Al_2O_3/ZrO_2/YAG共晶陶瓷的制备及组织特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化物共晶陶瓷具有高强度、耐高温、耐氧化、高抗蠕变等优异性能,是高温氧化气氛下长期工作的优选超高温结构材料,其组织热稳定性好,使用温度可达1600~1700℃。现有共晶陶瓷制备技术中只有布里奇曼法适合制备较大尺寸的共晶陶瓷块体,但其生长速度慢,材料微观组织粗大、强度低;而其它技术制备的材料通常在毫米级以下。从工艺制备角度上,温度梯度、生长速度和微观尺寸之间内在关系限制了共晶陶瓷的加工制备。因此,如何同时实现较大尺寸样品的制备和微观组织控制,是制约共晶陶瓷进一步发展和结构件工程化应用的重要瓶颈。
     本文以Al2O3/ZrO2(YSZ)/YAG共晶陶瓷为研究对象,采用温度梯度适中的高温熔凝工艺(适合制备大块共晶陶瓷材料),通过调整工艺参数改变熔体的凝固路径和晶体生长速度,实现了较大尺寸共晶陶瓷的制备及其凝固组织的优化与控制。研究了凝固组织的变化规律,并运用凝固原理中经典形核机制和Jackson-Hunt共晶生长模型,探讨了凝固组织的演变机理。主要结果如下:
     通过提高熔体冷却速度,制备出组织细小的Al2O3/ZrO2/YAG共晶陶瓷块体,微观组织的特征尺寸细化到亚微米级。随着冷却速度增加,凝固体中依次出现三种典型的显微组织,分别为:晶团结构、树枝晶结构和胞状结构。建立三元共晶生长晶数学模型,给出Al2O3/ZrO2/YAG共晶凝固过程中溶质过冷度、曲率过冷度和动力过冷度与晶体生长速度的关系,阐释了溶质扩散特征长度和毛细作用特征长度对固-液界面形貌的影响。
     通过调控熔体温度或保温时间,制备出直径30mm的Al2O3/ZrO2/YAG共晶陶瓷块体,微观共晶层间距为350nm。采用经典异质形核理论,从熔体的晶胚分布和异质晶核点钝化角度分析了熔体温度(或保温时间)对形核过冷度和凝固组织的作用。熔体温度对凝固体组织结构的影响可以划分为三个阶段。第一阶段:随着熔体温度升高或保温时间延长,熔体中原子团簇结构衰退,熔体成分均匀化,形核过冷度增加,共晶组织细化。第二阶段:随着熔体温度升高,异质晶核点不断钝化,形核过冷度增加,共晶组织细化。第三阶段:当熔体温度超过某一临界值T。时,异质晶核点钝化严重,凝固路径改变,过冷熔体选择YAP相形核,生成Al2O3-ZrO2-YAP亚稳态复合陶瓷。
     提出“压力辅助成型”工艺,制备出坩埚形状Al2O3/ZrO2/YAG共晶陶瓷构件,该工艺可以有效地消除组织内部的缩松缺陷,抑制样块表面侵蚀性气孔的生成,有利于改善材料的力学性能。
Directionally solidified eutectic oxide ceramics (DSEO) are very attractive as ultra-high-temperature structural materials with long-term service due to the excellent mechanical properties, thermal stability, creep resistance and oxidation resistance in atmosphere at high temperature. Eutectic ceramics have good microstructural stability and the application temperature can reach1600-1700℃. Among processing techniques for the eutectic oxide ceramic, only Bridgman technique with relatively modest thermal gradient is the the optimum method for the fabrication of large volume samples. However, this method implies low growth rates and consequently large interphase spacing samples with low strength. Other methods can obtain samples with finer interspacing size but the products are limited to several millimeters due to the large temperature gradients. From the processing viewpoint, the relationships among thermal gradient, growth rate and micro structure size impose limitations on the sample processing. Hence, it is a problem for eutectic ceramic processing technique that how to prepare large dimession sample and control the microstructural characteristics simultaneously, which limits the materials developing and engeering application in components.
