Al_2O_3-TiN基复合陶瓷材料的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用热压烧结工艺制备了不同粒径的α-Al_2O_3基体、不同助烧剂SiO_2含量和纳米TiNp含量的Al_2O_3-TiN基复合陶瓷材料。利用XRD、SEM、TEM分析了复合材料的微观组织结构;采用维氏压痕法、三点弯曲法和单边缺口梁法评定了复合材料的力学性能;通过电学性能试验系统地研究了TiN含量和α-Al_2O_3粒径对复合陶瓷电阻率、耐高压性能的影响,并探讨了导电机理。
     研究发现,以SiO_2为助烧剂的Al_2O_3-TiN基复合陶瓷材料的致密度都达到了98%以上,说明添助烧SiO_2能有效地促进材料的致密化,同时控制其加入量,可使材料具有优异的力学性能,例如维氏硬度最高达到22.3GPa,断裂韧性在4~5MPa·m~(1/2)之间,三点弯曲强度最高达到561MPa。
     基体α-Al_2O_3采用7.5μm和20nm两种粒径,复合陶瓷的力学性能试验表明,微米基体复合陶瓷的维氏硬度在20GPa以上,最大达到25.5GPa;断裂韧性在4~6MPa·m~(1/2)之间,三点弯曲强度最高达到578MPa。纳米基体复合陶瓷的维氏硬度在10GPa以上,最大值为16.0GPa,断裂韧性在4~6MPa·m~(1/2)之间,三点弯曲强度最高达到566MPa。与Micro-Al_2O_3基复合陶瓷材料相比,Nano-Al_2O_3基复合陶瓷材料的硬度小,强度和断裂韧性相近,而两种复合陶瓷的力学性能都是由于纳米颗粒TiN的加入而增强。
     Al_2O_3-TiN基复合陶瓷材料具有高强度和高断裂韧性的主要原因在于,高熔点和高硬度的TiNp均匀分散在基体中,可以对基体的位错运动产生钉扎作用,同时TiN与Al_2O_3基体膨胀系数存在差别而造成热膨胀失配导致残余应力增韧。断裂类型主要是沿晶断裂。
     电学性能试验发现,Micro/Nano-Al_2O_3基复合陶瓷的电阻率随TiNp含量的增加而降低,在TiNp含量为10vol.%时,电阻率都满足设计的要求。与Nano-Al_2O_3基复合陶瓷的电学性能相比,Micro-Al_2O_3基复合陶瓷的电阻率要高,而且耐压可达7000V/cm,耐高压性能较强,电压稳定性较好。从TEM显微组织观察分析得知,Nano-Al_2O_3基复合陶瓷材料中,导电相TiN分布在基体Al_2O_3边界较多;其次由于微米体系的基体比纳米体系的基体大,从而造成Micro-Al_2O_3基复合陶瓷材料的导电网络更难形成。
In this thesis, Al_2O_3-TiN composites with different content of SiO_2 or TiN and different particle size of Al_2O_3 were prepared by hot-pressing (HP) technique. Microrostructure was studied by XRD, SEM and TEM; mechanical properties were measured through Vickers indentation, three-point bending and single-edge-notch beam (SENB) bending tests; effects of TiN content and particle size of Al_2O_3 on the electrical conductibility behavior of the ceramics was investigated and the conductibility mechanism was discussed.
     Results show that Al_2O_3-TiN ceramics stabilized by SiO_2, whose relative density reach above 98%, nearly full density was obtained in the composites with of SiO_2 as sintering aids, which show excellent mechanical properties: Vickers hardness attains about 22.3GPa, fracture toughness is 4.42MPa·m~(1/2), while flexural strength reaches 560.7MPa.
     Average particle sizes of startinglα-Al_2O_3 powers are 7.5μm and 20nm, respectively. The Micro-Al_2O_3-TiN ceramics manifest more excellent mechanical properties: Vickers hardness attains to 20GPa, and the highest is 25.5GPa, fracture toughness is between 4 and 6MPa·m~(1/2), while flexural strength reaches 578.2MPa. While the mechanical properties of nano-Al_2O_3-TiN ceraMicros: Vickers hardness attains to 10GPa, whose the highest is 16.0GPa, fracture toughness is between 4 and 6MPa·m~(1/2), while flexural strength reaches 565.8MPa. In general, with the increase of TiNp content and the particle size of Al_2O_3, the mechanical properties of the ceraMicros are improved.
     High flexural strength and fracture toughness of Al_2O_3-TiNp composite ceramics has been achieved by introduction of evenly distributed TiN particles with excellent mechanical, which in matrix materialα-Al_2O_3, as well as the difference coefficient of thermal expansion will involve the mismatch flexibilizer. The mode of fracture is primarily intergranular cracking.
