煤粉炉联产贝利特-Q相水泥熟料试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电力工业在向社会提供洁净电力的同时,其产生的巨量粉煤灰对环境和生态造成了巨大压力。开展粉煤灰综合利用研究,实现粉煤灰资源化、减量化和效益化,成为缓解环境生态压力,解决资源短缺矛盾的重要举措。目前开展的煤粉炉联产水泥熟料技术研究,其创新之处在于将燃煤电力工业与水泥工业纳入循环经济环节,实现粉煤灰的源利用。
     为了科学合理的确定煤粉炉联产水泥熟料的系列和品种。本文在分析煤粉炉联产水泥熟料技术研究现状基础之上,对不同种类水泥及其熟料的原料特点、烧成条件、化学组成、矿物种类和水化特性开展了比较分析,对煤灰成分与水泥硅铝质原料的化学组成特点进行了对照分析,对煤粉炉联产硅酸盐、铝酸盐和硫铝酸盐等传统水泥熟料存在的问题进行了理论分析。将具有低碱度、低烧成温度和良好水化性能的Q相矿物引入煤粉炉联产水泥熟料技术,提出了煤粉炉联产Q相水泥熟料的试验构想,按照煤质特性拟定了煤粉炉联产Q相水泥熟料的分类原则。
     为了探寻Q相矿物的形成机制,本文在实验室高温炉开展了钙铝黄长石2CaO·Al_2O_3·SiO_2转变为Q相矿物的试验研究,并以此为基础,在模拟煤粉炉的两段多相反应实验台,以长广煤和兖州煤为试验煤种,进行了煤粉炉联产改性粉煤灰矿物生成规律试验研究。试验结果表明:2CaO·Al_2O_3·SiO_2能与适量CaO和MgO反应生成具有良好水化活性的Q相矿物;高硫长广煤和低硫兖州煤,随其混合煤粉添加剂质量分数的调整,改性粉煤灰矿物组成由非活性成分占主体,逐渐过渡为矿物组成出现少量水泥熟料矿物,直至矿物组成由水泥熟料矿物占主体且出现目标矿物Q相。改性粉煤灰矿物生成规律试验结果,验证了高硫煤和低硫煤联产Q相水泥熟料的可行性。
     为了获得煤粉炉联产Q相水泥熟料煅烧制度,本文选取长广煤为试验煤种,在两段多相反应实验台,开展了煅烧温度、物料停留时间、混合煤粉制备方式、炉内气氛和钙基添加剂形式等影响因素试验研究。试验结果表明:在本试验研究条件下,实验台炉内温度设定为1 330℃,物料在炉内停留6.94s是熟料矿物烧成反应的最佳条件,熟料矿物生成反应较为充分;在一定范围内,煤粉与添加剂粒度越小、粒度筛分级差越大,愈有利于混合煤粉中矿物质与添加剂发生水泥熟料矿物生成反应;高硫煤联产Q相水泥熟料,炉内还原性气氛对熟料矿物3CaO·3Al_2O_3·CaSO_4的生成反应产生负面影响,而对Q相矿物的生成反应有促进作用;用CaCO_3替代CaO配料联产Q相水泥熟料,熟料矿物组成中有Q相矿物存在,但熟料矿物生成反应不彻底,还需进一步开展煤粉炉联产Q相水泥熟料钙基添加剂形式及掺加工艺的研究。
     为了判断煤粉炉联产Q相水泥熟料对锅炉系统运行可能产生的影响,本文以长广煤和兖州煤为试验煤种,开展了混合煤粉燃烧及熔融特性试验研究。试验结果表明:随着添加剂比例的增加,混合煤粉燃烧热失重速率曲线相对原状煤粉而言交得愈为平缓;混合煤粉燃烧速率降低,燃烧明显分为两个阶段,且燃烧后移趋势增大;混合煤粉着火温度提高,着火延迟时间变长,稳定性降低;混合煤粉放热量减少,燃尽时间延长。混合煤粉灰熔融特性试验结果表明:随添加剂CaO质量分数在一定范围内的逐渐增加,混合煤粉熔融特性温度呈现V型变化规律;长广煤和兖州煤联产Q相水泥熟料,其结渣趋势较原状煤都有一定程度的降低。对混合煤粉煤灰软化温度矿物组成进行了XRD分析,并利用CaO-Al_2O_3-SiO_2三元系统相图,对煤灰熔融特性温度变化规律开展了机理分析。分析表明,随着混合煤粉添加剂质量分数变化,煤灰矿物组成中出现低温共融体是煤灰熔融特性温度降低的主要原因。
     本文对长广煤和兖州煤联产熟料样品矿物组成进行了XRD定量分析,结果显示联产熟料样品矿物组成以2CaO·SiO_2和Q相为主。长广煤和兖州煤联产熟料样品2CaO·SiO_2的质量分数分别为57.2%和46%,Q相矿物质量分数分别为27.2%和32.1%。考虑到熟料样品矿物组成中贝利特和Q相矿物的双重特性,本文将联产熟料定位为贝利特-Q相水泥熟料。联产贝利特-Q相水泥熟料砂浆强度试验结果表明,其砂浆试样各龄期抗压强度和抗折强度接近32.5普通硅酸盐水泥标准;当联产贝利特-Q相水泥熟料中掺入30%的硅酸盐水泥熟料时,其砂浆试样各龄期强度超过了32.5普通硅酸盐水泥标准;联产贝利特-Q相水泥熟料膨胀性能、安定性和凝结时间符合水泥产品相关标准。联产贝利特-Q相水泥熟料,水化3d就出现2CaO·Al_2O_3·8H_2O、3CaO·Al_2O_3·3CaSO_4·32H_2O、xCaO·SiO_2·yH_2O和Al_2O_3·3H_2O等水化产物。且随着水化龄期的延长,2CaO·Al_2O_3·8H_2O、3CaO·Al_2O_3·CaSO_4·12H_2 O、3CaO·Al_2O_3·6H_2O等水化产物逐渐占据主体。煤粉炉联产贝利特-Q相水泥熟料能兼收一定的固硫效果,熟料样品游离CaO质量分数符合水泥熟料产品标准。
     本文在混合煤粉球形聚合颗粒假设前提下,将煤粉炉联产贝利特-Q相水泥熟料过程简化为混合煤粉球形聚合颗粒灰化过程。对煤中矿物质高温热反应行为,以及长广煤和兖州煤联产贝利特-Q相水泥熟料化学组成进行了分析研究。依据经验公式,对Q相矿物热力学数据进行了估算。对长广煤和兖州煤联产贝利特-Q相水泥熟料化学组成可能发生的矿物生成反应进行了热力学计算,对熟料矿物生成反应优先顺序进行了比较,对可能生成的熟料矿物种类进行了理论分析。联产熟料化学组成矿物生成反应热力学分析结论,与长广煤和兖州煤联产试验熟料矿物组成事实基本一致。采用金斯特林格方程对长广煤和兖州煤联产贝利特-Q相水泥熟料过程进行了动力学分析。初步确立了长广煤和兖州煤联产贝利特-Q相水泥熟料矿物形成化学。
     本文以一台330MW机组1 004(t.h~(-1))煤粉炉为对象,对其实施联产贝利特-Q相水泥熟料技术可能产生的经济、资源和能源效益进行了初步分析。结果表明:此锅炉实施联产贝利特-Q相水泥熟料技术,可给电力企业和水泥企业年创造经济效益6 658万元;水泥企业可年节约黏土质原料7.66万t,节约水泥混合材8.62万t;可年降低能源消耗2.024万t标准煤。
While coal-fired power industry provides our society with clean electric power, the generation of jillion fly ash confronts us with pressure from deterioration of environment. Study on comprehensive utilization and realization of resource, reduction and benefit of fly ash become ways and means of mitigation of environment pressure and shortage of nature resource. The innovation of coproduction technology of cement clinker in PPC (pulverized coal combustion) boilers of power plants, lie in achievement of source utilization of fly ash , realization of circular economy between coal-fired power industry and cement industry and breakthrough of impasse of traditional utilization of fly ash.
     In order to select reasonable series and types of coproduction cement clinker in PPC boilers, based on status analyses of coproduction technology of cement clinker, comparison of raw material characteristics, calcinations condition, chemical composition,mineral component and hydration performance were carried out between different series of cement and clinker, and the properties and difference between minerals in coal ash and silicon -aluminum raw materials of cement were analyzed. Problem of coproduction of traditional cement were analyzed. Then,Q-phase with low alkalinity,low calcinations temperature and better hydration performance was introduced to coproduction technology of cement clinker. In this dissertation, the idea was originally put forward to cogenerate Q-phase cement clinker in PPC boilers, and the sort principle of coproduction of Q-phase cement clinker was primarily designed according to properties of coals.