     Present investigation focuses on the above aspect of Al2O3/ZrO2/YAG searching method to prepare samples which combines large dimension as well as fine microstructure. High temperature mlet-grown method with modest thermal gradient was adopted to prepare large dimension eutectic bulk. Combining with rapid cooling or melt superheating treatment, the solidification microstructure can be optimized by controlling technological parameters which affeact the solidification path and crystal growth rate. Solidification microstructure evolutions were studied systematically and discussed in terms of the classical nucleation mechanism and Jackson-Hunt model. The primary conclusions are as follows:
     By increasing the cooling rate, Al2O3/ZrO2/YAG eutectic bulks with the interspacing of microstructure in submicron level were fabricated successfully. With increasing the cooling rate, the microstructure characteristic scale of melt-grown samples decreases and the structure develops from colony to dendrite and finally to cell. The solidification Microstructure transitions were interpreted according to morphology variation of solid-liquid interfaces as a result of the interplay between solute diffusion and the curvature effects. Meanwhile, a mathematical model for ternary eutectic coupled growth was developed based on binary eutectic. With the mathematical model, solute, curvature, and kinetic undercoolings were deduced and calculated as a function of growth velocity.
     By controlling melt temperature and holding time, Al2O3/ZrO2/YAG eutectic rods with30mm in diameter were produced. The solidification microstructure is homogenous and the minimum interspacing is only350nm. Making using of the classical nucleation mechanism, solidification microstructure transitions under different melt temperatures on was discussed in terms of the variations about atom clusters distribution in melts and the passivation of the heterogeneous nucleation sites, which affect the melt nucleation undercooling, solidification path and the final solidification microstructure. The melt temperature can be divided into three stages according to its role on microstructural change. The first stage:the microstructure refinement with the melt temperature increasing or with the holding time prolonging, is due to the decay of atom clusters which homogenizes the melt and makes an increase of the melt nucleation undercooling. The second stage:the higher melt temperature results in the eutectic micrsostructure further refined because of the passivation of the heterogeneous nucleation sites increasing the melt nucleation undercooling. The third stage:the melt temperature beyonds a certain crtical value Tc the melt-grown sample is Al2O3-ZrO2-YAP metastable composite because the passivation of the heterogeneous nucleation sites is serious and the YAP nucleates instead of YAG.
     A method referred to as "pressure assistaned-solidification formation" was first suggested for the shape-forming of melt growth eutectic ceramics, and practically implemented for Al2O3/YAG/ZrO2composite. A component with crucible shape was prepared successfully. It was found the defects in the intercolony region and on the surface reduce dramatically, which is beneficial to improve the mechnical properties.
引文
[1]张军,苏海军,刘林Al2O3/YAG共晶自生复合陶瓷的激光熔凝实验研究[J].航空材料学报,2003.23:171-174.
    [2]Waku Y, Nakagawa N, Ohtsubo H, et al. Fracture and deformation behaviour of melt growth composites at very high temperatures [J]. Journal of Materials Science,2001,36(7):1585-1594.
    [3]Waku Y, Nakagawa N, Wakamoto T, et al. A ductile ceramic eutectic composite with high strength at 1873 K [J]. Nature,1997,389(6646):49-52.
    [4]Fleischer R L. High-strength, high-temperature intermetallic compounds [J]. Journal of Materials Science,1987,22(7):2281-2288.
    [5]Lamicq P J, Bernhart G A, Dauchier M M, et al. SiC/SiC composite ceramics [J]. American Ceramic Society Bulletin,1986,65(2):336-338.
    [6]Shen Z J, Zhao Z, Peng H, et al. Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening [J]. Nature,2002,417(6886):266-269.
    [7]Lange F F. Relation between strength, fracture energy, and microstructure of hot-pressed Si,N4 [J]. Journal of the American Ceramic Society,1973,56(10):518-522.
    [8]Lu X, Chen M, Fan L, et al. Mechanical properties of beta-SiN4 thin layers in basal plane under tension:A molecular dynamics study [J]. Applied Physics Letters,2013,102(3).
    [9]Waku Y, Nakagawa N, Wakamoto T, et al. High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite [J]. Journal of Materials Science,1998, 33(5):1217-1225.
    [10]Ochiai S, Ueda T, Sato K, et al. Deformation and fracture behavior of an Al2O3/YAG composite from room temperature to 2023 K [J]. Composites Science and Technology,2001,61(14): 2117-2128.
    [11]Wakai F, Kodama Y, Sakaguchi S, et al. A superplastic covalent crystal composite [J]. Nature, 1990,344(6265):421-423.
    [12]Matson L E, Hecht N. Creep of directionally solidified alumina/YAG eutectic monofilaments [J]. Journal of the European Ceramic Society,2005,25(8):1225-1239.
