纳米α-氧化铝的制备及其改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了纳米氧化铝的性质、用途、国内外研究现状及制备方法。讨论了沉淀法制备粉体的理论基础,着重对前躯体制备过程中的防团聚机理进行了深入的理论分析。采用反相微乳液体系制备出了纳米氧化铝并探讨了反相微乳液法的形成机理。最后论述了对纳米氧化铝进行表面改性的必要性和可行性。
     本文以Al(NO_3)_3·9H_2O和氨水为原料,采用直接沉淀法制备出了氢氧化铝干凝胶经过高温煅烧合成纳米级的α-Al_2O_3粉末,借助于TG/DTA和X射线衍射等手段研究了在不同Al(OH)_3干凝胶样品的煅烧过程中亚稳态Al_2O_3的相变过程。着重研究了干凝胶中残留的NH_4NO_3和制备过程中添加的α-Al_2O_3籽晶对Al_2O_3相变的影响并分析了两者降低Al_2O_3相变温度的机理。
     采用聚乙二醇辛基苯基醚/正丁醇/环己烷/水溶液形成的体系,用反相微乳液法合成了Al_2O_3纳米粒子。水相/表面活性剂摩尔比ω_0和煅烧温度以及煅烧时升温速率对Al_2O_3颗粒的大小、形貌和晶相有重要的影响。研究表明,减小ω_0和适当降低煅烧温度都能有效地控制颗粒的粒径,同时,煅烧时以较慢的速率2℃/min升温,更有利于生成的氧化铝向稳定的α晶相转变。
     采用丙烯酸化学改性和三乙醇胺机械改性两种方法对制得的纳米氧化铝进行改性。采用正交试验设计方法确定了丙烯酸化学改性的最优化的条件:改性剂浓度为3.5g/L、改性温度40℃、改性pH=5、改性时间为40min。用此最佳工艺条件优化改性,测得改性后粉体的亲油化度为0.507。通过红外光谱图可知,在改性后的纳米氧化铝粉体中,丙烯酸和三乙醇胺均与Al_2O_3发生了键合;且从TEM图中可以看出,改性后的Al_2O_3在有机溶剂乙醇中具有更好的分散性。
The properties, applications and research situation, and preparationmethod of nanosized alumina at home and abroad has been presented inthis paper. The theoretical foundation of nanosized particles ofprecipitation reaction was reviewed, especially theoretical analysis ofpreventing agglomeration mechanism in preparing nanosized particleswas focused on. Al_2O_3 nanoparticles also have been prepared by reversemicroemulsion and the formation mechanism has been discussed. Inaddition, the necessity and possibility of surface modification ofnanosized Al_2O_3 has been discussed.
     α-Al_2O_3 nanocrystalline powders were synthesized by calcining thedry Al(OH)_3 gels prepared from aluminum nitrate and ammonia solutionusing precipitation method, and the transformation of metastables Al_2O_3in the process of calcining different dry Al(OH)_3 gels were studied byTG/DTA and XRD curves. Especially studied the effect of the leftNH_4NO_3 and the addedα-Al_2O_3 crystal to the phase change of Al_2O_3, andthe mechanism was dicussed too.
     Al_2O_3 nanoparticles have been prepared by polyethylene glycoloctylphenyl ether (Triton X-100)/n-butyl alcohol/cyclohexane/waterreverse microemulsion, molar ratio of water to surfacant (ω_0), calcinationtemperature and heating rates play important roles on the structures andmorphologies of Al_2O_3 nanoparticles. The results show that the obtainedAl_2O_3 powder has no obvious agglomeration, narrow particle sizedistribution under the condition ofω_0=10, T=1150℃, and heating rate of2℃/min is propitious to the phase change of a stableα-Al_2O_3.
     The modifications of the nanosized Al_2O_3 were carried among thecrylic acid chemical modification and triethanolmine mechanicalmodification. We used orthogonal experiment to confirm the optimalcondition of crylic acid modification: the concentration of modifier is3.5g/L, the modification temperature is 40℃, the pH value is 5, and themodification time is 40min. Modification under this optimal and theoleophilic degree is about 0.507. Through the FT-IR curves of the modified Al_2O_3, new bonds were produces between the modifier andAl_2O_3, and the modified Al_2O_3 dispersed well in ethanol seen from theTEM figures.
引文
[1] 张立德.超微粉体制备与应用.北京:中国石化出版社,2001.