     In order to ascertain formation mechanism of Q-phase in the process of cement clinker coproduction, experiments of transform of pure mineral of 2CaO·Al_2O_3·SiO_2 into Q phase were conducted on high-temperature box-type resistance furnace.Then,on the base of experiment results, high-sulphur Changguang coal and low-sulphur Yanzhou coal selected as experimental coals, experiments of mineral formation law of calcium-enriched modified fly ash were performed on two-stage polyphase reaction setup. The collected samples were analyzed by XRD, SEM and EDS,respectively. The results displayed that pure 2CaO·Al_2 O_3·SiO_2 with suitable content CaO and MgO could transform into Q phase; Wheather Changguang coal or Yanzhou coal, with adjustment of addtives content in agglomeration coal powder, minerals component of coproduction modified fly ash varied from mainly con sisting of no-active minerals gradually to appearance of trifling cement clinker minerals, to appearance of cement clinker and aim mineral of Q-phase. Experiments results testified the feasibility of coproduction of Q-phase cement clinker from high-sulphur Changguang coal and low-sulphur Yanzhou coal.
     High-sulphur Changguang coal as experimental coal, experiments of influencing factors such as calcinations temperature, material retention time, agglomeration coal powder preparation method and atmosphere in furnace on Q-phase cement clinker coproduction were performed on two-stage polyphase reaction setup. The results showed that under con dition of parameters of setup in this experiment, the best calcinations temperature was 1 3 30℃that was in accordance with temperature scope of pulverized coal combustion boilers; Under 1 330℃, at the range of 1.74 second to 6.94 second , extension of material retention time favored Q-phase cement clinker calcinations reaction; At a certain degree, the smaller particle of coal powder and calcium-base additive in agglomeration particles, the greater difference of sieving grade of coal powder and calcium-base additive in agglomeration particles, the easier solid reaction of CaO, MgO and minerals of coal powder took place in the process of combustion of agglomeration particle;Reducing atmosphere in furnace impact negative effect on formation of 3CaO·3Al_2O_3·CaSO_4, while formation of Q-phase can be promoted. With CaCO_3 replacing CaO,there was chance of formation of Q-phase.But increase of the ratio of none-combustible additives in agglomeration coal powder would give rise to heat value decrease,and the reaction of clinker minerals unsufficient. So further study on selection and addition technology of additive agent needs to do .
     With high-sulphur Changguang coal and low-sulphur Yanzhou coal selected as experimental coals, experiments of combustion characteristics and fusibility of agglomeration coal powder were investigated, The thermogravimetry results revealed that after adding calcium-based additives, the samples' curve of mass loss become gentle with the increasing ratio of additives in the samples;The velocity of mass loss curves' peak value fall, which showed the speed of loss weight went into slowly;the combustion process obviously sepa rated into two stages, and with the increasing of the ratio of additives, the burning intensity of the experiod was weakened gradually and in the anaphase the burning intensity was strengthened; the test sampler's ignition temperatures somewhat increased, the kindling retention time prolonged, and the stability of combustion decreased. With the additive ratio increasing, the inter mixture's convert ash ratio augmented, and the exotherm's width of peak get narrow, and the value of calorific power trailed off, and the time of burnout were postponed. The fusion characteristics expriment results showed that with addition of CaO gradually increasing from zero to certain degree, melting characteristics temperature of agglomeration coal powder present variation law of V type. Compared with original Changguang coal and Yanzhou coal, slagging tendency of agglomeration coal powder for coproduction of Q-phase cement clinker was mild. Thermal reaction of minerals of coal ash in pulverized coal combustion boilers were simulated in high-temperature box-type re sistance furnace. Mineral components of coal ash at soft temperature were analyzed by X-ray diffraction, and further theoretically analysis of variation mechanism of melting characteristics temperature of agglomeration coal powder was conducted making use of ternary phase diagram of CaO-Al_2O_3-SiO_2 system .The results showed that with content of CaO and MgO added into agglomeration coal powder varying, existence of co-melting com pound in mineral components of agglomeration coal powder ash gave rise to decreasing of melting characteristics temperature.