     Electrical conductibility tests indicate that the electrical resistivity of Micro/nano-Al_2O_3-TiN ceraMicros both are descending with the increasing content of TiNp, according to the STAR barrel TOF standard, the Micro/nano-Al_2O_3-TiN ceramics will be added 10vol.% TiNp. Electrical conductibility tests also show higher electrical resistivity than that of nano-Al_2O_3-TiN ceramics, and the high- voltage properties, the maximizing voltage is 7000V/cm. Microstructure study under TEM shows that the distribution of TiNp in nano-Al_2O_3-TiN ceramics concentrated on grain boundary of matrix materialα-Al_2O_3. The smaller size of theα-Al_2O_3 matrix particles, the more difficult the conductibility network of Micro-Al_2O_3-TiN ceramics is formed.
引文
1 K. K. Bardhan, R.K. Chakrabarty. Identical Scalling Behavior of Dc and Ac Response Near the Percolation Threshold in Conductor-insulator Mixtures. Physcal Review Letters. 1994, 72(7): 1068~1071
    2 H. G. Yoon, K.W. Kwon, K. Nagata. Changing the Percolation Threshold of a Carbon Black/polymer Composite by a Coupling Treatment of the Black. Carbon. 2004, 42:1877~1879
    3 P. Potschke, A. R.Bhattacharyya, A. Janke. Carbon Nanotube-filled Polycarbonate Composites Produced by Melt Mixing and Their Use in Blends with Polyethylene. Carbon. 2004, 42: 965~969
    4 I. H. Campbell, T. W. Hagler, D. L. Smith. Direct Measurement of Conjugated Polymer Electronic Excitation Energies Using Metaly Polymery Metal Structures. Physical Review Letters. 1996, 76(11): 1900~1903
    5 M.Wildan, H.J.Edrees, A. Hendry. CeraMicro Matrix Composites of Zirconia Reinforced with Metal Particles. Materials Chemistry and Physics. 2002, 75: 276~283
    6 X. Y. Zhang, Y. J. Chen. Influence of Temperature on Percolative Behavior in Fe3O4/c Composite. Journal of Magnetism and Magnetic Materials. 2004, 271: 184~189
    7 M. H. Al-Saleh, U. Sundararaj. A Review of Vapor Grown Carbon Nanofiber/ polymer Conductive Composites. Carbon. 2009, 47: 2~22
    8 J. M. Bharathan, Y. Yang. Polymer/metal Interfaces and the Performance of Polymer Light-emitting Diodes. Journal of Applied Physics. 1998, 84: 3207
    9 R. Hansch, M. R. R. Chowdhury, N. H. Menzler. Screen Printing of Sol/gel/ derived Electrolytes for Solid Oxide Fuel Cell (SOFC) Application. Ceramics International. 2009, 37: 803~811
    10 X. Zhang, J. Gazzarria, M. Robertsona. Stability Study of Cermet-supported Solid Oxide Fuel Cells with Bi-layered Electrolyte. Journal of Power Sources. 2008, 185: 1049~1055
    11 T. A. G. Restivo, S. R. H. de Mello-Castanho. Nickel-zirconia Cermet Processing by Mechanical Alloying for Solid Oxide Fuel Cell Anodes. Journal of Power Sources. 2008, 185: 1262~1266
    12 R. P. Pawlek. Primary Aluminum Smelters of the World/Primary Aluminum Industry Activities in 2007. Light Metal Age-Chicago. 2008: 1039~1045
    13 K. F. Chiu, P. Y. Chen. Structural Evolution and ElectrocheMicroal Performance of Life Po/c Thin Films Deposited by Ionized Magnetron Sputtering. Surface and Coatings Technology. 2008, 203: 872~875
    14 S. Ebrahim, A. H. Kashyout, M. Soliman. Ac and Dc Conductivities of Polyaniline/ poly Vinyl Formal Blend Films. Current Applied Physics. 2009, 9: 448~454
    15张长瑞,郝元凯.基复合陶瓷材料—原理、工艺、性能与设计.国防科技大学出版社, 2001: 5~95
