磁场中Ni-纳米Al_2O_3复合镀层制备及其电沉积机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁场下电沉积是近些年来快速发展的一种电沉积技术,它利用磁场与电场的交互作用,对金属电沉积过程、镀层结构形貌及性能产生显著影响,引起了国内外研究者的极大兴趣。然而大多数研究集中在磁场对单质金属或者合金的影响,有关磁场对复合电沉积的影响的研究相对较少。纳米复合镀层具有优良的耐腐蚀性、耐摩擦性以及高硬度等物理和化学性能,近些年得到了很多研究者的注意。但是到目前为止如何有效提高镀层中的颗粒含量以及控制颗粒的分布等问题仍未解决。研究者希望借助磁场具有无接触,在电沉积过程中能够产生洛伦兹力、磁力等优势,来提高电沉积的传质过程和电子转移过程,利用MHD流动改变镀层结构和颗粒的分布,因此磁场对纳米复合电沉积的影响亟待深入研究。本文以Ni-纳米Al_2O_3电沉积体系为研究对象,开展了水平磁场和竖直磁场中复合电沉积的研究。
     本文采用水平磁场和竖直磁场,通过改变磁感应强度、电流密度和磁场与电场相对方向(垂直磁场和平行磁场),开展了以下几方面的基础研究:
     1.采用沉降比的方法研究了制备复合镀液的最佳方法。考察了分散方式、分散时间和分散剂含量对复合镀液稳定性的影响,得出最佳的Ni-纳米Al_2O_3复合镀液制备条件为:分散剂含量为1g·L~(-1),采用电磁搅拌和超声波分散相结合的形式,超声波分散1小时。
     2.在成功制备了复合镀液之后,作者研究了无磁场条件下电流密度对纯镍镀层和复合镀层的影响。研究发现纯镍镀层呈金字塔状生长,晶粒粗大。随着电流密度增大,纯镍镀层从(111)择优生长晶面逐渐向(100)择优生长晶面转变。而加入纳米氧化铝颗粒以后,晶体呈包状生长,每个晶包都由细小的纳米晶组成。镀层全部呈(111)择优取向,电流密度对复合镀层的择优取向没有影响。
     3.为了考察磁场对复合电沉积的影响,作者首先在水平磁场中考察了磁感应强度、磁场方向和电流密度对复合镀层的影响。研究发现当磁场与电流相互垂直时,氧化铝颗粒在镀层中弥散分布,并且当产生洛伦兹力方向向上,颗粒含量随着磁感应强度的增大而增大,反之则降低。并且在0.5T垂直磁场中,颗粒含量在电流为2A·dm~(-2)时出现一个最大值。在平行磁场中,颗粒不再弥散分布,趋于在晶包边界沉积,其含量随着磁感应强度的升高变化不大,并且小于在垂直磁场中得到的颗粒含量。研究还发现在磁场中制备的复合镀层的择优取向没有改变,(111)是其择优取向。在垂直磁场中复合镀层的微硬度随着磁感应强度的增加而增大,主要归因于镀层中颗粒的含量增多和晶粒的细化。研究表明复合镀层的硬度明显比纯镍镀层的硬度高。
     4.鉴于水平磁场中磁感应强度的限制(小于1T),有必要考察强磁场(大于1T)中复合镀层受磁场的影响规律。利用竖直强磁场,作者考察了磁感应强度和电流密度在垂直磁场和平行磁场两种条件下对复合镀层结构、形貌和成分的影响规律。当磁场与电流垂直时,颗粒在复合镀层中弥散分布,其含量随着磁感应强度的增加而增大,磁场为8T时达到极大值4.6wt%左右,随后降低。在10T垂直磁场中改变电流密度,镀层中颗粒含量在2A·dm~(-2)时出现一个最大值。镀层微观结构并没有受磁感应强度和电流密度的影响。当磁场与电流平行时,氧化铝颗粒在镀层中明显呈蜂窝状分布,且其含量随着磁感应强度的增大而增加,且在6T时达到极大值约24wt%。10T平行磁场镀层中颗粒含量随着电流密度的升高而升高,且在2A·dm~(-2)时出现最大值。分析表明镀层中颗粒含量受MHD效应强度的影响。MHD流动过小或者过大都不利于纳米颗粒在镀层中沉积。通过分析复合镀层在平行磁场中的生长过程,作者提出了平行磁场中颗粒规律分布的形成机理:在微观范围内,镀层在阴极上沉积一定时间以后,很多晶粒组成的晶包是凹凸不平的,电流经过晶包前端时,由于晶包和周围溶液电导率的差别,电流线就会弯曲,从而形成垂直磁场方向的电流分量,该电流分量与磁场作用产生洛伦兹力,在晶包前端形成微观流动,这种流动驱动带电的氧化铝颗粒向晶包边界移动并沉积。这种机理打破了日本人认为纳米颗粒不能形成蜂窝状分布的论断。
     5.为了研究磁场对传质及电子转移过程的影响,作者用电化学方法首先研究了无磁场时分散剂和纳米颗粒对复合电沉积过程的影响。循环伏安法研究发现离子并不是直接放电生成原子,而是首先生成某种中间体,然后再放电生成原子或者气体。计时电流法研究发现在瓦特镀液中,镍倾向于三维圆锥形BFT(Bewick A., Fleischmann M. and Thirsk, H. R.)模型生长,而加入分散剂和氧化铝颗粒以后倾向于半球形的SH(Scharifker and Hill)模型生长。这与SEM观察到的结果一致。交流阻抗法研究发现阿拉伯树胶在阴极吸附,降低了阴极活化面积,增大了镍沉积过电位。而纳米氧化铝颗粒在阴极吸附或者进入镀层增加了结晶形核质点,有利于纳米晶的形成。
     6.在了解分散剂和颗粒浓度对复合电沉积过程的影响的基础上,作者用电化学方法又研究了水平弱磁场和竖直强磁场中磁感应强度和磁场相对方向对复合电沉积过程的影响。循环伏安法研究发现:磁场与电流相对位置不同,磁场对循环伏安曲线的峰电流和极限电流影响不同。在垂直磁场中,磁场对电沉积过程影响较大,而在平行磁场中,磁场对电沉积过程影响较小。线性扫描法研究发现正垂直磁场加强了极限电流,负垂直磁场减小了极限电流,正平行磁场加强了极限电流,但是磁感应强度影响不大,反平行磁场中,极限电流随磁感应强度的增加而增加,但是当电位低于-0.98V时,极限电流反而随磁感应强度的增加而降低。交流阻抗法研究发现磁场的施加降低了电子转移阻力。由于在竖直强磁场中,一方面由于MHD流动,使得金属离子在溶液的运动轨迹发生偏转;另一方面受电磁制动力的影响,又阻碍了离子运动轨迹的偏转。与此同时MHD效应使氧化铝颗粒的传质过程加强,到达阴极的数量增加,使得双电层电容值呈现先下降后上升,电子反应电阻值先上升后下降的规律。
     7.本文的研究表明磁场对电沉积过程中的传质过程产生明显影响。对于竖直放置的电极,当洛伦兹力与自然对流驱动力方向相同时,磁场的施加增强了传质过程,增加了镀层中颗粒含量。当洛伦兹力与自然对流驱动力相反时,洛伦兹力引起的流动抵消了自然对流对传质过程的影响,随着磁感应强度增加,洛伦兹力增加,还原电流降低。
     综上所述,本文的研究表明,磁场的施加,对镍-纳米氧化铝复合电沉积过程的传输过程、电子转移过程、镀层的形核长大过程均产生了显著的影响,而在平行磁场中,在阴极表面附近区域形成的微观MHD流动,对复合镀过程的阴极过程影响显著,甚至可以控制镀层中纳米陶瓷颗粒的分布,进而改变镀层的综合性能。因此本文的研究对制备新型的金属-纳米陶瓷颗粒复合材料、功能镀层均具有重要的借鉴意义。
In recent years, heavy attention has been paid to the process of Magneto-electrodeposition by scientists majored in electrochemistry, metallurgy and material due to the remarkable interaction between magnetic field and electric field. However, the former’s works mostly focused on the metal or alloy deposition in magnetic field, less attention has been devoted to the composite electro-deposition. As we know, the composite electrodeposition is an very important way to obtain metallic composite material with excellent mechanical, physical and chemic properties, however, there still remain a lot of questions to be solved, for example, how to elevate the content of nano ceramic particles or control the distribution of the nano ceramic particles are still key points for preparing nano composite deposit. Considering the lorenz force, magnetic force can be induced in the electrolyte by superimposing an static magnetic field without contact, which will be helpful to influence the mass transport process, the electron transfering process, even the nucleation and growth of the deposit, So, the electro-deposition of Ni-Al_2O_3 composite coating in horizontal magnetic field (<1Tesla) and strong vertical magnetic field (1~(-1)2Tesla) was discussed in this paper.
