耦合式超声复合加工装置的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在难加工材料和精密加工中,功率超声加工技术具有普通加工无法比拟的工艺效果,将超声加工和其他加工方法相结合进行复合加工,常常能大幅度地提高加工速度、提高加工质量和完成一般加工方法难以完成的加工工作。因此,被广泛地应用于国民经济的各部门,并有广阔的应用前景。
     本课题针对功率超声加工技术在复合加工中的应用,设计一套超声加工系统。运用分块设计的方法将此装置划分为超声换能器、超声变幅杆、超声发生器和匹配电路四大主要模块进行设计。超声换能器选用夹心式压电换能器结构,运用频率方程和等效电路法进行换能器材料的选择和结构尺寸的设计;超声变幅杆选用阶梯形变幅杆结构,运用半波长变幅杆设计方法进行结构和尺寸的设计;超声发生器的设计采用他激式电路结构,选择相应的功能模块和元器件,完成电路的设计;匹配电路运用变压器进行阻抗匹配,提出耦合式变压器匹配的方法,并设计变压器的各项参数,同时计算所需感性元件的数值,用以补偿压电换能器的容性阻抗。在各部分模块设计完成后,运用阻抗分析仪进行振动系统性能的检测,确保其符合设计要求;对电路部分进行相应测试,确保其输出有效的电振荡信号。
In the area of difficult machining materials and precision machining, the power ultrasonic processing technology has technological effect that are unexampled common processing technology. If the combined machining technology by ultrasonic with other processing method is used, the processing speed and quality can be improved greatly. And the combined machining can carry the processing work that can not be carryed by other common processing method. So it is widely used in many department of national economy and has wide application prospect.
     The task of this subject is to design the processing equipment of ultrasonic for the use of the combined machining technology. The equipment is divided into four parts. They are ultrasonic generator, ultrasonic transducer, amplitude transformer, and matching circuit. The sandwich piezoelectric ultrasonic transducer is adopted when ultrasonic transducer is designed. Its material is chosen and its structure and dimension are designed using the frequency equation and equivalent circuit method. The stepped ultrasonic horn is adopted when amplitude transformer is designed. Its structure and dimension are designed with the method of half-wavelength design. The separately excited circuit structure is adopted when ultrasonic generator is designed. Function module and components are chosen. Then the design of circuit is completed. In the design process of matching circuit, impedance matching is performed with transformer. The method is put forward to match with coupling transformer. The parameters of transformer are calculated. And the numerical value of inductive element is calculated to compensate the capacitive load. After the design of four parts, the performance of vibration system is detected with to make sure it accords with design requirements. And the circuit is tested to make sure it can output oscillating signal.
引文
[1]王爱玲,祝锡晶,吴秀玲.功率超声加工技术.北京:国防工业出版社,2007:42~61.
    [2]张云电.超声加工及其应用.北京:国防工业出版社,1995:1~97,141~220.
    [3]林书玉.超声换能器的原理与设计.北京:科学出版社,2004:95~100,239~242.
    [4]陈桂生.超声换能器设计.北京:海洋出版社,1984:10~81.
    [5]袁易全.超声换能器.南京:南京大学出版社,1992:270~306.
    [6] L EMASTER R A,GRAFF K F.Influence of ceramic location on high power transducer performance.IEEE Ultrasonic Symposium Proceedings,1978:296~299.
    [7] Eiji MORI.Ultrasonics International 89 Conference Proceedings:256.
    [8]根本佐久良雄,森荣司,夹心扭转振动系统,日本音响学会志,1972,3:118~126.
    [9] Yuji Watanabe.A study on a transducer-stepped type solid horn system for flexural mode ultrasonic high powertransducer with one dimensional construction.Ultrasonics International 91 Conference Proceedings,1991,34:435~438.
    [10] Yuji Watanabe,Eiji Mori.A study on a new flexural-mode transducer-solid horn system and its application to ultrasonic plastics welding.Ultrasonics,1996,34:235~238.
    [11] Eiji MORI,Masami UNO.Analysis of torsional vibration of an ultrasonic exponential solid horn with a tool and its design considering fatigue limit.Bulletin of the Tokyo institute of technology,1963,51:63~80.
    [12] Kleesattel C.Uniform Stress Contours for Disk and Ring Resonators Bibrating in axially symmetric radial and torsional modes.Acustica,968,20:1~13.