     Experiments of Q-phase cement clinker coproduction were conducted on two-stage polyphase reaction setup under optimized calcination condition. High-sulphur Changguang coal and low-sulphur Yanzhou coal selected as experimental coals, and the collected clinker samples were quantitatively analyzed by X-ray diffraction. The results showed that the minerals components of cement clinker mostly consisted of 2CaO·SiO_2 and Q-phase, and the content of 2CaO·SiO_2 of cement clinker accounted for 57.2% and 46%, and the content of Q-phase of cement clinker accounted for 27.2% and 32.1% . According to minerals components of cement clinker, dual performance of 2CaO·SiO_2 and Q-phase of cement clinker coproduction were fully taken into account. The sample can be named "belite-Q phase cement clinker".
     The properties of coproduction cement clinker from Changguang coal were tested at measurement laboratory of Zhejiang Zhuji Fuli Cement Co., Ltd. The results indicated that strength of compress and flexiblity of mortar samples at different ages were close to national standard of 32.5 grades Portland cement; when 30 percent Portland cement clinker was added to belite Q-phase cement clinker, strength of compress and flexiblity of mortar samples at different ages exceeded national standard of 32.5 grades Portland cement. Dry shrinkage, setting time and invariability of belite Q-phase cement clinker all satisfied involved national standard of cement clinker. Apart from 2CaO·SiO_2, 2CaO·Al_2O_3·8H_2O crystal, 3CaO·Al_2O_3·3CaSO_4·32H_2O, xCaO·SiO_2·yH_2O gel, and Al_2O_3·3H_2O gel appeared in 3d hydration sample. With hydration process developing, hydration product of 2Ca O·Al_2O_3·8H_2O, 3CaO·Al_2O_3CaSO_4·12H_2O, 3CaO·Al_2O_3·6H_2O gradually enriched.
     The content of sulfur and free CaO of coproduction cement clinker were measure ed.The results showed that when pulverized coal combustion boilers coproduced belite Q-phase cement clinker, desulfurization efficiency in furnace can be simultaneously enhanced; and the content of free CaO of coproduction cement clinker amounted about to 1 %, meet ing the national standard of cement clinker.
     Based on the assumption of spherical aggregation particle of agglomeration coal powder, process analysis of coproduction of belite Q-phase cement clinker was reduced to analysis of spherical aggregation particle ashing. Dehydration and decomposition reaction of minerals of coal under high temperature were analyzed, and the chemical composition of cement clinker coproduction from high-sulphur Changguang coal and low-sulphur Yanzhou coal were preliminary investigated. By means of empirical equation, thermo dynamic parameters of Q-phase were estimated. In the light of thermodynamic function of state Gibbs free enthalpy, the free enthalpy variation of mineral formation reactions taking placing in process of coproduction of belite Q-phase cement clinker from Changguang coal and Yanzhou coal were calculated, and the sequence of priority of mineral formation reactions were found out, and the resultants in process of coproduction of belite Q-phase cement clinker were investigated. The analysis conclusion accorded with experiment results of belite Q-phase cogeneration from Changguang coal and Yanzhou coal. Making use of Gentling equation, kinetics analyses of coproduction of belite Q-phase were carried out. Mineral formation chemical of beliet Q-phase cement clinker coproduction from Changguang coal andYanzhou coal were preliminary set up.
     Last but not least,the benifts of coal-fired power enterprise and cement enterprise were predicted by micro-case method ,one year as analytical period, one 1 004 (t.h~(-1)) PPC boiler for 330MW power set selected as analyzed object. The analyses showed direct profits of 66 580 000 yuan one year can be made for coal-fired power enterprise and cement enterprise. Cement enterprise can yearly save clay 76 600 t, cement mixture 86 200t. Energy consumption would yearly save 20 240t coal equi valent.
引文
[1]吴宗鑫等.以煤为主的多元化清洁能源战略[M].北京:清华大学出版社,2001.
    