    [2] 杨剑,腾凤恩.纳米材料综述.材料导报,1997,11(2):6~10
    [3] 吴俊,王龙彪,黄清安等.纳米材料的进展.电镀与涂饰,1999,21(6):1~5
    [4] 张志煜,崔作霖.纳米技术与纳米材料.北京:国防工业出版社,2000.
    [5] 罗顺忠,陈开玉.美国的纳米材料研究现状及应用.全国第三届纳米材料和技术应用会议论文集(上卷).南京:2003,349~362.
    [6] 曹新,赵振华.纳米科技时代——奇迹、财富与未来.北京:经济科学出版社,2001
    [7] 张立德,牟季美.纳米材料学.辽宁科技出版社,1994
    [8] 张立德.纳米材料.北京:化学工业出版社,2000
    [9] 李新勇,李树本.纳米半导体研究进展.化学进展,1996,9(3):231~239
    [10] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [11] 尹衍升,张景德.氧化铝陶瓷及其复合材料.北京:化学工业出版社,2001
    [12] Igor L, David B. Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences. Journal of the American Ceramic Society, 1998, 81(8): 1995~2012
    [13] Zhou R S, Robert L S. Sturctures and Transformation Mechanisms of the η、γ and θ Transition Aluminas. Acta Crystallographica Section B, 1991, 47: 617~630
    [14] Ronald G. M. Evaluated Material Properties for a Sintered α-Al_2O_3. Journal of the American Ceramic Society, 1997, 80(8): 1919~1928
    [15] 张美鸽.高纯氧化铝制备技术的进展.功能材料,1993,24(2):187~191
    [16] 张永刚,闫裴.纳米氧化铝的制备及应用.无机盐工业,2001,33(3):19~22
    [17] 陈万坤.我国氧化铝工业发展趋势.世界有色金属,1996,7:9~14
    [18] 陆钦芳.关于我国氧化铝工业竞争能力的几点思考.轻金属,1997,1:3~7
    [19] Cengiz K. Al_2O_3-Y-TZP/Al_2O_3 functionally graded composites of tubular shape from nano-sols using double-step electrophoretic deposition. Journal of the European Ceramic Society, 2003, 23(10): 1655~1660
    [20] 李芳宇,刘维平.纳米粉体制备方法及其应用前景.中国粉体技术,2000,6(5):29~32
    [21] 顾立新,成庆堂,石劲松.纳米Al_2O_3——一种前景广阔的新型化工材料.化工新型材料,2000,28(11):20~21
    [22] 马荣骏,邱电云,马文骥.湿法制备纳米级氧化铝.湿法冶金,1999,70(2):31~35
    [23] John B W. Nanostructured composites obtained by reactive milling. Science, 1992, 255: 1093~1097
    [24] Wu Y Q, Zhang Y F, HuangX X, et al. Preparation ofplatelike nano alpha alumina particles. Ceramics International, 2001, 27(3): 265~268
    [25] 王志强,马铁成,蔡英骥,等.超细α-Al_2O_3的低温燃烧合成及其烧结特性的研究.硅酸盐通报,2000,5:28~31
    [26] Ding J, Takuya T, Paul G M. Ultrafine Alumina Particles prepared by the mechanochemical / Thermal Processing. Journal of the American Ceramic Society. 1996, 79(11): 2956~2958
    [27] 张喜梅,陈玲,李琳,等.纳米材料制备研究现状及其发展方向.现代化工,2000,20(7):13~16
    [28] 刘伯元,黄锐,赵安赤.非金属纳米材料.中国粉体技术,2001,7(1):12~18
    [29] Gregory PJ, Ross M, Douglas M S, et al. Reactive Laser Ablation Synthesis of Nanosize Alumina Powder. Journal of the American Ceramic Society, 1992, 75(12): 3294~3298
    [30] 李继光,孙旭东,赵志江,等.籽晶对碳酸铝铵热分解相变及α-Al_2O_3纳米粉烧结活性的影响.金属学报,1999,35(10):1009~1102
    [31] 李继光,孙旭东,张民,等.碳酸铝铵热分解制备α-Al_2O_3超细粉.无机材料学报,1998,13(6):803~807
    [32] 李继光,孙旭东,茹红,等.湿化学法合成α-Al_2O_3纳米粉.材料研究学报,1998,12(1):105~107
    [33] Li J G, Sun X D. Synthesis and Sintering Behavior of a Nanocrystalline α-Alumina Powder. Acta Materialia, 2000, 48(12): 3103~3112
    [34] 英宏,李继光,赵志江,等.沉淀法制备单分散纳米Al(OH)_3先驱沉淀物.东北大学学报,1999,20(5):515~518
    [35] 林元华,张中太,黄传勇,等.前驱体热解法制备高纯超细α-Al_2O_3粉体.硅酸盐学报,2000,28(3):268~271
    [36] 王歆,庄志强,齐雪君.金属氧化物溶胶-凝胶法制备技术及其应用.材料导报,2000,14(11):42~44
    [37] 王晶,邱竹贤,谢朋,等.有机醇盐Sol-Gel法纳米氧化铝粉体制备及表征.有色金属,1999,51(3):76~78.