    [13] K W Klontz,D M Divan.Contactless power delivery system for mining applications.IEEE Trans. on Industry Applications,1995,31(1):27~35.
    [14]汪承灏.盘形聚能器设计理论.声学学报,1979,4:279~286.
    [15] Andrea Cardoni,Margaret Lucas.Enhanced vibration performance of ultrasonic block horns.Ultrasonics,2002,40:365~369.
    [16] MOFFETT M B.Characterization of Terfenol-D for magnetost rictive transducers.J Acoust Soc Am,1991,89(3):1448~1455.
    [17]王全保.新编电子变压器手册.沈阳:辽宁科学技术出版社,2007:10~126.
    [18]毛赛君.非接触感应电能传输系统关键技术研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [19]武瑛,严陆光,黄常纲,等.新型无接触电能传输系统的性能分析.电工电能新技术,2003,22(4):10~13.
    [20]范国良,陈传梁.超声加工概况和未来展望.电加工,1994,6:7~11.
    [21] Kenrichi Ishikawa,Hitoshi Suwabe,Tetsuhiro Nishide.A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials.Precision Engineering, 1998,22:196~205.
    [22]温任林,颜景平.压电式超声振动切削系统的研究.东南大学学报,1997,27 (2):90~94.
    [23]史兴宽,康仁科,卢海鹏.内圆超声振动磨削装置的设计.磨床与磨削,1997,1:52~54.
    [24]沈金福.他山之石可以攻玉——DMG集团的激光切削加工机床和超声振动加工机床给人们的启示.世界制造技术与装备市场,2003,8(4):47~48.
    [25]艾枫.一种新颖的超声振动加工技术.制造技术与机床,2007,3:25~27.
    [26] Thoe T B,Aspinwall D K,Killey N.Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy.Journal of Materials Processing Technology,1999,92:323~328.
    [27] Rajurkar K P,Wang Z Y,Kuppattan A.Micro removal of ceramic material (Al2O3) in the precision ultrasonic machining.Precision Engineering,1999,23:73~78.
    [28] Guzzo P L,Raslan A A,De Mello J D B.Ultrasonic abrasion of quartz crystals.Wear 2003,255:67~77.
    [29] Hu P,Zhang J M,Pei ZJ.Modeling of material removal rate in rotary ultrasonic machining: designed experiments.Journal of Material Processing Technology,2002,129:339~344.
    [30]邓建新,曲宝键,郭玉和,等.导电Al2O3基陶瓷刀具材料的超声——放电复合加工技术研究.江苏陶瓷,2002,31:1~5.
    [31]秦勇,王霖,吴春丽,等.大理石的超声波加工试验研究.新技术新工艺,2001,2:17~19.
    [32]王正君,钟伟弘,等.大理石超声波精雕系统.天津理工学院学报,1998,14(4):42~44.
    [33]孔庆华,杨志强.超声波加工建筑玻璃小孔的试验研究.机械科学与技术,1996,25(2):15~18.
    [34]季远,王娜君,张德远.聚晶金刚石超声振动研磨机理研究.金刚石与磨料磨具工程,2001,125(5):33~36.
    [35]戴红娟.Nd-Fe-B烧结永磁体材料的超声加工机理.机械工程师,2002,8:32~33.
    [36]袁松梅,赵万生,刘维东.超声电火花复合加工的研究进展.航空精密制造技术.1998,34(6):17~20.
    [37] Kremer D,LebrunJ L,Hosari B,etal.Effects of ultrasonic vibrations on the performances in EDM.Annals of the CIRP,1989,38 (1):199~202.
    [38] Kremer D,Lhiaubt C,Moisan A.A study of the effect of synchronizing ultrasonic vibrations with pulses in EDM.Annals of the CIRP,1991,40(1):211~214.
    [39]贾志新,张建华,艾兴.超声频间隙脉冲放电加工的放电特性和加工特性的理论研究.电加工,1994(6):25~28.
    [40]钱军,高长水.工件激振式复合电火花微细孔加工.航空精密制造技术术,1997,33 (5):18~20.
    [41]杨大春,云乃彰,严德荣.硬脆金属的超声电解复合加工研究.电加工与模具,2002 (2):31~33.
    [42]孙亚登,黄文新,胡育文.基于新型可旋转变换器的感应电能传输技术.电源技术应用,2005,8(10):61~64.
    [43] W.P.Mson.Physical Acoustics and the Properties of Socilds.Van Nostrand,Princeton N.J,1958.