    [2]国家发展改革委员会.能源发展“十一五”规划.北京,2007.
    
    [3]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,2000.
    
    [4]www.bp.com.BP statistical review of world energy.2005.
    
    [5]国家统计局.中国统计年鉴[M].北京:中国统计出版社,2006.
    
    [6]刘耀东.中国电力工业结构、产能、产出、集中度、规模、生产率分析[J].中国 能源,2004,26(9):13-19.
    
    [7]徐锭明.中国能源发展现状与未来[J].中国科技投资,2007,(5):2-3.
    
    [8]王文龙.电厂煤粉炉直接联产高硅硫铝酸盐水泥熟料的试验研究[D].杭州:浙江 大学,2004.
    
    [9]吴立新,陈贵锋等.提高中国煤炭洗选比例的障碍分析及政策建议[J].中国能 源,2003,(5):18-21.
    
    [10]孙荣庆.我国二氧化硫污染现状与控制对策[J].中国能源,2003,25(5):25-28.
    
    [11]国家环保总局.2006年中国环境状况公报[EB].http://www.sepa.gov.cn/eic.
    
    [12]中国环境年鉴编辑委员会.中国环境年鉴[M].北京:中国环境年鉴出版社,2006.
    
    [13]程军.炉内高温燃烧两段脱硫的机理研究[D].杭州:浙江大学,2002.
    
    [14]国家发展改革委员会,国家环保总局.关于印发现有燃煤电厂二氧化硫治理“十 一五”规划的通知.
    
    [15]王福元,吴正严.粉煤灰利用手册[M].北京:中国电力出版社,2004.
    
    [16]王将军,孙立军.高钙粉煤灰的界定[J].粉煤灰综合利用,2002,(5):27-29.
    
    [17]吕梁,侯浩波.粉煤灰性能与利用[M].北京:中国电力出版社,1998:1-52.
    
    [18]赵永椿,张军营,高全,郭欣,郑楚光.燃煤飞灰中磁珠的化学组成及其演化机理 研究[J].中国电机程学报,2006,26(1):82-87.
    
    [19]袁春林,张金明,段玖祥.我国火电厂粉煤灰的化学成分特征[J].电力环境保 护,1998,14(1):9-14.
    
    [20]沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991.
    
    [21]钱觉时,吴传明,王智.粉煤灰的矿物组成(上)[J].粉煤灰综合利用,2001,(1):26-31.
    
    [22]钱觉时,吴传明,王智.粉煤灰的矿物组成(中)[J].粉煤灰综合利用,2001,(2):37-41.
    
    [23]钱觉时,吴传明,王智.粉煤灰的矿物组成(下)[J].粉煤灰综合利用,2001,(4):24-28.
    
    [24] Giergiczny Z. The hydraulic activity of high calcium fly ash [J].Journal of Ther mal Analysis and Calorimetry, v 83, n 1, January, 2006, p227-232.
    
    [25] Das Sarat Kumar, et al. Geotechnical properties of low calcium and high cal cium fly ash [J].Geotechnical and Geological Engineering, v 24, n 2, April, 2006, p249-263.
    
    [26]施惠生.高钙粉煤灰的本征性质与水化特性[J].同济大学学报,2003,31(12):1140- 1143.
    
    [27]谢援柱.粉煤灰资源化及管理研究[D].大连:大连理工大学硕士论文,2003.
    
    [28]郭常颖,李多松,万田英.粉煤灰资源化现状研究[J].煤炭工程,2005,(11):68-69.
    
    [29]鲁晓勇,朱小燕.粉煤灰综合利用的现状与前景展望[J].辽宁工程技术大学学 报,2005,24(2):295-297.
    
    [30]王鹏飞.粉煤灰综合利用研究进展[J].电力环境保护,2006,22(2):42-44.
    
    [31]郭风风.我国粉煤灰综合利用的技术经济与管理研究[D].南京:南京工业大学硕 士论文,2004.
    
    [32]Bhatty Javed I, et al. Utilization of discarded fly ash as a raw material in the pro duction of Portland cement [J]. Journal of ASTM International, v 3, n 10, Novemb er/December, 2006,
    
    [33]张健,郑云涛.用粉煤灰代替黏土配料的应用[J].水泥工程,2004,(2):78-90.
    
    [34]要秉文,梅世刚,高振国等.利用粉煤灰研制高贝利特硫铝酸盐水泥[J].水泥工 程,2006,(1):13-14.
    
    [35]张世贤,周涛,王志全.利用高钙粉煤灰生产粉煤灰水泥的试验研究[J].武汉业大 学学报,1999,21(3):43-45.
    
    [36]王景贤,王立久.粉煤灰少熟料水泥研究[J].粉煤灰综合利用,2005,(1):32-33.
    
    [37]Maitra S, et al. Some studies on steam cured fly ash-lime bricks [J].Inter Ceram: International Ceramic Review, v 54, n 5, September, 2005, p336-339.
    
    [38]焦艳.粉煤灰在砌体结构中的应用[D].郑州:郑州大学硕士论文,2005.
    
    [39]Jayasinghe G Y, et al. Utilization of coal fly ash for the production of artificialaggregates as a crop growth medium with acidic "Kunigami Mahji" soils inOkinawa-Japan [J].Jouraal of Solid Waste Technology and Management, v 32, n 1,Fe bruary, 2006, p1-9.
    
    [40]Marinkovic, et al.The reactivity of fly ash of interest for the manufacture of building materials [J].Inter Ceram: International Ceramic Review, v 54, n 1, January,2005,p32-36
    
    [41]Gesoglu, et al. Effects of fly ash properties on characteristics of cold-bonded flyash light weight aggregates [J]. Construction and Building Materials,v 21, n 9, September, 2007, p1869-1878.
    
    [42]Erol, et al.The recycling of the coal fly ash in glass production [J]. Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering, v 41, n 9, Sep 1, 2006, p1921-1929.
    
    [43]Kim, et al. Temperature-time-mechanical properties of glass-ceramics produced from coal fly ash [J]. Journal of the American Ceramic Society, v 88, n 5, May, 2005,pl227-1232.
    
    [44]鲁晓勇,张德,朱小燕.燃煤发电厂粉煤灰在材料科学中的应用[J].中国非金属矿 工业导刊,2005,(4):18-20.
    
    [45]Wang Shuangzhen, et al. Fly ash and concrete Source [J].Concrete Produ er, v 24, n 8, August, 2006, p48-49.
    