    16 T. Kishi, M. Enoki. Evaluation of R-Curve Beheaviour from Indented Strength in SiC Particle-Dispersed Al2O3 Composite. Key Engineering Materials. 1997, 63~72: 127
    17崔春翔,吴人浩,张国定,阎殿然,李国彬.原位TiC-AlN/Al复合材料制备及炉内气氛对反应的影响复合材料学报. 1998, 2: 62
    18苗赫翟.新型陶瓷刀具的发展与应用.中国有色金属学报. 2004, 14(4): 24~27
    19吴振东,叶建东.添加剂对氧化铝陶瓷的烧结和显微结构的影响.兵器材料科学与工程. 2002, 25, 1: 46~51
    20 K. Tsugeki, T. Kato, Y. Koyanagi. Electroconductivity of Sintered Bodies of Al2O3-TiN Composites Prepared by CVD Reaction in a Fluidized Bed. Journal of Macromelecular Science Polymer Review. 1993, 28(l): 3168~3172
    21田明原,施尔畏,仲维卓.纳米陶瓷与纳米陶瓷粉末.无机材料学报. 1998, 13(2): 129~37
    22高纪明,陈松年,肖汉宁.氧化铝/碳化钛复合材料的无压烧结.湖南大学学报. 1996, 23(4): 45~50
    23 K. F Cai et al. Preparation, Microrostrutures and Properties of Al2O3-TiC composites. Ceram. Int, 2002, 28: 217~222
    24 R. A. Cutler, A. V. Virkar. R. A.Culter. Synthesis and Densification of Oxide-Carbide Composites. CeraMicro Engineering Science Process. 1985, 6(7-8): 715
    25张卫方,韩杰才,张幸红.致密Al2O3-TiC复合陶瓷材料的自蔓延高温合成.无机材料学报. 1999, 14(3): 457~490
    26 R. A Cutler, M. R. Kevin. Synthesis, Sintering, Microrostrueture andMechanical Properties of CeraMicros Made by ExotherMicro Reactions. Journal of the American CeraMicro Society. 1992, 75(l): 36~43
    27任萍萍,刘宁,许育东. TiC/TiN/Al2O3复合陶瓷的研究进展.合肥工业大学学报. 2004, 27(1): 75
    28 Zbigniew S Rak, Jerzy Czechowski. Manufacture and Properties of Al2O3-TiN Particulate Composites. Journal of the European CeraMicro Society. 1998, 18: 373~380
    29 D. Ostrovoy, N. Orloskaya, V. Kovylyaev. Mechanical Properties of Toughened Al2O3-ZrO2-TiN ceraMicros. Journal of the European CeraMicro Society. 1998, 18: 381
    30 Eric Laarz, Mats Carlsson, Benoit Vivien. Collidal Processing of Al2O3-Based Composites Reinforced with TiN and TiC Particulates Whiskers and Nanoparticles. Journal of the European CeraMicro Society. 2001, 21: 1027~1035
    31樊宁,高子辉,艾兴,邓建新.人工神经网络在Al2O3/TiC/SiC多相陶瓷刀具材料开发中的应用.陶瓷学报. 2002, 23(3): 178
    32丘泰. Al2O3-TiN复合物高温蠕变显微结构及蠕变机理.南京化工大学学报. 2002, 24(1): 98
    33李景国,高濂,郭景坤. TiN-Al2O3纳米复合材料的力学性能和导电性能.无机材料学报. 2002,17(6): 1215~1219
    34 K. Tsueki, T. Kato, Y. Koyanagi. Electroconductivity of Sintered Bodies ofα-Al2O3-TiN Composites Prepared by CVD Reactiong in a Fluidized Bed. Journal of Materials Science. 1993, 28(1): 3168~3172
    35张灵振,李静.自蔓延高温合成TiC/Al2O3复合材料的力学性能.稀有金属材料与工程. 2005,34(1),590~593
    36李理,杨丰科,侯耀永.纳米颗粒复合陶瓷材料.材料导报. 1996, 4: 67
    37王晞,谭训彦,尹衍升,周玉,侯耀永.纳米复合陶瓷增韧机理分析.陶瓷学报. 2000, 2: 107~110
    38刘含莲,黄传真,秦惠芳,王随莲,孙静,邹斌,艾兴.纳米复合陶瓷材料的增韧补强机理的研究进展.粉末冶金技术. 2004, 22(2): 99
    39 K. Niihara. Nanostructure design and mechanical properties of ceraMicro composites《粉体および粉末冶金(日)》. 1990, 37(2): 348~350
    40 A. Bellosi, G. D. Portu, S. Guiccicardi. Preparetion and Properties of Electroconductive Al2O3-Based Composites. Journal of the EuropeanCeraMicro Society. 1992, 10: 307~315
    41 S. Zbigniew. Rak, Jerzy Czeehowski. Manufacture and ProPerties of Al2O3-TiN Particulate Composites. Key Engineering Materials. 1997,: 2048~2051
    42黄金昌.碳氮化钛基金属陶瓷.稀有金属与硬质合金. 1994, 12(119): 43~49
    43李奎,藩复生,汤爱涛.粉末制备技术的现状及发展.重庆大学学报(自然科学版). 2002, 6(22): 135~151
    44 B.科曼多端.硬质材料工具技术进展.中译本.金工业出版社. 1982: 125~201
    45朱志斌,郭志军.氧化铝陶瓷的发展与应用.陶瓷杂志. 2003, (1): 5~8
    46 J. Mukerji, S. K. Biswas. Synthesis, Properties and Oxidation of Alumina-Titanium Nitride Composites. Journal of the American CeraMicro Society. 1990, 73 (1) : 142~145