    [38] 黄传真,张树生,王宝友.溶胶—凝胶法制备纳米氧化铝粉末的研究.金刚 石与磨料磨具工程,2002,127:22~25
    [39] Tarar S S, Gunay V. Sol-gel processing of alkoxide-derived α-Al_2O_3 powders. Interceram, 1996, 45(4): 254~256
    [40] 唐芳琼,郭广生,侯莉萍.纳米Al_2O_3粒子的制备.感光科学与光化学,2001,19(3):198~201
    [41] 洪梅,陈念贻.溶胶—凝胶方法制备α-Al_2O_3超细粉的研究.功能材料,1995,26(2):180~181
    [42] 刘伯元,黄锐,赵安赤.非金属纳米材料.中国粉体技术,2001,7(2):33~40
    [43] Ling W, Lsabrl K L. Sinterability of Calcined Freeze-Dired Alumina Powders. Journal of the American Ceramic Society, 1991, 74(11): 2934~2936
    [44] 许珂敬,杨新春,田贵山,等.采用引入晶种的水热合成法制备α-Al_2O_3纳米粉.硅酸盐学报,2001,29(6):576~579
    [45] 施尔畏,夏长泰,王步国,等.水热法的应用与发展.无机材料学报,1996,11(2):193~206
    [46] Pramod K S, Jilavi M H, Burgard D, et al. Hydrothermal Synthesis of Nanosize α-Al_2O_3 from seeded Aluminum Hydroxide. Journal of the American Ceramic Society, 1998, 81(10): 2732~2734
    [47] Kazumasa T, Takao T, Naoyoshi W, et al. Preparation and characterization of nano-structured ceramic powders synthesized by emulsion combustion method. Journal ofNanoparticleResearch, 1999, 1:197~204
    [48] 孟季茹,赵磊,梁国正,等.无机非金属纳米微粒的制备方法.化工新型材料,2000,28(4):23~27
    [49] 张泰.纳米材料的制备技术及进展.辽宁化工,1999,28(1):3~8
    [50] Vollath D, Sickafus K E. Synthesis of nanosized ceramic oxide powders by microwave plasmareactions. Nanostructured Materials, 1992, 1(5): 427~437
    [51] Shi J L, Lin Z X. The flow characteristics of hot-pressing of beta-Al_2O_3. Ceramics International, 1989, 15(2): 107~112
    [52] 王宏志,高濂,李炜群,等.高分子网络凝胶法制备纳米α-Al_2O_3粉体.无机材料学报,2000,15(2):356~360.