     To study the effect of magnetic field, the horizontal magnetic field and vertical magnetic field were used, in which the process of electrodepositing Ni-nano Al_2O_3 composite was conducted with changing magnetic flux density and current density as well as the relationship between the direction of magnetic field and electric field. The main contents and conclusions in this paper were shown as followings:
     1. Preparing a stable composite deposition solution is the first step in this work. Sedimentation rate method was used to study the influence of dispersion type, arabic gum content and dispersion time on the sedimentation rate of alumina nano particles in the solution. According to experimental results, the best condition to prepare composite solution as following: arabic gum content 1g/L, ultrasonic disperse for one hour.
     2. After preparing the composite deposition solution, the author considered the effect of current density on the pure Ni film and Ni-Al_2O_3 composite film without magnetic field. The experimental results showed that the surface of pure nickel film showed pyramidal type. The preferred orientation changed from <111> to <100> with current density increased from 1 A·dm~(-2) to 4 A·dm~(-2). The surface of composite coating was composed of many lumps which consisted by a lot of nanosize crystals. The preferred orientation of composite coating was <111>, which was not affected by current density.
     3. A horizontal magnetic field was firstly used to examine the applied magnetic field on the deposition of composite coating. In this field, the magnetic flux density and current density as well as relative orientation of magnetic field with current field must be considered. The results showed that alumina particles dispersed uniform in the coating and its content increased with magnetic flux density increased if the Lorentz force was upward. The particle content also affect by applied current density, a maximum value was got when the current density increased to 2 A·dm~(-2) and then decreased with the current density increased more higher. In parallel magnetic field, the alumina particles distributed different with that in perpendicular magnetic field. The alumina particles almost were deposited at the boundary of the lumps. It was also found that the preferred orientation was (111) and could not be influence by the magnetic field and current density. The microhardness experiment showed that the composite coating was harder than the pure nickel coating and the values increased with magnetic flux density increased in perpendicular magnetic field, which might due to the dispersion strengthening effect and the refined crystal by included alumina particles.
     4. For the magnetic flux density in horizontal magnetic field was smaller than 1T, it was necessary to carry experiments out in vertical high magnetic field which was higher than 1T. In the high vertical magnetic field, the influence of magnetic flux density and current density on the surface, micro-texture and composition of composite coating was studied. In the perpendicular magnetic field, the alumina particles dispersed in the composite coating and its content reached a maximum 4.6wt% with the magnetic flux density increased to 8T then decreased. The effect of current density on the particle content in 10T magnetic field was also taken into mind. The results showed that the particle content increased first and then decreased with current density increased, and its value reached the maximum under the current density of 2 A·dm~(-2). Different results were got in the parallel magnetic field. The alumina particles dispersed in a network pattern in the film and its content increased with magnetic flux density increased and reached the maximum 24wt% in the magnetic fild of 6T. As same as results in perpendicular magnetic field, the particle content reached the maximum 22wt% under the current density of 2A·dm~(-2) in 10T magnetic field. In all the condition, the preferred orientation was (111) and could not be influenced by the magnetic field and current density. Depending on the experimental results, a model was suggested after analyzing the growth process of composite coating to illuminate the network distribution of alumina particles in the film. In this model, it was considered that the surface of cathode became rougher with film grew and a lot of lumps appeared on the cathode. In front of the lumps, the faradic currents were not parallel to the magnetic field strictly, so Lorentz force could be induced. As a result, anticlockwise eddy would be generated in front of lumps and the positive charged particles in the eddy rotated along with the electrolyte. Under the influence of Lorentz force, the charged particles finally be drawn to eddy edge and then deposited on the edge of lumps. All the results showed that a suitable MHD effect was necessary to get higher particle content.
     5. Electrochemical methods were also used to study the effect of organic addition and alumina nano particles on the deposition process of Ni-Al_2O_3 system. The CV (cyclic voltammetry) results showed that a kind of intermediate was generated before nickel ions or hydrogen ions discharged. Chronoamperometry curve indicated that the nucleation of nickel in Watts type solution had a good agreement of BTF model, but the addition of dispersant and alumina particles changed the nucleation form which agreed with the SH model. The electrochemical results were according with SEM results. The EIS (electrochemical impedance spectroscopy) results showed that the addition of dispersant and alumina particles decreased the active area and shifted the initial deposit potential to more negative for their adsorption on the cathode. In other way, the alumina particles might function as nucleation site and refined the crystal to form nano crystal.
     6. In order to know the effect of magnetic field on the mass transport progress and electron transfer process of Ni-Al_2O_3 deposition, the electrochemical tests were performed in both horizontal magnetic field and vertical high magnetic field. The main factors concluded magnetic flux density and magnetic field direction. Experiment results indicated that the composite deposition process could be affected by the relative orientation of the magnetic field and the electric field. The effect of magnetic field on the electrodeposition was more evident in perpendicular magnetic field than that in parallel magnetic field. In the perpendicular magnetic field, the Lorentz force was in the same direction with natural convection, the Faraday current was enhanced by applied magnetic field. When the Lorentz force was in the opposite direction with natural convection, the Faraday current was inhibited by applied magnetic field. when the magnetic field was applied in parallel with current, the magnetic field also enhanced the Faraday current, but the trend changed at the potential more negative than -0.98V in antiparallel magnetic field. The EIS results showed the applied magnetic field decreased the charge transfer resistance. A different result was shown in vertical high magnetic field. The MHD flow increased the distance of cations from anode to cathode, which increased the electron transfer resistance. At the same time, the MHD flow was blocked by electromagnetic braking force, which could be helpful to decrease the electron transfer resistance.
