. Janghorban, H. R. Tazesh. Effect of catalyst and process parameters on the production of silicon carbide from rice hulls. Ceramics International. 1999, 25: 7-12
    61 (英) 菲利普斯等著,理有亲等译。复合材料的设计基础与应用,第三章。北京:航空工业出版社,1992
    62 L. Sun, J. S. Pan. Fabrication and characteriazation of TiCw/MoSi_2 and SiCw/MoSi_2 composites. Materials Letters. 2002, 53: 63-67
    63 Z. Zhao, M. Johnsson, Z. J. Shen. Microstructure and mechanical properties of titanium carbonitride whisker reinforced β-sialon matrix composites. Materials Research Bulletin. 2002, 37: 1175-1187
    64 E. Laarz, M. Carlsson, B. Vivien, M. Johnsson, M. Nygren, L. Bergstrom. Colloidal processing of Al_2O_3-based composites reinforced with TiN and TiC particulates, whiskers and nanoparticles. J. Eur. Ceram. Soc. 2001, 21: 1027-1035
    65 Y. H. Chen, J. S.. Pan, X. Y. Huang. The effect of deposition temperature on the growth of TiC whiskers by the vapor-liquid-solid mechanism. Journal of Crystal Growth. 1997, 172: 171-174
    66 Y. W. Yuan, J. S. Pan. The effect of vapor phase on the growth of TiC whiskers prepared by chemical vapor deposition. Journal of Grystal Growth. 1998, 193: 585-591
    67 J. S. Pan, R. X. Cao, Y. W. Yuan. A new approach to the mass production of titanium carbide, nitride and carbonitride whiskers by spouted bed chemical vapor deposition. Materials Letters. 2006, 60: 626-629
    68 I. C. Leu, M. H. Hon. Nucleation behavior of silicon carbide whiskers grown by chemical vapor deposition. Journal of Crystal Growth. 2002, 236: 171-175
    69 P. C. Silva, J. L. Figueiredo. Production of SiC and Si_3N_4 whiskers in C+SiO_2 solid mixtures. Materials Chemistry and Physics. 2001, 72: 326-331
    70 周和平,陈浩,吴音,缪卫国,刘希。碳热还原法合成 AlN 晶须及其生长机理。材料研究学报。1998,12 (1):25-30
    71 C. Real, D. Alcala, J. M. Criado. Synthesis of silicon carbide whiskers from carbothermal reduction of silica gel by means of the constant rate thermal analysis (CRTA) method. Solid State Ionics. 1997, 95: 29-32
    72 W. S. Jung, S. K. Ahn. Synthesis of aluminum nitride by a modified carbothermal reduction and nitridation method using basic dicarboxylate Al(Ⅲ) complexes Al(OH)(C_(n+2)H_(2n)O_4)·xH_2O(n=3,6,8). J. Eur. Ceram. Soc. 2001, 21: 79-85
    73 魏钟睛,马培华。溶液系统中的晶须生长机理。盐湖研究。1995,3 (4):57-65
    74 蔡红。晶须的制备。青海大学学报。1995,13 (4):30-34
    75 张洪涛,徐重阳。Sol-gel 法制备纳米碳化硅晶须的研究。电子元件与材料。2000 (6):9-10
    76 H. P. Zhou, H. Chen, Y. C. Liu, Y. Wu. Growth of aluminum nitride whiskers by sublimation-recrystallization method. J. Mater. Sci. 2000, 35: 471-475
    77 K. Takeo, S. Atsuhiko, K. Yasunari. Synthesis of titanium nitride whiskers from hexafluorotitanates (Ⅳ). J. Ceram. Soc. Jpn. 1997, 105: 11-14
    78 陈拥军,李建保,魏强民,翟华嶂。不同形貌 TaCx 晶须的制备及生长机理。材料工程。2002 (10):15-18
    79 赵铭姝,翟玉春。硼酸铝晶须的生长机理。化工冶金。1998,19(4):365-369
    80 袁建君,方琪,刘智恩。晶须的研究进展。材料科学与工程。1996,14 (4):1-7
    81 W. S. Jung, T. J. Lee, B. K. Min. Growth mechanism of aluminum nitride whiskers prepared from (glutarato)(hydroxo)aluminum(Ⅲ) complex. Materials Letters, 2003, 57: 4237-4242