    [13]Zhang J, Su H, Song K, et al. Microstructure, growth mechanism and mechanical property of Al2O3-based eutectic ceramic in situ composites [J]. Journal of the European Ceramic Society, 2011,31(7):1191-1198.
    [14]Waku Y, Sakata S, Mitani A, et al. Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O13/ZrO2 ternary melt growth composites [J]. Journal of Materials Science,2002,37(14):2975-2982.
    [15]Cristina Mesa M, Oliete P B, Larrea A, et al. Directionally Solidified Al2O3-Er3Al5O12-ZrO: Eutectic Ceramics with Interpenetrating or Nanofibrillar Microstructure:Residual Stress Analysis [J]. Journal of the American Ceramic Society,2012,95(3):1138-1146.
    [16]Ochiai S, Ikeda S, Iwamoto S, et al. Residual stresses in YAG phase of melt growth Al2O3/YAG eutectic composite estimated by indentation fracture test and finite element analysis [J]. Journal of the European Ceramic Society,2008,28(12):2309-2317.
    [17]Pastor J Y, Llorca J, Salazar A, et al. Mechanical properties of melt-grown alumina-yttrium aluminum garnet eutectics up to 1900 K [J]. Journal of the American Ceramic Society,2005, 88(6):1488-1495.
    [18]Oliete P B, Pena J I, Larrea A, et al. Ultra-high-strength nanofibrillar Al2O3-YAG-YSZ eutectics [J]. Advanced Materials,2007,19:2313-2318.
    [19]Hirano K. Application of eutectic composites to gas turbine system and fundamental fracture properties up to 1700 ℃ [J]. Journal of the European Ceramic Society,2005,25(8):1191-1199.
    [20]Echigoya J, Takabayashi Y, Sasaki K, et al. Solidification microstructure of Y2O3-added Al2O3-ZrO2 eutectic [J]. Transactions of the Japan Institute of Metals,1986,27(2):102-107.
    [21]Echigoya J, Takabayashi Y, Suto H, et al. Structure and crystallography of directionally solidified Al2O3-ZrO2-Y2O3 eutectic by the floating zone-melting method [J]. Journal of Materials Science Letters,1986,5(2):150-152.
    [22]Waku Y,Yasuda H. High Temperature Characteristics of Unidirectionally Solidified Eutectic Ceramic Composites and Some Potential Applications [J]. Thermec 2009, Pts 1-4,2010,638-642: 997-1002.
    [23]Lowe R A, Chubb D L, Farmer S C, et al. Rare-earth garnet selective emitter [J]. Applied Physics Letters,1994,64(26):3551-3553.
    [24]Nagira T, Yasuda H, Takeshima S, et al. Chain structure in the unidirectionally solidified Al2O3-YAG-ZrO2 eutectic composite [J]. Journal of Crystal Growth,2009,311(14):3765-3770.
    [25]Yasuda H, Ohnaka Ⅰ, Mizutani Y, et al. Three-dimensional observation of the entangled eutectic structure in the Al2O3-YAG system [J]. Journal of the European Ceramic Society,2005,25(8): 1397-1403.
    [26]Waku Y, Nakagawa N, Wakamoto T, et al. The creep and thermal stability characteristics of a unidirectionally solidified Al2O3/YAG eutectic composite [J]. Journal of Materials Science,1998, 33(20):4943-4951.
    [27]Lakiza S M. Directionally solidified eutectics in the Al2O3-ZrO2-Ln(Y)2O3 systems (Review) [J]. Powder Metallurgy and Metal Ceramics,2009,48(1-2):42-59.
    [28]Waku Y, Sakuma T. Dislocation mechanism of deformation and strength of Al2O3-YAG single crystal composites at high temperatures above 1500 ℃ [J]. Journal of the European Ceramic Society,2000,20(10):1453-1458.
    [29]Hunt J D, Jackson K A. Binary eutectic solidification [J]. Transactions of the Metallurgical Society of Aime,1966,236(6):843-852.
    [30]Gervais M, Lefloch S, Rifflet J C, et al. Effect of the melt temperature on the solidification process of liquid garnets Ln3Al5012 (Ln= Dy, Y, and Lu) [J]. Journal of the American Ceramic Society,1992,75(11):3166-3168.
    [31]Platzki I B G. Thermochemical Data of Pure Substances [J]. VCH Weinheim,1995.