     7. The paper showed that the magnetic field enforced the mass transport process and increased the particle content when the Lorentz force was in the same direction with natural convection. Conversely, the opposite result would be got when the Lorentz force was in the contrary direction with natural convection.
     To conclude, the application of magnetic field in Ni-Al_2O_3 nano composite plating could enhance the mass transport process and electron transfer process and influence the nucleation and growth of composite film. Especially in the parallel magnetic field, the micro-MHD flow field induced by Lorentz force could affect the reduction process distinctly and control the distribution of alumina nano particles in the nickel matrix, which maybe influenced the properties of composite coatings.
引文
[1]梁志杰.现代表面镀覆技术[M].北京:国防工业出版社, 2005: 295--298.
    [2]郭鹤桐,张三元.复合电镀技术[M].北京:化学工业出版社, 2007: 4-9,49,551-554.
    [3]纳米电镀:纳米材料的应用. http://www.zgdiandu.com.cn/technology/Common%20sense/Commonview.aspx?id=6211.
    [4]徐滨士.纳米表面工程[M].北京:化学工业出版社, 2004: 201-204,227.
    [5] J. Steinbach and H. Ferkel. Nanostructured Ni-Al2O3films prepared by DC and pulsed DC electroplating[J]. Scripta Materialia, 2001, 44(8-9): 1813-1816.
    [6] H. Ferkel, B. Mueller and W. Riehemann. Electrodeposition of particle-strengthened nickel films[J]. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, A234-23: 474-476.
    [7] A. Bund and D. Thiemig. Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel[J]. Surface and Coatings Technology, 2007, 201(16-17): 7092-7099.
    [8] E. A. Pavlatou, M. Stroumbouli, P. Gyftou, et al. Hardening effect induced by incorporation of SiC particles in nickel electrodeposits[J]. Journal of Applied Electrochemistry, 2006, 36(4): 385-94.
    [9] P. Gyftou, M. Stroumbouli, E. A. Pavlatou, et al. Tribological study of Ni matrix composite coatings containing nano and micro SiC particles[J]. Electrochimica Acta, 2005, 50(23 ): 4544-4550.
    [10] N. S. Qu, D. Zhu and K. C. Chan. Fabrication of Ni-CeO2 nanocomposite by electrodeposition[J]. Scripta Materialia, 2006, 54(7): 1421-1425.
    [11] Y.-J. Xue, J.-S. Li, W. Ma, et al. Sliding wear behaviors of electrodeposited nickel composite coatings containing micrometer and nanometer La2O3 particles[J]. Journal of Materials Science, 2006, 41(6): 1781-1784.
    [12]郑学斌,谭澄宇,赵旭山等. Ni/SiC复合镀层腐蚀行为研究[J].材料保护,2008 (02): 17-19.
    [13]李声泽.α-Al2O3纳米复合镍镀层耐蚀性和硬度的研究[C]. 2002北京电镀行业清洁生产研讨会,北京, 2002: 114-120.
    [14] B. Mueller and H. Ferkel. Properties of nanocrystalline Ni/Al2O3 composites[J]. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 1999, 90(11): 868-871.
    [15]禹萍,苏玉长,谭澄宇等. Ni-SiC和Ni-SiO2复合镀层性能的研究[J].表面技术, 2001 (03): 27-29,44.
    [16]谭澄宇,梁英. Ni/SiO2复合电镀层高温氧化性能的研究[J].表面技术, 2000, 29(6): 16-19.
    [17] I. Shao, P. M. Vereecken, C. L. Chien, et al. Synthesis and characterization of particle-reinforced Ni/Al2O3 nanocomposites[J]. Journal of Materials Research, 2002, 17(6): 1412-1418.
    [18]舒绪刚,何湘柱,黄慧民等.纳米ZrO2在复合镀中的应用[J].机械工程材料, 2008, 3: 3.
    [19]吴映辉,唐和清.. Ni-P-纳米TiO2复合镀层的析氢电催化性能[C].中国机械工程学会表面工程分会,中国甘肃兰州, 2006: 301-303.
    [20]夏成宝,杨后川,葛文军.飞机起落架作动筒内壁n-Al2O3/Ni-Cr复合电刷镀修复[J].材料保护, 2009, (07): 57-58,62.
    [21]国内首创纳米镍基-αAl2O3复合镀层[J].表面工程资讯, 2001, (01): 1-3.
    [22] P. Gyftou, M. Stroumbouli, E. A. Pavlatou, et al. Electrodeposition of Ni/SiC composites by pulse electrolysis[J]. Transactions of the Institute of Metal Finishing, 2002, 80(3): 88-91.
    [23]向波,贺跃辉,谢志刚等.电镀金刚石线锯的研究现状[J].材料导报, 2007, (08): 25-29.
    [24] L. Shi, C. Sun and W. Liu. Electrodeposited nickel-cobalt composite coating containing MoS2[J]. Applied Surface Science, 2008, 254(21): 6880-6885.
    [25]赵海军.铜-石墨及镍-石墨金属基自润滑复合材料的电沉积工艺和性能研究[D].上海交通大学, 2007.
    [26]陈明贵,朱小明.化学镀镍-磷-氟化石墨复合镀层工艺的研究[J].材料保护, 1993, 26(1): 9-11.
    [27]杨家慧,王大伟. Cr-氟化石墨复合镀层在高温轴承中的应用研究[J].润滑与密封, 1996 (2): 42-44.
    [28]朱一民,李纪宁,朱守信等.金属镍和聚四氟乙烯微粒复合电沉积的研究(Ⅲ)-复合膜的性能[J].沈阳化工学院学报, 1998 (04): 43-48.
    [29] M. Assoul, E. Pena-Munoz, X. Roizard, et al. A tribological study of electrolytic nickel-PTFE composite coatings[J]. Journal of Synthetic Lubrication, 1998, 15(2): 107-116.
    [30] B. Losiewicz, A. Stepien, D. Gierlotka, et al. Composite layers in Ni-P system containing TiO2 and PTFE[J]. Thin Solid Films, 1999, 349(1): 43-50.
    [31] L. Chen, Z.-C. Guo and X.-W. Yang. Structure and characteristics of electrodeposited RE-Ni-W-P-B4C-PTFE composite coatings[J]. Transactions of Nonferrous Metals Society of China, 2001, 11(6): 887-890.
    [32] M. Shoeib. Structure and properties of electrodeposited Ni-PTFE coatings[J]. Corrosion Prevention and Control, 2002, 49(4): 141-146.
    [33] Y. Wu, H. Liu, B. Shen, et al. The friction and wear of electroless Ni-P matrix with PTFE and/or SiC particles composite[J]. Tribology International, 2006, 39(6): 553-559.
    [34] M. D. Ger, K. H. Hou, L. M. Wang, et al. The friction and wear of Ni-P-PTFE composite deposits under water lubrication[J]. Materials Chemistry and Physics, 2003, 77(3): 755-764.
    [35]杨中东,松村宗顺.锌-聚四氟乙烯复合镀[J].材料保护, 2001 (11): 21-22.
    [36]石淑云,马文英,常立民等.电沉积方式对Ni-nanoAl2O3复合镀层组织结构和耐蚀性能的影响[J].应用化学, 2008 (12): 1499-1501.