    82 S. Hayashi, M. Sugai, Z. Nakagawa, T. Takei, K. Kawasaki, T. Katsuyama, A. Yasumori, K. Okada. Preparation of CaSiO_3 whiskers from alkali halide fluxes. J. Eur. Ceram. Soc. 2000, 20: 1099-1103
    83 R. S. Wagner, W. C. Ellis. Vapor-Liquid-Solid mechanism of single crystal growth. Appl. Phys. Letters. 1964, 4: 89-90
    84 R. S. Wagner, W. C. Ellis. The Vapor-Liquid-Solid mechanism and its application to silicon. Trans. Met. Soc. AIME. 1965, 233: 1053-1064
    85 尹洪峰,任耘,罗发。复合材料及其应用。西安:陕西科学技术出版社,2003
    86 日本化学会编;董万堂,董绍俊译。无机固态反应。北京:科学出版社,1985
    87 N. Ahlen, M. Johnsson, M. Nygren. Carbothermal synthesis of TiC whiskers via a vapor-liquid-solid growth mechanism. J. Am. Ceram. Soc. 1996, 79(11): 2803-2808
    88 M. Johnsson, M. Nygren. Carbothermal synthesis of TaC whiskers via a vapor-liquid-solid growth mechanism. J. Mater. Res. 1997, 12:2419-2427
    89 N. Ahlen, M. Johnsson, M. Nygren. Synthesis of TiNxC_(1-x) whiskers. Journal of Materials Science Letters. 1999, 18:1071-1074
    90 M. Johnsson. Synthesis of boride, carbide, and carbonitride whiskers. Solid State Ionics. 2004, 172: 365-368
    91 M. Carlsson, P. Alberius-Henning, M. Johnsson. Vapor-liquid-solid growth of TiB_2 whiskers. J. Mater. Sci. 2002, 37:2917-2925
    92 N. Ahlen, M. Johnsson, M. Nygren. Synthesis and characterization of Ta_xTiC_(1-x) and Ta_xTi_(1-x)N_yC_(1-y) whiskers. J. Ear. Ceram. Soc. 1998, 18:1513-1519
    93 M. Carlsson, M. Johnsson, M. Nygren. Synthesis and characterization of Ti_(0.33)Ta_(0.33)Nb_(0.33)C and Ti_(0.33)Ta_(0.33)Nb_(0.33)C_xN_(1-x) whiskers. J. Am. Ceram. Soc. 1999, 82(8): 1969-1976
    94 N. Ahlen, M. Johnsson, A.K. Larsson, B. Sundman. On the carbothermal vapor-liquid-solid (VLS) mechanism for TaC, TiC and Ta_xTi_(1-x)C whisker growth. J. Eur. Ceram. Soc. 2000, 20: 2607-2618
    95 M. Carlsson, F.J. Garcia-Garcia, M. Johnsson. Synthesis and characterization of boron carbide whiskers and thin elongated platelets. Journal of Crystal Growth. 2002, 236: 466-476
    96 R.V. Krishnarao, J. Subrahmanyam, V. Ramakrishna. Synthesis of TiC whiskers through carbothermal reduction of TiO_2. Journal of Materials Synthesis and Processing. 2001, 9(1): 1-9
    97 R.V. Krishnarao, J. Subrahmanyam, M. Yadagiri. Formation of TiN whiskers through carbothermal reduction of TiO_2. J. Mater. Sci. 2002, 37:1693-1699
    98 R.V. Krishnarao, J. Subrahmanyam. Studies on the formation of TiB_2 through carbothermal redution of TiO_2 and B_2O_3. Materials Science and Engineering A. 2003, 362: 145-151
    99 J.B. Li, G.Y. Xu, E.Y. Sun, Y. Huang, P.F. Becher. Synthesis and morphology of Niobium Monocarbide whiskers. J. Am. Ceram. Soc. 1998, 81(6): 1689-1691
    100 [美]耶蒂什·特·夏著,萧明威,单渊复译。气液固反应器设计。北京:烃加工出版社出版,1989
    101 张国军,金宗哲,岳雪梅。材料的原位合成技术。材料导报。1997,11 (1):1-4
    102 张国军,金宗哲。原位合成复相陶瓷概述。材料导报。1996 (2):62-65
    103 穆柏春。原位合成莫来石晶须增强氧化铝基陶瓷。耐火材料,1998,32 (2):70-73