    [53] 周曦亚,欧阳世翕,程吉平.液相共沉淀法制Al_2O_3超细粉过程及防团聚措施.华南理工大学学报(自然科学版),1996,24(7):78~82
    [54] 周恩绚,胡学寅.用相转移分离法制备α-Al_2O_3超细粒子.化学通报,1997,(4):38~40
    [55] 冯丽娟,陈诵英,彭少逸,等.超细Mo/Al_2O_3催化剂(Ⅰ)—催化及还原性质 研究.高等学校化学学报,1995,16(1):98~102
    [56] William M. Carty Udayan Senapati. Porcelain-Raw Materials, Processing, Phase Evolution, and Mechanical Behavior. Journal of the American Ceramic Society, 1998, 81(1): 3~20
    [57] 丁绪淮,谈道.工业结晶.北京:化学工业出版社,1985.14
    [58] 朱履冰.表面与界面物理.天津:天津大学出版社,1992.170
    [59] Li J G, Sun X D. Synthesis and sintering behavior of a nanocrystalline α-Al_2O_3 powder. ActaMaterialia, 2000, 48:103~3112
    [60] 朱履冰.表面和界面物理.天津:天津大学出版社,1992.173
    [61] 崔正刚,殷福珊.微乳化技术及应用(第一版).北京:中国轻工业出版社,1999:377~378
    [62] 崔正刚,殷福珊.微乳化技术及应用(第一版).北京:中国轻工业出版社,1999:73~74
    [63] 朱步瑶,赵振国.界面化学基础(第一版).北京:化学工业出版社,1996:159~166
    [64] 王笃金,吴谨光.反胶团或微乳液法制备超细颗粒的研究进展.粉体技术,1994,1(1):30~33
    [65] 杨光威,丁建东,宋洪昌.反胶团微乳液制备纳米粒子的研究进展.淮海工学院学报,2001,10(2):27~31
    [66] 施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用.功能材料,1998,29(2):136~139
    [67] 王笃金,吴瑾光,徐光宪.反相团或微乳液法制备抄袭颗粒的研究进展.化学通报,1995,9:1~5
    [68] Jang J, Yoon H. Novel Fabrication of Size-Tunable Silica Nanotubes Using a Reverse-Microemulsion-Mediated Sol-Gel Method. Advanced Materials. 2004, 16(9~10): 799~802
    [69] Matthew Z Y, Kevin C, Eva R B, et al. Hydrothermal Synthesis of Molecular Sieve Fibers: Using Microemulsions To Control Crystal Morphology. Angewandte Chemie International Edition. 2002, 41(3): 476~478
    [70] 焦程敏,卢文庆,程青,等.微乳液法制备纳米草酸钆的热解机理的研究.无机化学学报,2006,22(1):166~170
    [71] Tawatchai C, Amomsak C, Joydeep D, et al. Efects of cosurfactant on ZnS nanoparticle synthesis in microemulsion. Science and technology of Advanced Materials, 2005, 6:266~271
    [72] Han D Y, Yang H Y, Shen C B, et al. Synthesis and size control of NiO nanoparticlesbywater-in-oilmicroemulsion. Powder Technology, 2004, 147: 113~116
    [73] Song K C, Jong H K. Synthesis of high surface area tin oxide powders via water-in-oilmicroemulsions. Powder Technology, 2000, 107:268~272
    [74] Lee M S, Lee G D, Ju C S, et al. Preparations of nanosized TiO_2 in reverse microemulsion and their photocatalytic activity. Solar Energy Materials and Solar Cells, 2005, 88:389~401
    [75] 王哓红,郭耕,郭杨龙,等.高温稳定的Al2O_3基复合氧化物的制备与性能.无机材料学报,2005,20(4):895~901
    [76] Wang X H, Lu G Z, Guo Y, et al. Preparation of high thermal-stable alumia by reverse microemulsion method. Materials Chemistry and Physics, 2005, 90: 225~229
    [77] Huang Y, Ma T, Yang J L, et al. Preparation of spherical ultrafine zirconia powder in microemulsion system and its dispersibility. Ceramics International, 2004, 30(5): 675~681
    [78] 胡长员,罗来涛.氧化铝的改性及发展趋势.现代化工,2002,22:78-81
    [79] 于志强,武高辉,孙东立,等.Al_2O_3微粉的表面改性及表征.无机材料学报,2003,18(6):1250~1254
    [80] 刘丽君,郭奋,陈建峰.纳米氢氧化铝的表面改性研究.北京化工大学学报,2004,31(3):22~26
    [81] 汤国虎,叶巧明,连红芳.无机纳米粉体表面改性研究现状.材料导报,2003,17(9):33~35
    [82] 陈龙武,任煜,甘礼华,等.无机粉体的表面改性技术.实验室研究与探索,2003,22(6):45~46
    [83] 赵小玲.纳米氧化铝的制备及改性工艺研究:[硕士学位论文].西安:西北大学,2003
    [84] Yen F S, Lo H S, Wen H L, et al. θ-to α-phase transformation subsystem induced by α-Al_2O_3-seeding in boehmite-derived nano-sized alumina powders. Journal of Crystal Growth, 2003, 249:283~293
    [85] Yen F S, Wang M Y, Chang J L. Temperature reduction θ-to α-phase transformation induced by high-pressure pretreatments of nano-sized alumina powders derived from boehimte. Journal of Crystal Growth, 2002, 236:197~209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700