    [37] F. Erler, C. Jakob, H. Romanus, et al. Interface behaviour in nickel composite coatings with nano-particles of oxidic ceramic[J]. Electrochimica Acta, 2003, 48(20-22): 3063-3070.
    [38] G. Sharma, R. K. Yadava and V. K. Sharma. Characteristics of electrocodeposited Ni-Co-SiC composite coating[J]. Bulletin of Materials Science, 2006, 29(5):491-496.
    [39] C. T. J. Low, R. G. A. Wills and F. C. Walsh. Electrodeposition of composite coatings containing nanoparticles in a metal deposit[J]. Surface and Coatings Technology, 2006, 201(1-2): 371-383.
    [40] B. Szeptycka and A. Gajewska-Midzialek. The influence of the structure of the nanocomposite Ni-PTFE coatings on the corrosion properties[J]. Reviews on Advanced Materials Science, 2007, 14(2): 135-140.
    [41] I. Garcia, A. Conde, G. Langelaan, et al. Improved corrosion resistance through microstructural modifications induced by codepositing SiC-particles with electrolytic nickel[J]. Corrosion Science, 2003, 45(6): 1173-1189.
    [42] C. F. Malfatti, J. Z. Ferreira, C. B. Santos, et al. NiP/SiC composite coatings: The effects of particles on the electrochemical behaviour[J]. Corrosion Science, 2005, 47(3): 567-580.
    [43] W. S. Lin, S. Q. Qian and X. W. Chen. Wear and corrosion resistance of Ni-PTFE-SiO2 composite coating deposited by jet electrodeposition[J]. Key Engineering Materials, 2008, 373-374: 597-600.
    [44]松村宗顺.最近の复合あつきの动向[J].金属表面技術 1985, 36(11): 442-451.
    [45]亓新华,彭峰,王红娟.纳米复合电镀研究进展[J].电镀与涂饰, 2005(11): 51-55.
    [46]朱立群,李卫平. ZrO2纳米微粉在Ni-W-B非晶态复合镀层中的作用研究[J].机械工程材料, 1998, 22(4): 9-11.
    [47]彭晓,李铁藩,李美栓等. Ni-La2O3复合镀层对Ni抗高温循环氧化性能的影响[J].金属学报, 1996, (02): 180-186.
    [48] X. Peng. Effect of La2O3 Particles on the oxidation of electrodeposited nickel films[J]. Oxidation of Metals, 1999, 51(3): 291-315.
    [49] Y. Zhang, X. Peng and F. Wang. Development and oxidation at 800℃of a novel electrodeposited Ni-Cr nanocomposite film[J]. Materials Letters, 2004, 58(6): 1134-1138.
    [50] F. Wünsche, A. Bund and W. Plieth. Investigations on the electrochemicalpreparation of gold-nanoparticle composites[J]. Journal of Solid State Electrochemistry, 2004, 8(3): 209-213.
    [51]吴元康.金刚石纳米晶在材料保护中的应用[J].材料保护, 1995, 28(4): 15-17.
    [52]吴元康,余焜,熊晓辉等.纳米晶金刚石织构粒子增强银基电接触复合镀层的研究[J].电镀与涂饰, 2002, 21(3): 6-11.
    [53] A. Fujishima and K. Honda. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
    [54]杨玉华,王九思.二氧化钛光催化降解有机物的研究进展[J].甘肃科学学报, 2004, 16(3): 36-39.
    [55]闫蕾,梁燕萍,吕向菲. TiO2薄膜的制备、改性及光催化性能的研究[J].工业催化, 2008, 16(3): 55-58.
    [56]高正宏,孙晓军,李建功.脉冲电沉积TiO2/Zn纳米复合镀层的制备与性能[J].电镀与涂饰, 2008(11): 1-3.
    [57]黄新民,钱利华,吴玉程等.纳米颗粒TiO2化学复合镀层的功能特性[J].金属功能材料, 2004, 11(2): 16-19.
    [58] M. Zhou, W. Y. Lin, N. R. de Tacconi, et al. Metal/semiconductor electrocomposite photoelectrodes: behavior of Ni/TiO2 photoanodes and comparison of photoactivity of anatase and rutile modifications[J]. Journal of Electroanalytical Chemistry, 1996, 402(1-2): 221-224.
    [59] M. Zhou, N. R. de Tacconi and K. Rajeshwar. Preparation and characterization of nanocrystalline composite films of titanium dioxide and nickel by occlusion electrodeposition[J]. Journal of Electroanalytical Chemistry, 1997, 421(1-2): 111-120.
    [60] T. Deguchi, K. Imai, M. Iwasaki, et al. Photocatalytically highly active nanocomposite films consisting of TiO2 particles and ZnO whiskers formed on steel plates[J]. Journal of the Electrochemical Society, 2000, 147(6): 2263-2267.
    [61] S. Yonemochi, A. Sugiyama, K. Kawamura, et al. Fabrication of TiO2 composite materials for air purification by magnetic field effect and electrocodeposition[J]. Journal of Applied Electrochemistry, 2004, 34(12): 1279-1285.
    [62]张乃军,周苏闽. Ni-P/纳米TiO2复合镀层的抗菌性能研究[J].淮阴工学院学报, 2006, 15(5): 75-78.
    [63]彭峰,任艳群,雷建光.纳米TiO2的制备与光催化降解苯酚性能[J].现代化工, 2002, (S1): 108-110.
    [64]任艳群.纳米二氧化钛复合物固载化与光催化降解甲苯性能研究[D].华南理工大学, 2003.
    [65]耿后安和魏锡文.纳米Cr2O3的制备及其化学复合镀层光催化性研究[J].腐蚀与防护, 2003, (12): 522-524.
    [66]吴映辉和唐和清. Ni-P-纳米TiO2复合镀层的析氢电催化性能[C].第六届全国表面工程学术会议暨首届青年表面工程学术论坛,兰州, 2006: 301-303.
    [67]张卫国,杨海军,刘春松,等. Ni-W-P/ZrO2复合电极的制备及其催化析氢性能[J].氯碱工业, 2008, (03): 15-17, 41.
    [68]肖友军. Pt-ZrO2/Ti电极在酸性介质中的电催化析氢性能[J].表面技术, 2006, (01): 20-21, 32.
    [69]刘善淑,成旦红,应太林,等.电沉积Ni-P-ZrO2复合电极析氢电催化性能的研究[J].电镀与涂饰, 2001, (06): 4-7.
    [70]肖友军.钛基复合镀Pt-ZrO2电极镀层及其析氢电催化性能[J].材料保护, 2005, (10): 48-50,76.
    [71]刘榕芳,肖秀峰和朱则善. Zn-PTFE复合电极的电沉积过程及析氢性能[J].材料保护, 2001, (03): 4-6.
    [72]郭忠诚和杨显万.电沉积多功能复合材料的理论与实践[M].北京:冶金工业出版社, 2002.10: 18.
    [73]陈金全和黎万树.纳米复合电镀技术在规模化生产中的应用[C]. 2004年全国电子电镀学术研讨会,重庆, 2004: 128-130.
    [74] I. Shao, P. M. Vereecken, R. C. Cammarata, et al. Kinetics of particle codeposition of nanocomposites[J]. Journal of the Electrochemical Society, 2002, 149(11): 610-614.