    [46]Szecsy, Richard.Using high-volume fly ash concrete [J].Concrete Construction-World of Concrete, v 51, n 1, January, 2006, p73-82.
    
    [47]Jones M R, et al.Utilising unprocessed low-lime coal fly ash in foamed concrete [J].Fuel, v 84, n 11, August, 2005, pl398-1409.
    
    [48]吴建华.高强高性能大掺量粉煤灰混凝土研究[D].重庆:重庆大学博士论 文,2004.
    
    [49]Doven, et al. Material properties of high volume fly ash cement paste structural fill[J].Journal of Materials in Civil Engineering, v 17, n 6, November/December, 2005,p686-693
    
    [50]Mishra, et al. Geotechnical characterization of fly ash composites for backfillingmine voids [J].Geotechnical and Geological Enginee ring, v 24, n 6, December,2006,p1749-1765.
    
    [51]冯跃华,邹应斌,胡瑞芝等.几种粉煤灰的特性及其硅磷的农业化学行为研究[J]. 中国农业科学,2005,38(2):341-349.
    
    [52]武艳菊,刘振学.减轻环境压力利用粉煤灰生产肥料[J].磷肥与复肥,2005,20(2):5 8-59.
    
    [53]Bhattacharya S S, et al.Increasing bioavailability of Phosphorus fro m fly ash through vermicomposing.Journal of Enviroment Quality, 2002, 32:2116-2119.
    
    [54]柴铁根,葛旭吐,古绪鹏.粉煤灰复合催化剂FSZ-g在PVC脱氯降解中的应用[J]. 安徽工业大学学报,2006,23(1):34-36.
    
    [55]肖文香.粉煤灰氯化镁联合混凝吸附处理高浓度活性染料废水[J].化工技术与 开发,2006,35(1):23-25.
    
    [56]Lee K T, et al.Optimizing the specific surface area of fly ash-based sorbents for fuel gas desulphurization [J]. Chemosphere, Vol 62, n 1, January, 2006, p89-96.
    
    [57]Lee K. T, et al.Neural network modeling of the kinetics of SO_2 removal by fly ash -based sorbets [J].Journal of Environmental Science and Health - Part A Toxic/ Hazardous Substances and Environmental Engineering, Vol 41, n 2, Feb, 2006, pl9 5-210.
    
    [58]Lee K T, et al.Removal of sulfur dioxide using absorbent synthesized from coal fly ash: Role of oxygen and nitrogen oxide in the desulphurization reaction [J].Chemical Engineering Science, v 60, n 12, June, 2005, p 3419-3423.
    
    [59]Hui K S, et al. Effects of step-change of synthesis temperature on synthesis of zeol ite 4A from coal fly ash [J]. Microporous and Mesoporous Materials, v 88, n 1- 3, Jan 21,2006,pl45-151.
    
    [60]Misran, et al. Processing of mesoporous silica materials (MCM-41) from coal fly ash [J].Journal of Materials Processing Technology, v 186, n 1-3, May 7, 2007, p8-13.
    
    [61]方荣利,王琳.生态化利用粉煤灰制备高纯超细氢氧化铝[J].化学工程,2005,3 3 (3):29-32.
    
    [62]邬国栋,叶亚平,钱维兰等.低温碱溶粉煤灰中硅和铝的溶出规律研究[J].环境科 学研究,2006,19(1):53-56.
    
    [63]Potgieter Vermaak S S, et al. A characterisation of the surface properties of an ultra fine fly ash (UFFA) used in the polymer industry [J].Fuel, v 84, n 18, December, 20 05, p 2295-2300.
    
    [64]2003年中国水泥工业经济运行分析[J].吉林建材,2004,(2):29-32.
    
    [65]孙星寿.国内外水泥行业对比研究及政策思考[J].中国水泥,2002,(7):64-67.
    
    [66]陈全德.透视国际水泥工业高新技术发展内涵-探讨工程研究领域跨世纪攻关 方向与对策[J].新世纪水泥导报,2000,(3):7-9.
    
    [67]陈全德,崔源生.传统水泥工业不可持续发展的因素与中国水泥工业可持续发 展的对策[J].新世纪水泥导报,2002,(1):1-3.
    
    [68]高长明.树立科学发展观优化水泥工业结构-兼谈我国工业废气的排放[J].水泥 技术,2004,(4):13-16.
    
    [69]国家环境保护总局国家质量监督检验检疫总局.水泥工业大气污染物排放标 准.中国水泥,2004,(3):15-17.
    
    [70]陈全德.应用高新技术建设“环境材料型”水泥工业[J].水泥工程,2001,(1):1-3.
    
    [71]陈全德.新型干法是建设“生态环境材料型”水泥工业的切入点和支柱[J].中国水 泥,2002,(6):18-19.
    
    [72]胡道和.水泥工业热工设备[M].武汉:武汉工业大学出版社,1992.
    
    [73]陈全德,陈晶,崔素萍.水泥预分解技术与热工系统工程[M].北京:中国建材工业 出版社,1998.
    
    [74]陈全德.新型干法水泥技术原理与应用[M].北京:中国建材工业出版社,2004.
    
    [75]蒋尔忠,崔源生.面向可持续发展的水泥工业[M].北京:化学工业出版社,2004.
    
    [76]崔重九,陈汉民.水泥工业呼唤二十一世纪熟料烧成新工艺[J].水泥工程,1998, (2):1-3.
    
    [77]I. Akin Altun.Influence of heating rate on the burning of cement clinker.cement and concrete reseach. 1999, (29):599-602,
    
    [78]封孝信.对不同煅烧方法所得C_2S水化活性的SEM研究[J].河北理工学院学 报,1998,20(1):60-64.
    
    [79]叶巧明,刘菁,陈新树.水泥熟料中铁相的穆斯堡尔谱研究[J].成都理工大学学 报,2004,31(1):18-20.
    