    47 Y. G. Gogotso, F. Porz. Mechanical Properties and Oxidation Behavior of Al2O3-AlN-TiN Composites. Journal of the American CeraMicro Society. 1992, 78(5) : 2251~2259
    48王厚亮,李建保,刘继富. TiC/Si3N4导电复合陶瓷材料的制备.山东陶瓷. 1999, 22 (2) : 14~18
    49林广涌,饶平根,王黎. TiN (Ni)对GPS Si3N4复合材料导电性能的影响.中国陶瓷. 1998, 34 (3) : 5~9
    50史晓琪,蒋明学. TiN-Al2O3复合材料的导电性能.山东陶瓷. 2007, 30(3): 259~262
    51王宏志,高濂,郭景坤. SiC颗粒尺寸对Al2O3-SiC纳米复合陶瓷的影响[J].无机材料学报. 1999, 14(4): 679~683
    52 C. StearnsL, J. Zhao, M. P. Harmmar. Processing and Microrostructure Development in Al2O3-SiC Nanocomposites. Journal of the European CeraMicro Society. 1992, 10(6): 473~477
    53 H. K. Schmid, M. Aslam, S. Assmann. Microrostructure Characterization of Al2O3-SiC Nanocomposites. Journal of the European CeraMicro Society. 1998, (6): 39~49
    54 T. Hirano,K. Izaki,K. Niihara. Mierostructure and Thermal Conductivity of Si3N4/SiC Nanocomposites Fabricated From Amorphous Si-C-N Precursor Powders. Nanostruetured Materials. 1995, (5): 809~818
    55陆佩文.硅酸盐物理化学.东南大学出版社, 1991: 167~190
    56 D. J. Srolovitz, M. P. Anderson, G. S. Grest, P. S. Sahni. Computer Simulationof Grain Growth. Acta Metall. 1984, 32(9): 1429
    57 A. Bellosi, G. De. Pora, S. Guicciardi. Preparation and Properties of Electroconductive Al2O3-Based Composites. Journal of the European CeraMicro Society. 1992, 10: 307~315
    58 Z. S. Rak, J. C. zechewski. Manufacture and Properties of Al2O3-TiN particulate composites. Journal of the European CeraMicro Society. 1998, 18: 373~380
    59 J. Mukerji, S. K. Biswas. Synthesis, Properties, and Oxidation of Alumina-Titanium Nitride Composites. Journal of the American CeraMicro Society. 1990, 73: 142~145
    60 Y. G. Gogotsi, F. Porz. Mechanical Properties and Oxidation Behavior of Al2O3-AlN-TiN Composites. Journal of the American CeraMicro Society. 1992, 78: 2251~2259
    61贾德昌,宋桂明.无机非金属材料性能.科学出版社, 2008: 2~64
    62 A. Rosenflanz, I. W. Chen. Phase Relationships and Stability ofα-SiAlON. Journal of the American CeraMicro Society. 1999, 82(4): 1025~1036
    63 D. J. Green. Fracture Toughness Predictions for Crack Bowing in Brittle Particulate Composites. Journal of the American CeraMicro Society. 1983, 66: C4~C5
    64 K. T. Faber, A. G. Evans. Crack Deflection Processes. Acta Metall. 1983, 31: 565~576
    65 M. Taya, S. Hayashi, A. S. Kobayashi. Toughening of a Particulate-Reinforced CeraMicro-Matrix Composite by Thermal Residual Stress. Journal of the American CeraMicro Society. 1990, 73: 1382~ 1391
    66 B. Budiansky, J. C. Amazigo, A. G. Evans. Small-Scale Crack Bridging and the Fracture Toughness of Particulate-Reinforced CeraMicros. Journal of the Mechanical and Physics of Solids. 1988, 36: 167~187
    67黄传真.新型复相刀具材料的研制及切削可靠性研究.山东工业大学机械, 1994: 36~41
    68郝春成,崔作林,尹衍升.颗粒增韧陶瓷的研究进展.材料导报. 2002, 16 (2) : 28~30
    69穆柏春.陶瓷材料的强韧化.冶金工业出版社, 2002: 51~62
    70关振铎,张中太,焦金生.无机材料物理性能.清华大学出版社, 1992: 81~83
    71 C. W. Nac. Physics of Inhomogeneous Inorganic Materials. Progress in Materials Science. 1993, 37(1): 1~116
    72 D. S. Mclachlan, M. Blaszzkiewicz, R. E. Newnham. Eletrical Resistivity of Composites. Journal of the American CeraMicro Society. 1990, 73(8): 2187~2203
    73 Scott Kirkpatrick. Percolation and Conduction. Reviews of Modern Physics. 1973, 45(4): 574~588
    74 R. Zallen.非晶体固体物理学.北京大学出版社, 1988: 153~231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700