    [75] S.-C. Wang and W.-C. J. Wei. Kinetics of electroplating process of nano-sized ceramic particle/Ni composite[J]. Materials Chemistry and Physics, 2003, 78(3): 574-580.
    [76] T. Lampke, B. Wielage, D. Dietrich, et al. Details of crystalline growth in co-deposited electroplated nickel films with hard particles[J]. Applied Surface Science, 2006, 253(5): 2399-2408.
    [77]涂伟毅,徐滨士,董世运等.纳米二氧化硅对镍电沉积影响及在复合镀层中的化学键合状态[J].化学学报, 2004, 62(20): 2010-2015.
    [78] S. C. Wang and W. C. J. Wei. Characterization of electroplated Ni/SiC and Ni/Al2O3 composite coatings bearing nanoparticles[J]. Journal of Materials Research, 2003, 18(7): 1566-1574.
    [79] N. Guglielmi. Kinetics of the deposition of inert particles from electrolytic baths[J]. Journal of the Electrochemical Society, 1972, 119(8): 1009-1012.
    [80] J. P. Celis, J. R. Roos, C. Buelens, et al. Mechanism of electrolytic composite plating: Survey and trends[J]. Transactions of the Institute of Metal Finishing, 1991, 69(4): 133-139.
    [81] J. Fransaer, J. P. Celis and J. R. Roos. Mechanisms of composite electroplating[J]. Metal Finishing, 1993, 91(6): 97-100.
    [82] P. Xiong-Skiba, D. Engelhaupt, R. Hulguin, et al. Effect of pulse plating parameters on the composition of alumina/nickel composite[J]. Journal of the Electrochemical Society, 2005, 152(8): C571-C576.
    [83] P. K. Gupta, A. N. Tiwari and B. K. Agrawal. Electrodeposition and mechanical properties of nickel-tungsten carbide cermets [J]. Transactions of the Japan Institute of Metals, 1982, 23(6): 320-327.
    [84]胡飞,吴坚强,黄敏等.以Guglielmi模型研究脉冲电流下Ni-SiC复合电沉积[J].电镀与涂饰, 2010, (01): 1-4, 8.
    [85] J. Fransaer, J. P. Celis and J. R. Roos. Analysis of the electrolytic codeposition of non-brownian particles with metals[J]. Journal of the Electrochemical Society, 1992, 139(2): 413-425.
    [86]杜克勤,覃奇贤.复合电沉积机理研究进展[J].电镀与精饰, 1995, 17(6): 21-25.
    [87] J. L. Valdes. Electrodeposition of colloidal particles[J]. Journal of the Electrochemical Society, 1987, 134(4): 223C-225C.
    [88] B. J. Hwang and C. S. Hwang. Mechanism of codeposition of silicon carbide with electrolytic cobalt[J]. Journal of the Electrochemical Society, 1993, 140(4): 979-984.
    [89] S. H. Yeh and C. C. Wan. Codeposition of SiC powders with nickel in a Watts bath[J]. Journal of Applied Electrochemistry, 1994, 24(10): 993-1000.
    [90] S. H. Yeh and C. C. Wan. Study of SiC/Ni composite plating in the watts bath[J]. Plating and Surface Finishing, 1997, 84(3): 54-54.
    [91] A. B. Vidrine and E. J. Podlaha. Composite electrodeposition of ultrafineγ-alumina particles in nickel matrices Part I: Citrate and chloride electrolytes[J]. Journal of Applied Electrochemistry, 2001, 31(4): 461-468.
    [92]黄安,高军.表面活性剂在复合电镀中作用研究[J].电镀与环保, 1996, 16(3): 6-8.
    [93]夏法锋,吴蒙华,王金东等.表面活性剂对电沉积Ni-纳米Si3N4复合镀层的影响[J].表面技术, 2004, 33(6): 45-47.
    [94] T. S. Oh, J. H. Lee, J. Y. Byun, et al. Effects of the additives and current density on the electrodeposition behavior and mechanical properties of the Ni-SiC composite coatings[J]. Key Engineering Materials, 2007, 345-346: 1533-1536.
    [95]陈丽,王立平,曾志翔等.表面活性剂对电沉积Ni-Al2O3复合镀层的影响[C].第十三次全国电化学会议,北京, 2005: 298,299.
    [96]郑环宇,安茂忠,陈龙等.分散剂对(Zn-Ni)-Al2O3复合镀中纳米Al2O3分散性能的影响[J].电镀与环保, 2006, 26(2): 11-14.
    [97]夏法锋,吴蒙华,王金东等.表面活性剂对电沉积Ni/纳米Si3N4复合镀层的影响[J].表面技术, 2004, 33(6): 45-47.
    [98]陈.左.杨磊,王志军.表面活性剂对电沉积镍-纳米二氧化钛复合层的影响[J].表面技术, 2005, 34(5): 22-25.
    [99] S. L. Kuo, X.L. Chen, Y.C. Chen, et al. Physical and chemical dispersion effects on the preparation of Ni-Al2O3 composite coating[J]. Journal of the Chinese Institute of Chemical Engineers, 2003, 34(4): 393-398.
    [100]陈准,谭澄宇. Ni-Al2O3纳米复合电镀工艺[J].新技术新工艺, 2003, (4): 41-42.
    [101]李忠学,刘军. Ni-Al2O3复合镀工艺及镀层性能的研究[J].材料保护, 2006, 39(01): 25-28.
    [102]林文松,章立赟,杜林等.镍-纳米氧化铝复合电镀液的制备及影响因素研究[J].材料保护, 2005, 38(2): 24.
    [103] G. Wu, N. Li, D. L. Wang, et al. Effect ofα- Al2O3 particles on the electrochemical codeposition of Co-Ni alloys from sulfamate electrolytes[J]. Materials Chemistry and Physics, 2004, 87(2-3): 411-419.
    [104] G. Wu, N. Li, D. Zhou, et al. Electrodeposited Co-Ni- Al2O3 composite coatings[J]. Surface and Coatings Technology, 2004, 176(2): 157-164.
    [105]武刚,李宁,周德瑞等.α- Al2O3纳米粒子对Co-Ni合金异常共沉积电化学行为的影响[J].物理化学学报, 2004, (10):
    [106] A. Bund and D. Thiemig. Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and copper[J]. Journal of Applied Electrochemistry, 2007, 37(3): 345-351.
    [107]彭元芳,赵国鹏,刘建平等. Ni/α- Al2O3纳米复合电镀工艺条件的研究[J].电镀与涂饰, 2003, 22(05): 7-12, 53.
    [108]张艳丽,罗胜铁,刘大成.金属镍-碳化硅纳米复合电镀工艺研究[J].兵器材料科学与工程, 2007, 30(04): 58-61.
    [109]张爱玲,黄安. Ni- Al2O3复合电镀工艺[J].电镀与环保, 1996, 16(02): 6-9.
    [110]郑筱梅,杨玲,刘光兵.镍纳米Al2O3复合电镀的工艺研究[J].重庆师范学院学报(自然科学版), 2003, 20(2): 40-43.