    104 J. G. Xu, B. L. Zhang, G. J. Jiang, W. L. Li, H. R. Zhuang. Synthesis of SiCw/MoSi_2 powder by the "chemical oven" self-propagating combustion method. Ceramics International. 2006, 32: 633-636
    105 L. Mariappan, T. S. Kannan, A. M. Umarji. In situ synthesisof Al_2O_3-ZrO_2-SiCw ceramic matrix composites by carbothermal reduction of natural silicates. Materials Chemistry and Physics. 2002, 75: 284-290
    106 D. Bandyopadhyay, L. C. Pathak, I. Mukherjee, S. K. Das, R. G. Ganguly, P. Ramachandrarao. Fabrication of Al_2O_3-SiCw in situ composite through a new combustion technique. Materials Research Bulletin. 1997, 32(1): 75-82
    107 刘站强,艾兴。高速切削刀具的发展现状。工具技术。35 (2001):3-8
    108 梁玉平。高速切削刀具材料。机械工程材料。1994,10 (5):4-6
    109 邓建新,冯益华,艾兴。高速切削刀具材料的发展、应用及展望。机械制造。2002(1):11-15
    110 苗赫濯,齐龙浩。新型陶瓷刀具在超硬材料加工中的应用。机械工程师。2001,1:20-22
    111 仲维卓,华素坤。晶体生长形态学。北京:科学出版社,1999
    112 张克从,张乐潓。晶体生长科学与技术。北京:科学出版社,1997
    113 金云学,李俊刚。钛合金中TiC晶体的形态及优先生长方向探讨。钛工业进展。2005,22 (3):25-28
    114 D. Strzeciwilk, Z. Wokulski. Preparation of TiC Crystals from high temperature solutions and their characterisation. Cryst. Res. Technol. 1999, 34: 777-784
    115 叶大伦,胡建华。实用无机物热力学数据手册。北京:冶金工业出版社,2001
    116 王国栋。硬质合金生产原理。北京:冶金工业出版社,1988
    117 G. R. Carlow. Ostwald ripening on surfaces when mass conservation is violated: spatial cluster patterns. Physica A. 1997, 239: 65-77
    118 郭庚辰。液相烧结粉末冶金材料。北京:化学工业出版社,2002
    119 胡福增,陈国荣,杜永娟。材料表界面。上海:华东理工大学出版社,2001
    120 顾惕人。表面化学。北京:科学出版社,1994
    121 G. Madras, B.J. McCoy. Transition from nucleation and growth to Ostwald ripening. Chemical Engineering Science. 2002, 57: 3809-3818
    122 白朔,成会明,苏革,魏永良,沈祖洪,周本濂。哑铃形碳化硅晶须生长的机理。2002,16 (2):136-140
    123 申泮文,王积涛。化合物词典。上海:上海辞书出版社,2002
    124 许崇海,黄传真,李兆前,艾兴。含碳添加剂 Al_2O_3基复合材料的增韧机理。无机材料学报。2001,16 (2):255-262
    125 陈元春。粉末表面图陶瓷的硬质合金刀具材料的研制和性能研究。山东大学博士学位论文,2000:98-132
    126 许崇海,丁文亮,黄传真,邓建新,艾兴。基于残余应力增韧机制的陶瓷材料增强相的极限含量模型及应用。应用科学学报。2001,19 (1):73-76
    127 邓建新,艾兴,姜积中。Al_2O_3/SiCw陶瓷刀具材料中晶须最佳含量及其对刀具抗破损性能的影响。山东工业大学学报。1995,25 (3):272-277
    128 邓建新,李兆前,艾兴。Al_2O_3/SiCw陶瓷材料中晶须的极限和最佳含量探讨。硬质合金。1995,12 (2):73-77
    129 艾兴,萧虹。陶瓷刀具切削加工。北京:机械工业出版社,1988
    130 D. S. Mao, X. H. Liu, J. Li, S. Y. Guo, X. B. Zhang, Z. Y. Mao. A fine cobalt-toughened Al_2O_3-TiC ceramic and its wear resistance. J. Mater. Sci. 1998, 33: 5677-5682
    131 X. Q. You, T. Z. Si, N. Liu, P. P. Ren, Y. D. Xu, J. P. Feng. Effect of grain size on thermal shock resistance of Al_2O_3-TiC ceramics. Ceramics International. 2005, 31: 33-38
    132 宋世学,艾兴,赵军,吴齐。Al_2O_3/TiC 纳米复合刀具材料的力学性能与增韧强化机理。机械工程材料。2003,27 (12):35-37
    133 H.Γ.克留乞尼科夫著;申泮文,姚从工译。无机合成手册。北京:高等教 育出版社,1957
    134 李国华,李惠玲,郭梦熊。β-SiC 微粉除碳脱氧的研究。高技术通讯。1997,8:36-40
    135 J. W. Hutchinson. Crack tip shielding by micro-cracking in brittle solids. Acta Metall, 1987, 35(6): 1605-1619
    136 A. G. Evans, K. T. Faber. The crack growth resistance of microcracking brittle materials. J. Am. Ceram, Soc. 1984, 67(4): 255-260
    137 罗序明,母育锋,黄建民,周伟,吕海波。燃烧合成非化学计量碳化钛基金属陶瓷的热处理。中南工业大学学报。1996,27 (6):711-714