    [44] W.P.Mson.Physical Acoustics-Principles and Methods.Vol.1 Part Academic Press New York and London,1964.
    [45] W.P.Mson.Electro-Mechanical Transducers and Ware Filters.New York D. Van Nostrand co,1948.
    [46] Leon Camp.Underwater Acousitscs.Wiley-Interscience,a Division of John Wiley and sons,1970.
    [47] Goodman,J.E.HIGH-Intensity Ultrasonic-Industrial Applications.Hiffe London,1965.
    [48]张云电.夹心式压电换能器及其应用.北京:科学出版设,2006(1):59~79,103~107.
    [49]曹白杨,董平,韩文仲,等.功率超声换能器应用与设计.华北航天工业学院学报,2000,10(2):24~27.
    [50]梁英.一种新型超声波电源的研究设计,[硕士学位论文].西安:西北工业大学,2005.
    [51]王春生.智能化超声电源设计及试验研究,[硕士学位论文].北京:北京航空航天大学,1999.
    [52]林仲茂.超声变幅杆的原理和设计.北京:科学出版社,1987:95~100,239~242.
    [53]贺西平,程存弟.几种常见形状函数超声变幅杆性能参量的同意表达.陕西师范大学学报(自然科学版),1994,3:29~32.
    [54]贺西平,高洁.超声变幅杆设计方法综述.声学技术,2006,25(1):82~86.
    [55]曹凤国.超声加工技术.北京:化学工业出版社,2005:27~95.
    [56]袁易全.近代超声原理与应用.南京:南京大学出版社,1996:24~71.
    [57]金斗焕.采用MAX038制作的函数信号发生器.电子元器件应用,2001,3(2):33~35.
    [58]李良光.波形产生集成电路MAX038.世界电子元器件,2000,11:49~51.
    [59]张吉玲,张晴.MAX038及函数信号发生器.南昌大学学报(理科版),2000,24(4):350~355.
    [60] Neppiras E A.The pre-stressed piezoelectric sandwich transducer.Ultrasonics International 1973 Conferences Proceedings,295~301.
    [61] Lagodzinski Z.The radiation efficiency of ultrasonic transducers.Archiwum Akuskity, 1972,7(2),151~167.
    [62] Gough P T,Knight J S.Wide bandwidth,constant beamwidth acoustic projectors:a simplified design procedure.Ultrasonics,1989,27(4):234~238.
    [63] Banno H,Masamura Y,Naruse N.Acoustic load dependency of electro-acoustic efficiency in the electrostrictive ultrasonic transducer and acoustical matching.Ultrasonics,1979,17(2),63~66.
    [64]史平君.实用电源手册(电源元器件分册).沈阳:辽宁科学技术出版社,1999:23~33.
    [65]潘江洪,苏建徽,杜雪芳.IGBT高压大功率驱动和保护电路的应用研究.电源技术应用,2005,8(11):51~54.
    [66] Schin-ichi Adachi,Fumihiro Sato,etal.Consideration of contactless power station with selective excitation to moving robot.IEEE Trans. on Mag.,1999,35(5):583~3585.
    [67]李月花.CXF-1型功率超声波发生器的研制.应用声学,1997,16(1):32~35.
    [68]朱武,丁长善,孙丽威.半桥逆变式功率VMOSEFET超声发生器的研制.应用声学,1998,17(2):40~43.
    [69]程毅.移动式视频监测装置的设计与运动控制的研究,[硕士学位论文].武汉:武汉理工大学,2007.
    [70]徐根达.基于IR2104的金属卤化物灯调频驱动电子镇流器的研制.电源技术应用,2006,9(9):23~27.
    [71]韩庆帮,刘书玉,鲍善惠,等.超声换能器电匹配特性研究.陕西师范大学学报(自然学报),1996,24(4):114~115.
    [72]鲍建东.换能器的阻抗匹配设计.应用声学,1996,3:37~40.
    [73]辛雅宁.一种新型超声电源换能系统的研究设计,[硕士学位论文].西安:西北工业大学,2005.
    [74]谢文运,佃岳武,欧阳波,等.一种测量超声换能器导纳特性的新方法.华南理工大学学报(自然科学学报),1999,27(12):74~79.
    [75]鲍芳,李科,胡荣.超声波换能器特征参量电测法的研究.江汉石油学院学报,2000,22(2):89~92.
    [76]武瑛,严陆光,徐善纲.新型无接触能量传输系统.变压器,2003,6:1~6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700