    [111] G. Vidrich, J. F. Castagnet and H. Ferkel. Dispersion behavior of Al2O3 and SiO2 nanoparticles in nickel sulfamate plating baths of different compositions[J]. Journal of the Electrochemical Society, 2005, 152(5): C294-C297.
    [112] F. E. C. Jakob, R. Nutsch. Electroplated Nickel-Ceramic Composite Coatings with Nanoscaled Particles for Microtechnology[C]. The 3rd International Conference on Hard and Decorative Chromium for the 21st Century, Saint-Etienne, France. 2001: 1-11.
    [113] R. Starosta and A. Zielinski. Effect of chemical composition on corrosion and wear behaviour of the composite Ni-Fe- Al2O3 coatings[J]. Journal of MaterialsProcessing Technology, 2004, 157-158: 434-441.
    [114] S. L. Kuo, Y. C. Chen, M. D. Ger, et al. Nano-particles dispersion effect on Ni/ Al2O3 composite coatings[J]. Materials Chemistry and Physics, 2004, 86(1): 5-10.
    [115] S. L. Kuo. Effect of nickel ion concentration on Ni/ Al2O3 composite coatings[J]. Journal of the Chinese Institute of Engineers, 2005, 28(1): 1-8.
    [116] D. Thiemig and A. Bund. Influence of ethanol on the electrocodeposition of Ni/ Al2O3 nanocomposite films[J]. Applied Surface Science, 2009, 255(7): 4164-4170.
    [117] T. J. Tuaweri and G. D. Wilcox. Behaviour of Zn-SiO2 electrodeposition in the presence of N,N-dimethyldodecylamine[J]. Surface and Coatings Technology, 2006, 200(20-21): 5921-5930.
    [118] D. Thiemig and A. Bund. Characterization of electrodeposited Ni-TiO2 nanocomposite coatings[J]. Surface and Coatings Technology, 2008, 202(13): 2976-2984.
    [119] G. C?R?C, C. Iticescu, L. Benea, et al. The effect of nano- Al2O3 dispersed phase in nickel matrix electrocodeposited[J]. Revue Roumaine de Chimie, 2007, 52(11): 1057-1062.
    [120] S. K. Kim and H. J. Yoo. Formation of bilayer Ni-SiC composite coatings by electrodeposition[J]. Surface and Coatings Technology, 1998, 108-109(1-3): 564-569.
    [121] S. Y. Park, R. H. Kim, J. S. Kim, et al. Composite coating of suspended inert particles in the rotating disk electrode[J]. Journal of Korean Institute of Surface Engineering, 1992, 25(2): 73-81.
    [122] J. W. Graydon and D. W. Kirk. Suspension electrodeposition of phosphorus and copper[J]. Journal of the Electrochemical Society, 1990, 137(7): 2061-2066.
    [123] H. K. Lee, H. Y. Lee and J. M. Jeon. Codeposition of micro- and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating[J]. Surface and Coatings Technology, 2007, 201(8): 4711-4717.
    [124] I. Garcia, J. Fransaer and J. P. Celis. Electrodeposition and sliding wearresistance of nickel composite coatings containing micron and submicron SiC particles[J]. Surface and Coatings Technology, 2001, 148(2-3): 171-178.
    [125] B. Mueller and H. Ferkel. Al2O3-nanoparticle distribution in plated nickel composite films[J]. Nanostructured Materials, 1998, 10(8): 1285-1288.
    [126] B. Mueller and H. Ferkel. Studies on nanocrystalline Ni/ Al2O3 films formed by electrolytic DC plating[J]. Materials Science Forum, 2000, 343: 476-481.
    [127] G. Vidrich, J. F. Castagnet and H. Ferkel. Dispersion behavior of Al2O3 and SiO2 nanoparticles in nickel sulfamate plating baths of different compositions[J]. Journal of the Electrochemical Society, 2005, 152(5): 294-297.
    [128]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社, 2002: 167.
    [129] A. F. Zimmerman, D. G. Clark, K. T. Aust, et al. Pulse electrodeposition of Ni-SiC nanocomposite[J]. Materials Letters, 2002, 52(1-2): 85-90.
    [130] L. Shi, C. F. Sun, F. Zhou, et al. Electrodeposited nickel-cobalt composite coating containing nano-sized Si3N4[J]. Materials Science and Engineering A, 2005, 397(1-2): 190-194.
    [131] L. Benea, P. L. Bonora, A. Borello, et al. Preparation and investigation of nanostructured SiC-nickel layers by electrodeposition[J]. Solid State Ionics, 2002, 151(1-4): 89-95.
    [132] E. J. Podlaha and D. Landolt. Pulse-reverse plating of nanocomposite thin films[J]. Journal of the Electrochemical Society, 1997, 144(7): L200-L202.
    [133] E. J. Podlaha. Selective Electrodeposition of Nanoparticulates into Metal Matrices[J]. Nano Letters, 2001, 1(8): 413-416.
    [134] P. R. Webb and N. Robertson. Electrolytic codeposition of Ni-γAl2O3 thin films[J]. Journal of the Electrochemical Society, 1994, 141(3): 669-673.
    [135] H. Hayashi, K. Nakamura and I. Tari. Codeposition of nickel andα-alumina particle from Watts type bath[J]. Electrochemistry, 1999, 67(4): 344-348.
    [136] M. H. Fawzy, M. M. Ashour and A. M. A. ElHalim. Effect of some operating variables on the characteristics of electrodeposited Ni-alpha- Al2O3 and Ni-TiO2 composites[J]. Transactions of the Institute of Metal Finishing, 1996, 74: 72-77.
    [137] P. M. Vereecken, I. Shao and P. C. Searson. Particle codeposition innanocomposite films[J]. Journal of the Electrochemical Society, 2000, 147(7): 2572-2575.
    [138] D. Thiemig, R. Lange and A. Bund. Influence of pulse plating parameters on the electrocodeposition of matrix metal nanocomposites[J]. Electrochimica Acta, 2007, 52(25): 7362-7371.
    [139]袁琳. Ni-Al2O3复合镀层工艺研究[J].沙洲职业工学院学报, 2006, 9(1): 1-3,61.
    [140]彭元芳,赵国鹏,刘建平等. Ni/α- Al2O3纳米复合电镀最佳工艺条件的确定[J].表面技术, 2004, 22(1): 7-12,53.
    [141]吴蒙华,李智,夏法锋等.纳米Ni- Al2O3复合层的超声电沉积制备[J].功能材料, 2004, 35(6): 776-778.
    [142]包胜华,吴蒙华,刘正宁等.功率超声在电沉积Ni纳米Al2O3复合镀层中应用[J].现代制造工程, 2004, (9): 3-5.
    [143]夏法锋,吴蒙华,李智.超声-电沉积纳米Ni- Al2O3复合镀层及其质量分数测定[C]. 2005年中国机械工程学会年会论文集,重庆, 2005: 322-325.
    [144]谭澄宇,郑子樵,陈准. Ni- Al2O3纳米复合电镀工艺的初步研究[J].材料保护, 2003, 36(4): 43-45.
    [145]陈准,谭澄宇. Ni- Al2O3纳米复合电镀工艺[J].新技术新工艺, 2003, (4): 41-42.
    [146]高鹏,杨中东,薛向欣等.磁场影响下的电沉积[J].材料保护, 2006, (08): 38-42.