    [80]卢忠远.快速低温烧成硅酸盐水泥的研究[J].四川水泥,1996,(1):13-18.
    
    [81]王善拔.提高水泥熟料质量的重要途径-高温煅烧和快速冷却[J].水泥工程,200 0,(4).
    
    [82]孙树林.快烧急冷是提高熟料质量的重要措施[J].新世纪水泥导报,2002,(3):8- 10.
    
    [83]刘顺妮.水泥熟料快速烧成的最佳配方研究[J].水泥,1998,(6):19-21.
    
    [84]蔡顺华.水泥熟料流态化煅烧工艺研究进展[J].水泥技术,2002,(5):9-12.
    
    [85]天津水泥工业设计研究院.国内外水泥工业的现状[J].中国建材,2003,(1):49-52.
    
    [86]孙嘉如.国外水泥发展概况[J].国外建材,2003,(2):32-34.
    
    [87]黄德徽.国外水泥生产技术与设备的进展[J].建材工业信息,2003,(11):37-41.
    
    [88]龙世宗.微波强化硫铝酸盐水泥熟料烧成[J].硅酸盐学报,2001,29(4):309-312.
    
    [89]邵彦凌.论清洁生产、循环经济在水泥行业的实施[J].辽宁建材,2003,(2):4-5.
    
    [90]岳润清.水泥工业与循环经济[J].水泥技术,2004,(2):63-65.
    
    [91]朱雪芳.电厂燃煤锅炉清洁燃烧及综合利用[J].粉煤灰综合利用,2004,(3):10-12.
    
    [92]李弘涛,尚德忠.煤净化燃烧技术和煤灰改性[J].粉煤灰,2003,(6):28-31.
    
    [93]胡志满.电厂锅炉掺烧改性剂生产水泥熟料技术初探[J].粉煤灰综合利用,1998, (2):21-23.
    
    [94]范从振.锅炉原理[M].北京:中国电力出版社,1998.
    
    [95]岑可法,倪明江,骆仲泱.循环流化床锅炉理论设计与运行[M].北京:中国电力出 版社,1998.
    
    [96]陈秉恒.电厂锅炉改固态为液态排渣旋风炉[J].冶金动力,1997,(4):50-54.
    
    [97]王先进等.低碱增钙液态渣水泥的试验[J].中国建材科技,1994,3(4):29-36.
    
    [98]范海宏等.利用流化床煅烧水泥熟料的试验研究[J].新世纪水泥导报,2004,(1): 37-39.
    
    [99]佟桂芳.水泥熟料大颗粒流态化煅烧炉中的气固运动规律仿真研究[D].西安:西 安建筑科技大学博士论文,2001.
    
    [100]蔡顺华.水泥熟料流态化煅烧工艺研究进展[J].水泥技术,2002,(5):9-12.
    
    [101]朱雪芳.煤净化燃烧及伴生物产品化新技术[J].粉煤灰,2000,(3):29-30.
    
    [102]朱雪芳.煤净化燃烧及伴生物产品化[J].中国工程科学,1999,1(3):53-57.
    
    [103]叶巧明.提高石灰石掺量增加粉煤灰活性的研究[J].成都理工学院学报,200 2,29(6):2-5.
    
    [104]黄文熙.电厂锅炉生产水泥的开发研究[J].四川水泥,1999(3):1-7.
    
    [105]王立久,薛庆,曹明莉.最新洁净煤技术-燃煤发电与水泥生产联合研究[J].粉煤 灰,2003(2):41-43.
    
    [106]王立久,杨新朝,曹明莉.燃煤发电与水泥生产联产技术可行性研究[J].世界科 技研究与发展,2004,26(5):10-17.
    
    [107]WANG W L,LUO Z Y, SHI Z L ,CEN K F.A preliminary study on zero solid was te generation from pulverized coal combustion [J].Waste Management and Resear ch, 2003, 21(3): 243-248.
    
    [108]王文龙,施正伦,骆仲泱,岑可法.燃煤电厂锅炉联产水泥的技术现状与前景[J]. 浙江大学学报,2004,37(2):225-230.
    
    [109]王燕谋,苏慕珍,张量.硫铝酸盐水泥[M].北京:北京工业大学出版社,1999.
    
    [110]马德伟.Q相系水泥研究及Q相与铝酸盐的共存关系初探.[D].杭州:浙江大学,2 000.
    
    [111]陈益民,许仲梓.高性能水泥基础研究[M].中国纺织出版社,2004.
    
    [112]袁权.能源化学进展[M].北京化学工业出版社,2005.
    
    [113]邵靖邦,邵绪新,王祖纳.煤中矿物成分对粉煤灰性质的影响[J].煤炭加工与综 合利用,1996,(6):37-41.
    
    [114]哈尔滨普华煤燃烧技术开发中心.大型煤粉锅炉燃烧设备性能设计方法[M]. 哈尔滨:哈尔滨工业大学,2002.
    
    [115]印永嘉,奚正楷,李大珍.物理化学简明教程[M].北京:高等教育出版社,1992.
    
    [116]PARKER T W, et al. The quaternary phase in high alumina cement [C] // 3~(rd) Internatio nal Congress on the Chemistry of Cement. London, England:[ s. n. ], 1954:485-489.
    
    [117]GLASSER F R, MARR J.Quaternary phase in the system CaO-MgO-Al_2O_3-SiO_2[J]. Trans Br Ceram Soc, 1975, 74:113-119.
    
    [118]HANIC F, HANDLOVIC M, KAPRALIK I. The structure of quaternary phase Ca_(20)Al_(32-2v)Mg_vSi_vO_(68)[J].Acta Crystal, 1980, B36:2863-2869.
    
    [119]KAPRALIK I, HANIC F. Studies of the system CaO-MgO-Al_2O_3-SiO_2 in relation to the quaternary phase [J].Trans Br Ceram Soc, 1980, 79(1): 128-133.
    