    [32]Pena J I, Merino R I, Harlan N R, et al. Microstructure of Y2O3 doped Al2O3- ZrO2 eutectics grown by the laser floating zone method [J]. Journal of the European Ceramic Society,2002, 22(14-15):2595-2602.
    [33]Lee J H, Yoshikawa A, Kaiden H, et al. Microstructure of Y2O3 doped Al2O3/ZrO2 eutectic fibers grown by the micro-pulling-down method [J]. Journal of Crystal Growth,2001,231(1-2): 179-185.
    [34]Pastor J Y, Llorca J, Poza P, et al. Mechanical properties of melt-grown Al2O3- ZrO2 (Y2O3) eutectics with different microstructure [J]. Journal of the European Ceramic Society,2005,25(8): 1215-1223.
    [35]Su H, Zhang J, Deng Y, et al. A modified preparation technique and characterization of directionally solidified Al2O3/Y3Al5O12 eutectic in situ composites [J]. Scripta Materialia,2009, 60(6):362-365.
    [36]Ester F J, Larrea A, Merino R I. Processing and microstructural study of surface laser remelted Al2O3-YSZ-YAG eutectic plates[J]. Journal of the European Ceramic Society,2011,31(7): 1257-1268.
    [37]Nakagawa N, Ohtsubo H, Mitani A, et al. High temperature strength and thermal stability for melt growth composite [J]. Journal of the European Ceramic Society,2005,25(8):1251-1257.
    [38]Park D Y, Yang J M, Collins J M. Coarsening of lamellar microstructures in directionally solidified yttrium aluminate/alumina eutectic fiber[J]. Journal of the American Ceramic Society, 2001,84(12):2991-2996.
    [39]Mesa M C, Oliete P B, Orera V M, et al. Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method [J]. Journal of the European Ceramic Society,2011,31(7):1241-1250.
    [40]Matson L E, Hecht N. Microstructural stability and mechanical properties of directionally solidified alumina/YAG eutectic monofilaments [J]. Journal of the European Ceramic Society, 1999,19(13-14):2487-2501.
    [41]Pena J I, Larsson M, Merino R I, et al. Processing, microstructure and mechanical properties of directionally-solidified Al2O3-Y3Al5O12-ZrO2 ternary eutectics [J]. Journal of the European Ceramic Society,2006,26(15):3113-3121.
    [42]Brewer L N, Peascoe R A, Hubbard C R, et al. Residual stress distributions in the solid solution eutectic, Co(1-x)NixO/ZrO2(CaO) [J]. Journal of the American Ceramic Society,2003,86(12): 2188-2194.
    [43]Dickey E C, Dravid V P, Hubbard C R. Interlamellar residual stresses in single grains of NiO-ZrO2(cubic) directionally solidified eutectics [J]. Journal of the American Ceramic Society, 1997,80(11):2773-2780.
    [44]Pardo J A, Merino R I, Orera V M, et al. Piezospectroscopic study of residual stresses in Al2O3-ZrO2 directionally solidified eutectics [J]. Journal of the American Ceramic Society,2000,83(11): 2745-2752.
    [45]Orera V M, Cemborain R, Merino R I, et al. Piezo-spectroscopy at low temperatures:residual stresses in A12O3-ZrO2 (Y2O3) eutectics measured from 77 to 350 K [J]. Acta Materialia,2002, 50(18):4677-4686.
    [46]Harlan N R, Merino R Ⅰ, Pena J Ⅰ, et al. Phase distribution and residual stresses in melt-grown Al2O3-ZrO2(Y2O3) eutectics [J]. Journal of the American Ceramic Society,2002,85(8): 2025-2032.
    [47]Ramirez-Rico J, Martinez-Fernandez J, Pena J Ⅰ, et al. Residual stresses in AI2O3-ZrO2 (3 mol.% Y7O3) directionally solidified eutectic ceramics as a function of temperature [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2012, 541:61-66.
    [48]Perriere L, Valle R, Carrere N, et al. Crack propagation and stress distribution in binary and ternary directionally solidified eutectic ceramics [J]. Journal of the European Ceramic Society, 2011,31(7):1199-1210.
    [49]Perriere L, Valle R, Mazerolles L, et al. Crack propagation in directionally solidified eutectic ceramics [J]. Journal of the European Ceramic Society,2008,28(12):2337-2343.
    [50]Danielik V. Phase equilibria in the system KF-A1F3-AI2O3 [J]. Chemical Papers-Chemicke Zvesti,2005,59(2):81-84.