    [147]蒋秉植,杨健美.磁场效应影响化学反应研究的概况及前景[J].化学进展, 1992, (02): 15-36.
    [148] O. Aaboubi, J. P. Chopart, J. Douglade, et al. Magnetic field effects on mass transport[J]. Journal of the Electrochemical Society, 1990, 137(6): 1796-1804.
    [149]汤永新,李寒旭,葛琦.电磁场对水煤浆性能的影响[J].煤炭科学技术, 2000, (12):
    [150]李冠成,康永林,李明等.水在电场、磁场作用下物理性质变化及其影响[J].现代物理知识, 2001, (02): 30, 31.
    [151]孟江燕.磁化电解液性质的改变及对电镀的影响[J].成飞情报, 1992, (02): 38-38,54.
    [152] E. Tronel-Peyroz, A. Olivier and D. Laforgue-Kantzer. Effet thermo-Magnetoelectrique en solutions aqueuses electrolytiques[J]. Electrochimica Acta, 1977, 22(2): 145-150.
    [153] E. Tronel-Peyroz, A. Olivier, T. Z. Fahidy, et al. Effet thermo-magnetoelectrique en solutions aqueuses electrolytiques-II[J]. Electrochimica Acta, 1980, 25(4): 441-446.
    [154] T. Z. Fahidy. Magnetoelectrolysis[J]. Journal of Applied Electrochemistry, 1983, 13(5): 553-563.
    [155]陈历喜,王红军.磁场对电解加工的影响[J].航空工艺技术, 1995, (1): 30-31,41.
    [156] E. Tronel-Peyroz and A. Olivier. Applications of the boltzmann equation to the study of electrolytic solution in the presence of electric and magnetic fields[J]. Physicochemical Hydrodynamics, 1982, 3(3-4): 251-265.
    [157] J. Lielmezs and H. Aleman. Weak transverse magnetic field effect on the viscosity of KCl-H2O solution[J]. Thermochimica Acta, 1977, 18(3): 315-318.
    [158]杨中东,高鹏,薛向欣等.稳恒磁场下Ni-W合金镀膜的制备与耐蚀性[J].中国有色金属学报, 2006, 16(10): 1710-1715.
    [159]张景双,安茂忠,杨哲龙等.稳恒磁场对电沉积锌镍合金的影响[J].电镀与环保, 1995, 15(05): 16-18.
    [160]牟世辉,袁艳,姚淑霞.稳恒磁场对电镀铬的影响[J].沈阳工业学院学报, 2004, 23(02): 83-85.
    [161] H. Matsushima, T. Nohira, I. Mogi, et al. Effects of magnetic fields on iron electrodeposition[J]. Surface and Coatings Technology, 2004, 179(2-3): 245-251.
    [162]王森林,洪亮亮.平行电极表面磁场对电沉积钴-镍镀层的影响[J].稀有金属, 2007, 31(02): 211-215.
    [163] C. O'Reilly, G. Hinds and J. M. D. Coey. Effect of a Magnetic field on electrodeposition: chronoamperometry of Ag, Cu, Zn, and Bi[J]. Journal of theElectrochemical Society, 2001, 148(10): C674-C678.
    [164] M. Ebadi, W. J. Basirun and Y. Alias. Influence of magnetic field on the electrodeposition of Ni-Co alloy[J]. Journal of Chemical Sciences, 2010, 122(2): 279-285.
    [165] A. Olivier, J. P. Chopart, J. Douglade, et al. Investigation of magnetic effects on mass transport at the electrode/electrolyte interface by impedance techniques[J]. Journal of Electroanalytical Chemistry, 1987, 217(2): 443-452.
    [166] O. Devos, O. Aaboubi, J. P. Chopart, et al. Magnetic field effects on nickel electrodeposition II: A steady-state and dynamic electrochemical study[J]. Journal of the Electrochemical Society, 1998, 145(12): 4135-4139.
    [167] O. Devos, A. Olivier, J. P. Chopart, et al. Magnetic field effects on nickel electrodeposition[J]. Journal of the Electrochemical Society, 1998, 145(2): 401-405.
    [168] O. Devos, O. Aaboubi, J. P. Chopart, et al. Is there a magnetic field effect on electrochemical kinetics?[J]. Journal of Physical Chemistry A, 2000, 104(7): 1544-1548.
    [169] M. S. Quraishi and T. Z. Fahidy. The effect of magnetic fields on natural convective mass transport at inclined circular disk electrodes[J]. Electrochimica Acta, 1980, 25(5): 591-599.
    [170] G. Hinds, J. M. D. Coey and M. E. G. Lyons. Influence of magnetic forces on electrochemical mass transport[J]. Electrochemistry Communications, 2001, 3(5): 215-218.
    [171]唐春华.外加磁场对电沉积的影响[J].电镀与涂饰, 1993, (3): 54-60.
    [172] J. Dash, J. Anderton, B. Litzenberger, et al. Electrolytic codeposition of alumina with copper in a magnetic field[C]. Extended Abstracts - Fall Meeting (168th Society Meeting). Las Vegas, NV, USA, 1985: 327.
    [173] T. Yamada and S. Asai. Development of a new composite plating method orienting dispersed materials by use of a high magnetic field[J]. Journal of the Japan Institute of Metals, 2001, 65(10): 910-915.
    [174] T. Yamada and S. Asai. Distribution control of dispersed particles in a filmfabricated by composite plating method using a high magnetic field[J]. Journal of the Japan Institute of Metals, 2005, 69(2): 257-262.
    [175] Qiuyuan Feng, Tingju Li, Zhongtao Zhang, et al. Preparation of nanostructured Ni/Al2O3 composite coatings in high magnetic field[J]. Surface and Coatings Technology, 2007, 201(14): 6247-6252.
    [176] F. Hu, K. Chan and N. Qu. Effect of magnetic field on electrocodeposition behavior of Ni–SiC composites[J]. Journal of Solid State Electrochemistry, 2007, 11(2): 267-272.
    [177] F. Hu, K. C. Chan, S. Z. Song, et al. Enhancement of corrosion resistance of electrocodeposited Ni-SiC composites by magnetic field[J]. Journal of Solid State Electrochemistry, 2007, 11(6): 745-750.
    [178] R. Peipmann, J. Thomas and A. Bund. Electrocodeposition of nickel-alumina nanocomposite films under the influence of static magnetic fields[J]. Electrochimica Acta, 2007, 52(19): 5808-5814.
    [179] D. Thiemig, C. Kubeil, Gr, et al. Electrocodeposition of magnetic nickel matrix nanocomposites in a static magnetic field[J]. Thin Solid Films, 2009, 517(5): 1636-1644.
    [180] Y. L. Wen, Y. B. Zhong, Z. M. Ren, et al. Effect of high static magnetic field on microstructure of electrodeposited NiFe film[J]. Chinese Journal of Nonferrous Metals, 2006, 16(4): 715-721.
    [181] Y. L. Wen, Y. B. Zhong, Z. M. Ren, et al. Microstructure analysis of NiFe films electrodeposited in the parallel magnetic field[J]. Rare Metal Materials and Engineering, 2006, 35(SUPPL 2): 325-330.