    138 T. Sekino, T. Nakajima, S. Ueda, K. Niihara. Reduction and sintering of a nickel-dispersed-alumina composite and its properties. J. Am. Ceram, Soc. 1997, 80(5): 1139-1148
    139 B. H. Kear, J. Colaizzi, W. E. Mayo, S. C. Liao, On the Processing of Nanocrystalline and Nanocomposite Ceramics. Scripta Mater. 2001, 44: 2065-2068
    140 M. Fukuhara, K. Fukazawa, A. Fukawa. Physical properties and cutting performance of silicon nitride ceramic. Wear. 1985, 102: 195-210
    141 刘含莲。多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究。山东大学博士学位论文,2005:16-32
    142 肖汉宁,高朋召。高性能结构陶瓷及其应用。北京:化学工业出版社,2006
    143 L. Gao, H. Z. Wang, H. Kawaoka, T. Sekino, K. Niihara. Fabrication of YAG-SiC nanocomposites by spark plasma sintering. J. Eur. Ceram. Soc., 2002, 22: 785-789
    144 马金龙,童学锋,彭虎。烧结技术的革命-微波烧结技术的发展及现状。新材料产业,2001,11 (6):30-32
    145 李江,黄智勇等。陶瓷的微波烧结及进展。陶瓷工程,2001,8:35-38
    146 Y. W. Kim, J. G. Lee. Pressureless sintering of alumina-titanium carbide composites. J. Am. Ceram. Soc. 1989, 70(4): 1333-1337
    147 M. Lee, M. Borom. Rapid rate sintering of Al_2O_3-TiC composites for cutting-tool applications. Advanced Ceramic Materials. 1988, 3(1): 38-44
    148 R. A. Cutler, A. C. Hurford. Pressureless-sintered Al_2O_3-TiC composites. Materials Science and Engineering A. 1988, 105-106: 183-192
    149 K. W. Chae, D. Y. Kim. Effect of Y_2O_3 additions on the densification of an Al_2O_3-TiC composite. J. Am. Ceram. Soc. 1993, 76(7): 1857-1860
    150 K. F. Cai, D. S. McLachlan, N. Axen, R. Manyatsa. Preparation, microstructure and properties of Al_2O_3-TiC composites. Ceramics International. 2002, 28: 217-222
    151 黄传真,艾兴。新型复相陶瓷刀具材料 JX-2-I 的界面结构及其对材料性能的影响。电子显微学报。1995,14 (5):365-368
    152 弗里埃德尔著,王煜译。位错。北京:清华大学出版社,1992
    153 龚江宏。陶瓷材料断裂力学。北京:清华大学出版社,2001
    154 丁遂栋。断裂力学。北京:机械工业出版社,1997
    155 R. P. Wahi, B. Ilschner. Fracture behavior of composites based on A10-TiC. J. Mater. Sci. 1980, 15: 875-885
    156 R. W. Davidge, T. J. Green. Strength of two-phase ceramic/glass materials. J. Mater. Sci. 1968, 3(6): 629-634
    157 张国军,岳雪梅,金宗哲。颗粒增韧陶瓷裂纹扩展微观过程。硅酸盐学报。1995,23 (4):365-372
    158 J. Selsing. Internal stresses in ceramics. J. Am. Ceram. Soc. 1961, 44(8): 419-426
    159 R. W. Rice, S. W. Freiman, P. F. Becher. Grain-size dependence of fracture energy in ceramics: I, Experiment. J. Am. Ceram. Soc. 1981, 64(6): 345-350
    160 R. W. Rice, S. W. Freiman. Grain-size dependence of fracture energy in ceramics: Ⅱ, A model for noncubic materials. J. Am. Ceram. Soc. 1981, 64(6): 350-354
    161 张存满,徐政,许业文。弥散 SiC 颗粒增韧 Al_2O_3基陶瓷的增韧机制分析。硅酸盐通报。2001 (5):47-50
    162 姜俊,祝昌军,高玲,杨海涛。Al_2O_3-TiC 复相陶瓷的研究进展。江苏陶瓷,2002,35 (1):26-29
    163 A. G. Evans, P. B. Marshall. Wear mechanism in ceramics. Proc. Of Int. on Fundamentals of Friction and Wear of Materials. Pittsburgh: ASME, 1980: 439-452
    164 许香谷,肖诗纲。金属切削原理与刀具。重庆:重庆大学出版社,1992
    165 马家骏。金属材料及热处理。山西:山西人民出版社,1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700