    [120]叶瑞伦等.无机材料物理化学[M].北京:中国建筑工业出版社,1984.
    
    [121]ASHMETOV I S, MLRYUK O A. Phase transformations when synthesizing clinkers produced of technogeneous raw materials[C]// 9~(th) ICCC. New Delhi, India: [ s. n. ] ,1992,11:74-80.
    
    [122]姜奉华,杨利群,封汉昌,徐先宇.CA-CA_2-C_2AS-MgO系统中C_2AS转变为Q相 的研究[J].材料科学与工程,1998,16(3):67-69.
    
    [123]姜奉华,徐德龙,郑少华.新型Q相高铝水泥的烧成条件[J].硅酸盐学报,2004,3 2(10):1289-1292.
    
    [124]姜奉华,徐德龙.Q相-C_2S-C_4AF-C_(12)A_7系列水泥形成的研究[J].硅酸盐通报,200 4,(5):24-26.
    
    [125]孟涛,杨利群,徐先宇.CaO-Al_2O_3-MgO-SiO_2系统中Q相的形成及其水化特性 研究[J].硅酸盐通报,1998,(3):31-34.
    
    [126]姜奉华.Q相-C_2S-C_4AF-C_(12)A_7系列水泥水化性能的研究[J].济南大学学报, 2004,18(3):192-193.
    
    [127]姜奉华,李宗贵.Q相-CaO-Al_2O_3-12CaO-7Al_2O_3系列新型水泥水化性能研究[J]. 山东建材学院学报,1999,13(4):354-356.
    
    [128]Midgley H G. The composition and possible structure of the quaternary phase in high-alumina cement and its relation to other phases in the system CaO-MgO-Al-2 O_3, Trans Brit Ceram Soc, 1967, 67:1-13.
    
    [129]孟涛,杨利群,徐先宇.Q相-C_4AF-C_2S-CA系统中各相共存条件的研究[J].材料 科学与工程,1997,15(2):41-45.
    
    [130]马德伟,杨利群,徐先宇.C_6A_4MS与C_(11)A_7.CaF_2的共存与转化关系研究[J].材料 科学与工程,2001,19(1):104-108.
    
    [131]姜奉华.Q相-CA-C_(12)A_7高铝水泥烧成的正交试验研究[J].济南大学学报,20 05,19(1):21-24.
    
    [132]姜奉华,杨利群,徐先宇.Q相-CA-C_(12)A_7系列水泥烧成条件的研究[J].山东建材 学院学报,1998,12(4):294-297.
    
    [133]姜奉华等.P相、铁相对Q相-CA-C_(12)A_(17)系列水泥烧成条件的影响[J].山东建??材学院学报,2000,14(1):4-6.
    
    [134]姜奉华,徐德龙.含Q相高铝水泥水化性能的研究[J].材料科学与工程,2005,23 (2):279-281.
    
    [135]姜奉华.微量P_2O_5对Q相-CA-C_(12)A_7水泥系统中Q相形成的影响[J].济南大学 学报,2003,17(4):321-324.
    
    [136]姜奉华,杨利群,封汉昌,徐先宇.微量的MgO和Fe_2O_3对Q相-CA-C_(12)A_7-MgO 系列水泥的影响[J].材料科学与工程,1998,16(4)55-57.
    
    [137]姜奉华,徐德龙.微量组分对高铝水泥系统中Q相形成的影响[J].硅酸盐学报, 2005,33(10):1276-1280.
    
    [138]姜奉华,郑少华.高铝水泥系统中硅铝酸二钙向Q相的转变[J].硅酸盐学报, 2005,33(4):461-465.
    
    [139]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,1996.
    
    [140]高正阳,阎维平,刘忠.煤颗粒在快速升温过程中非傅立叶导热效应的计算研 究[J].中国电机工程学报.2002.22(9):141-145.
    
    [141]ILHAM D, et al.Formation and use of coal com bustion residues from three types of power plants burning illinois coals [J]. Fuel, 2001, 80(11): 1659-1673.
    
    [142]MANOLEY D J, et al. Heating capacity and thermal conductivity considerations for coal particles during the early stages of rapid heating[J].Combust and Flame, 1999, 116(1/2): 94-104.
    
    [143]岑可法,樊建人.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社,19 90.
    
    [144]洪广言.无机固体化学[M].北京:科学出版社,2002.
    
    [145]李梅等.石灰石对煤炭燃烧特性影响的研究[J].煤炭转化,20 04,27(4):38-41.
    
    [146]Zhang Lian, et al.CCSEM Analysis of ash from combustion of coal added with limestone. Fuel, 2002 81(11): 1499-1508.
    
    [147]刘豪,邱建,吴昊,李骏,董学文.钙基复合添加剂与煤粉混烧的燃烧特性研究[J].??煤炭转化,2002,25(2):67-70.
    
    [148]邓芙蓉.利用TG-DSC、XRD、SEM等多种手段研究煤灰的熔融特性.[D].杭州: 浙江大学,2005.
    
    [149]岑可法,樊建人,池作和等.锅炉和热交换器的积灰结渣磨损和腐蚀的防止原理 与计算[M].北京:科学出版社,1994.
    
    [150]Huffman G P, et al.Investigation of the High-temperature Behavior of Coal Ash in Reducing and Oxidizing Atmospheres.Fuel, 1981, 60(7):5 85-597.
    
    [151]阎维平等.电站煤粉锅炉掺烧强结渣煤的混煤结渣性能研究[J].中国电机工程 学报,2006,26(14):93-97.
    
    [152]张堃.煤灰中成分的高温结渣特性及机理研究.[D].杭州:浙江大学,2005.
    
    [153]修洪雨.燃煤灰渣主要成分的熔融特性研究.[D].杭州:浙江大学,2005.
    