    [51]Larrea A, Orera V M, Merino R I, et al. Microstructure and mechanical properties of Al2O3-YSZ and A12O3-YAG directionally solidified eutectic plates [J]. Journal of the European Ceramic Society,2005,25(8):1419-1429.
    [52]Orera V M, Merino R Ⅰ, Pardo J A, et al. Microstructure and physical properties of some oxide eutectic composites processed by directional solidification [J]. Acta Materialia,2000,48(18-19): 4683-4689.
    [53]Pastor J Y, Poza P, Llorca J, et al. Mechanical properties of directionally solidified Al2O3-ZrO2 (Y2O3) eutectics [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2001,308(1-2):241-249.
    [54]Pei J, Yang J, Mei L, et al. Fabrication of Al2O3/YAG/YSZ eutectic ceramic by combustion synthesis melt casting under ultra high gravity field [J]. Journal of the Chinese Ceramic Society, 2009:1645-8.
    [55]Llorca J, Orera V M. Directionally solidified eutectic ceramic oxides [J]. Progress in Materials Science,2006,51(6):711-809.
    [56]Pastor J Y, Llorca J, Martin A, et al. Fracture toughness and strength of Al2O3-Y3Al5O12 and Al2O3-Y3Al5O12-ZrO2 directionally solidified eutectic oxides up to 1900 K [J]. Journal of the European Ceramic Society,2008,28(12):2345-2351.
    [57]Newman J C, Raju I S. An empirical stress-intensity factor equation for the surface crack [J]. Engineering Fracture Mechanics,1981,15(1-2):185-192.
    [58]Park D Y, Yang J M. Effect of the microstructure on the mechanical properties of a directionally solidified Y3Al5O12/Al2O3 eutectic fiber [J]. Journal of Materials Science,2001,36(23): 5593-5601.
    [59]Mesa M C, Oliete P B, Orera V M, et al. Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method [J]. Journal of the European Ceramic Society,2011,31(7):1241-1250.
    [60]Waku Y, Sakata S, Mitani A, et al. A novel oxide composite reinforced with a ductile phase for very high temperature structural materials [J]. Materials Research Innovations,2001,5(2): 94-100.
    [61]Waku Y, Nakagawa N, Kobayashi K, et al. Development of near-net shape casting technology for mgc components.ASME Turbo Expo 2005:Power for Land, Sea and Air,2005[C]. GT2005-68398, June 6-9, Nevada. Reno-Tahoe:ASME, c2005:275-81pp.
    [62]Llorca J, Pastor J Y, Poza P, et al. Influence of the Y2O3 content and temperature on the mechanical properties of melt-grown Al2O3- ZrO2 eutectics [J]. Journal of the American Ceramic Society,2004,87(4):633-639.
    [63]Yoshida H, Nakamura A, Sakuma T, et al. Anisotropy in high-temperature deformation in unidirectionally solidified eutectic Al2O3-YAG single crystals [J]. Scripta Materialia,2001,45(8): 957-963.
    164] Yi J, Argon A S, Sayir A. Creep resistance of the directionally solidified ceramic eutectic of Al2O3/c-ZrO2 (Y2O3):experiments and models [J]. Journal of the European Ceramic Society, 2005,25(8):1201-1214.
    [65]Argon A S, Yi J, Sayir A. Internal stresses and the creep resistance of the directionally solidified ceramic eutectics [J]. Materials Science and Engineering A,2006,421(1-2):86-102.
    [66]Stubican V S, Bradt R C. Eutectic solidification in ceramic systems [J]. Annual Review of Materials Science,1981,11:267-297.
    [67]Parthasarathy T A, Mah T L, Matson L E. Deformation-behavior of an Al2O3-Y3Al5O12 eutectic composite in comparison with sapphire and YAG [J]. Journal of the American Ceramic Society, 1993,76(1):29-32.
    [68]Harada Y, Suzuki T, Hirano K, et al. Ultra-high temperature compressive creep behavior of an in-situ Al2O3 single-crystal/YAG eutectic composite [J]. Journal of the European Ceramic Society,2004,24(8):2215-2222.
    (69] Ramirez-Rico J, Pinto-Gomez A R, Martinez-Fernandez J, et al. High-temperature plastic behaviour of Al2O3-Y3Al5O12 directionally solidified eutectics [J]. Acta Materialia,2006,54(11): 3107-3116.