    [182]黄琦晟,钟云波,任忠鸣等.强磁场下铜电沉积层表面形貌及织构的研究[J].稀有金属材料与工程, 2006, 35(S2): 381-385.
    [183]贾晶,钟云波,汪超等.强磁场中电沉积Ni-P合金的研究[J].上海金属, 2009, 31(04): 10-14.
    [184]马文有,田秋,曹茂盛等.纳米颗粒分散技术研究进展-分散方法与机理(1)[J].中国粉体技术, 2002, (03): 28-31.
    [185]宋晓岚,王海波,吴雪兰等.纳米颗粒分散技术的研究与发展[J].化工进展, 2005, (01): 47-52.
    [186] B. Szczygiel and M. Kolodziej. Composite Ni/ Al2O3 coatings and their corrosion resistance[J]. Electrochimica Acta, 2005, 50(20): 4188-4195.
    [187] J. Amblard, I. Epelboin, M. Froment, et al. Inhibition and nickel electrocrystallization[J]. Journal of Applied Electrochemistry, 1979, 9(2): 233-242.
    [188] E. A. Pavlatou, M. Raptakis and N. Spyrellis. Synergistic effect of 2-butyne-1,4-diol and pulse plating on the structure and properties of nickel nanocrystalline deposits[J]. Surface and Coatings Technology, 2007, 201(8): 4571-4577.
    [189]彭元芳,赵国鹏,刘建平等. Ni/α-Al2O3纳米复合电镀工艺条件的研究[J].电镀与涂饰, 2003, 22(5): 7-12,53.
    [190]周白杨,高诚辉,李晓峰. Ni-Fe-P- Al2O3复合电沉积工艺对Al2O3复合量的影响[J].福州大学学报(自然科学版), 1997, 25(2): 70-73.
    [191]张爱玲,黄安. Ni- Al2O3复合电镀工艺[J].电镀与环保, 1996, 16(2): 6-9.
    [192] R. Aogaki. Micro-MHD effect on electrodeposition in the vertical magnetic field[J]. Magnitnaya Gidrodinamika, 2003, 39(4): 453-461.
    [193] TohruWatanabe. nano-plating: Microstructure Control Theory of Plated Film and Data Base of Plated Film Microstructure[M]. Beijing: Chemical Industry Press, 2007: 10.
    [194] I. Epelboin, M. Joussellin and R. Wiart. Impedance measurements for nickel deposition in sulfate and chloride electrolytes[J]. Journal of Electroanalytical Chemistry, 1981, 119(1): 61-71.
    [195] E. Chassaing, M. Joussellin and R. Wiart. The kinetics of nickel electrodeposition: Inhibition by adsorbed hydrogen and anions[J]. Journal of Electroanalytical Chemistry, 1983, 157(1): 75-88.
    [196] S. W. Watson. Electrochemical study of SiC particle occlusion during nickel electrodeposition[J]. Journal of the Electrochemical Society, 1993, 140(8): 2235-2238.
    [197] B. E. Conway and J. O. M. Bockris. The mechanism of electrolytic metal deposition[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1958, 248(1254): 394-403.
    [198]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社, 2004: 13-17.
    [199]赵旭山,谭澄宇,陈文敬等. Ni-SiC复合镀层电结晶初期动力学分析[J].中国有色金属学报, 2008, No.110(05): 823-828.
    [200] M. H. H?lzle, U. Retter and D. M. Kolb. The kinetics of structural changes in Cu adlayers on Au(111)[J]. Journal of Electroanalytical Chemistry, 1994, 371(1-2): 101-109.
    [201] E. Barrera, M. P. Pardave, N. Batina, et al. Formation mechanisms and characterization of black and white cobalt electrodeposition onto stainless steel[J]. Journal of the Electrochemical Society, 2000, 147(5): 1787-1796.
    [202] M. Fleischmann and H. R. Thirsk. The potentiostatic study of the growth of deposits on electrodes[J]. Electrochimica Acta, 1959, 1(2-3): 146-160.
    [203] A. Bewick, M. Fleischmann and M. Liler. Some factors in potentiostat design[J]. Electrochimica Acta, 1959, 1(1): 83-105.
    [204] A. Bewick, M. Fleischmann and H. R. Thirsk. Kinetics of the electrocrystallization of thin films of calomel[J]. Transactions of the Faraday Society, 1962, 58: 2200-2216.
    [205]周绍民等.金属电沉积-原理与研究方法[M].上海:上海科学技术出版社, 1987: 221.
    [206] R. D. Armstrong and E. A. Charles. Some aspects of the A.C. impedance behaviour of nickel hydroxide and nickel/cobalt hydroxide electrodes in alkaline solution[J]. Journal of Power Sources, 1989, 27(1): 15-27.
    [207] R. Albalat, E. Gómez, C. Müller, et al. Electrochemical nucleation of nickel on vitreous carbon electrodes: the influence of organic additives[J]. Journal of Applied Electrochemistry, 1991, 21(8): 709-715.
    [208] Cr(Ⅵ)对镍沉淀的影响[J].南昌航空工业学院学报, 1994, (01): 14-19.
    [209] M. Y. Abyaneh and M. Fleischmann. The electrocrystallisation of nickel: Part I. Generalised models of electrocrystallisation[J]. Journal of ElectroanalyticalChemistry and Interfacial Electrochemistry, 1981, 119(1): 187-195.
    [210] E. Gómez, C. Muller, W. G. Proud, et al. Electrodeposition of nickel on vitreous carbon: Influence of potential on deposit morphology[J]. Journal of Applied Electrochemistry, 1992, 22(9): 872-876.
    [211] M. Y. Abyaneh, M. Berkem and M. Fleischmann. Electrocrystallisation of nickel: comporison of the kinetics in Watts and sulphamate baths with and without additives[C]. Annual Technical Conference - Institue of Metal Finishing, 1981, Harrogate, England, 1981: 151-152.
    [212] M. Y. Abyaneh, M. Berkem and M. Fleischmann. Electrocrystallization of nickel: the effects of additives[J]. Transactions of the Institute of Metal Finishing, 1982, 60(3): 114-119.
    [213]谭澄宇. Ni、Cu基复合镀层制备及其电化学基础研究[D].中南大学, 2008.
    [214]曹楚南和张鉴清.电化学阻抗谱导论[M].科学出版社, 2004,5: 36.
    [215] K. L. Rabah, A.Harrach, J. P. Chopart, et al. MHD and magnetic convective effects on electrochemical reactions[C]. The 15th Riga and 6th PAMIR Conference on Fundamental and Applied MHD: Megnetoelectrolysis, Rigas Jurmala, Latvia, 2005: 147-150.
    [216] A. Ispas, H. Matsushima, A. Bund, et al. Nucleation and growth of thin nickel layers under the influence of a magnetic field[J]. Journal of Electroanalytical Chemistry, 2009, 626(1-2): 174-182.
    [217] A. Bund, S. Koehler, H. H. Kuehnlein, et al. Magnetic field effects in electrochemical reactions[J]. Electrochimica Acta, 2003, 49(1): 147-152.
    [218] R. Aogaki, A. Sugiyama and R. Morimoto. Micro-MHD effects on electrodeposition under parallel and vertical magnetic fields[C]. 203rd Meeting of The Electrochemical Society, Paris, France, 2003: 631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700