    [154]刘文胜.侏罗纪煤的结渣特性、配煤及应用试验研究.[D].杭州:浙江大学,2003
    
    [155]郭新根.电站锅炉结渣问题分析及其解决途径.[D].济南:山东大学,2005.
    
    [156]李帆等.钙基脱硫过程矿物质对结渣影响的实验研究[J].华中科技大学学报 (自然科学版),2005,33(7):71-73.
    
    [157]周英彪,李帆,张鹏.煤燃烧中钙基脱硫灰样矿物质的电子探针分析[J].发电设 备,2003(3):31-34.
    
    [158]李帆等.混煤煤灰熔融特性及矿物质形态的研究[J].工程热物理学报,1998,19 (1):112-115.
    
    [159]李帆等.煤燃烧过程矿物质行为研究[J].工程热物理学报,1999,20(2):258-260.
    
    [160]刘豪等.煤粉与钙基复合添加剂混烧的灰分矿相特性[J].化工学报2003,54(10) 1424-1428.
    
    [161]罗金平.钙基固硫过程中无机矿物转化及可资源化矿物形成[D].武汉:武汉理 工大学,2004.
    
    [162]张堃等.煤灰中化学成分对熔融和结渣特性影响的探讨[J].热力发电,2005(1 2):27-30.
    
    [163]刘迎晖等.基于五元相图计算的结渣倾向预测方法[J].工程热物理学报,2001,2 2(Suppl):229-232.
    
    [164]李帆,邱建荣,郑楚光.煤中矿物质对灰熔融温度影响的三元相图分析[J].华中 理工大学学报,1996,24(10):96-99.
    
    [165] Halstead P E, Moore A E. Journal of Applied Chemistry. 1962, 12(9):413-417.
    
    [166]张冠英,张丕兴.无水硫铝酸钙及其晶体结构问题[J].上海建材学院学报,1991,4 (1):9-14.
    
    [167]张冠英,张丕兴.无水硫铝酸钙的X射线衍射分析[J].上海建材学院学报,1991,4 (1):15-24.
    
    [168]国家质量监督检验检疫总局.中华人名共和国国家标准GB/T1 7671-1999:水泥 胶沙强度检验方法(ISO法).
    
    [169]国家质量监督检验检疫总局.中华人名共和国国家标准GB/T175-1999:硅酸 盐、普通硅酸盐水泥.
    
    [170]国家质量监督检验检疫总局.中华人名共和国国家标准GB/T1346-1989:水泥 标准稠度用水量、凝结时间、安定性检验方法.
    
    [171]国家质量监督检验检疫总局.中华人名共和国国家标准GB/T750-1992:水泥压 蒸安定性检验方法.
    
    [172]国家质量监督检验检疫总局.中华人名共和国国家标准GB/T176-1996:水泥化 学分析方法.
    
    [173]刘国军.锅炉煤粉加热升温机理的数值模拟研究[D].武汉:华中科技大学,2006.
    
    [174]姚强等.煤粉群非稳态统一着火模型[J].浙江大学学报,1996,30(4):446-455.
    
    [175]Fraser W, et al.The distribution of mineral matter in pulverized coal particles in relation to burnout behaviour [J]. Fuel. 1997, 76(13): 1283-1288.
    
    [176]Yan L. CCSEM analysis of minerals in pulverized coal and ash formation model ing.PhD thesis, The University of Newcastle, 2000.
    
    [177]孙俊民,韩德馨.煤粉颗粒中矿物分布特征及其对飞灰特性德影响[J].煤炭学报.??2000, 25(5): 546-550.
    
    [178]Thinh T P, et al. Estimation of ideal gas heat capacities of hydrocarbon from Group contribution techniques [J].Ind.Eng.Chem.Process Des. 1976, 10,576-582.
    
    [179]Benson S W, et al.Additive rules for the estimation of thermochemical properties[J].Chem. Rev., 1969, 69: 279-324.
    
    [180]Johack K G.A unified approach to physical property estimation using multivariatestatistical techniques [D].Thesis of Massachuetts Institute of technology, Cambridge, MA, June 1984.
    
    [181]M H isham.Thermochemisty of inorganic solids.5. Emperical relations among enthalpies of formation of oxides, carhonates, sulfates hydroxides and nitrates [J].J.Chem. Eng. Data, 1987, 32(2):243-247.
    
    [182]Golam Moslafa, et al. Prediction of standard heats and Gibbs free energies of formation of solid inorganic salts from Group contributions [J].Ind. Eng.Chem Res,1995, 34:4577-4582.
    
    [183]Kuhaschewski C.Unal H.An emprirical of the heat capcities of inorganic compounds [J].High temperatures-high pressures, 1977, 9(4):1-12.
    
    [184]Barin I, Knacke O, Kuhaschewski C. Thermochemicalproperties of inorganic substance [M].supple ments Berlin: Sprigner, 1977.
    
    [185]Kellong H H. Problems in the non-ferrous industries and a note on estimation ofheat capcity [J].A pplications of fundamental thermodynamics to melallurgicalprocesses. 1967:357-366.
    
    [186]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金出版社.
    
    [187]杨天华.煤燃烧脱硫过程中高温物相固硫基础研究.[D].杭州:浙江大学,2004.
    
    [188]Hao Liu, et al. Direct modification of solid residues buring co-firing of coal slud ge and coal [J]. Fuel. 2003, 82: 2323-2329.
    
    [189]顾乐民.固相反应中扩散动力学方程的新探讨[J].化学学报.1991,49:135-141.
    
    [190]樊先平等.无机非金属材料科学基础[M].杭州:浙江大学出版社,2004.
    
    [191]王文龙,骆仲泱,施正伦,岑可法.煤粉高掺钙燃烧时煤灰矿物的形成动力学机 理与实验研究[J].中国电机工程学报,2005,25(19):96-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700