    [70]Viechnicki D, Schmid F. Investigation of the eutectic point in the system Al2O3-Y3Al5O12 [J]. Materials Research Bulletin,1969,4(2):129-135.
    [71]吴江,张龙,赵忠民,等.微拉法制备氧化物共晶复相陶瓷的研究进展[J].科学技术与工程,2007,7(04):589-593.
    [72]孙海滨.氧化铝基共晶陶瓷定向凝固过程的研究[D].山东:山东理工大学,2010.
    [73]Lee J H, Yoshikawa A, Durbin S D, et al. Microstructure of Al2O3/ZrO2 eutectic fibers grown by the micro-pulling down method [J]. Journal of Crystal Growth,2001,222(4):791-796
    [74]Lee J H, Yoshikawa A, Fukuda T, et al. Growth and characterization of Al2O3/Y3Al5O12/ ZrO2ternary eutectic fibers [J]. Journal of Crystal Growth,2001,231(1-2):115-120
    [75]Lee J H, Yoshikawa A, Murayama Y, et al. Microstructure and mechanical properties of Al2O3/Y3Al5O12/ZrO2 ternary eutectic materials [J]. Journal of the European Ceramic Society, 2005,25(8):1411-1417.
    [76]Yoshikawa A, Hasegawa K, Lee J H, et al. Phase identification of Al2O3/Al5O12 and Al2O3/ReAlO3 (Re= Sm-Lu,Y) eutectics [J]. Journal of Crystal Growth,2000,218(1):67-73.
    [77]Yoshikawa A, Epelbaum B M, Hasegawa K, et al. Microstructures in oxide eutectic fibers grown by a modified micro-pulling-down method [J]. Journal of Crystal Growth,1999,205(3):305-316.
    [78]Yoshikawa A, Epelbaum B M, Fukuda T, et al. Growth of Al2O3/Y3Al5O12 eutectic fiber by micro-pulling-down method and its high-temperature strength and thermal stability [J]. Japanese Journal of Applied Physics Part 2-Letters,1999,38(1A/B):L55-L58.
    [79]Epelbaum B M, Yoshikawa A, Shimamura K, et al. Microstructure of Al2O3/Y3Al5O12 eutectic fibers grown by mu-PD method [J]. Journal of Crystal Growth,1999,198:471-475.
    [80]Larrea A, De La Fuente G F, Merino R 1, et al. ZrO2-Al2O3 eutectic plates produced by laser zone melting [J]. Journal of the European Ceramic Society,2002,22(2):191-198.
    [81]Oliete P B, Pena J I. Study of the gas inclusions in Al2O3/Yl5O12 and Al2O3/Y3Al5O12/ ZrO2eutectic fibers grown by laser floating zone [J]. Journal of Crystal Growth,2007,304(2): 514-519.
    [82]Argon A S, Yi J, Sayir A. Creep resistance of directionally solidified ceramic eutectics of Al2O3/c-ZrO2 with sub-micron columnar morphologies [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2001,319:838-842.
    [83]Mazerolles L, Perriere L, Lartigue-Korinek S, et al. Microstructures, crystallography of interfaces, and creep behavior of melt-growth composites [J]. Journal of the European Ceramic Society, 2008,28(12):2301-2308.
    [84]Su H J, Zhang J, Liu L, et al. Rapid growth and formation mechanism of ultrafine structural oxide eutectic ceramics by laser direct forming [J]. Applied Physics Letters,2011,99(22).
    [85]Su H, Zhang J, Yu J, et al. Rapid solidification and fracture behavior of ternary metastable eutectic Al2O3/YAG/YSZ in situ composite ceramic [J]. Materials Science and Engineering:A, 2011,528(4-5):1967-1973.
    [86]Su H, Zhang J, Song K, et al. Investigation of the solidification behavior of Al2O3/YAG/YSZ ceramic in situ composite with off-eutectic composition [J]. Journal of the European Ceramic Society,2011,31(7):1233-1239.
    [87]Su H J, Zhang J, Liu L, et al. Microstructure and mechanical properties of a directionally solidified Al2O3Al5O12/ZrO2 hypoeutectic in situ composite [J]. Composites Science and Technology,2009,69(15-16):2657-2667.
    [88]Su H, Zhang J, Yu J, et al. Directional solidification and microstructural development of Al2O3/GdAlO3 eutectic ceramic in situ composite under rapid growth conditions [J]. Journal of Alloys and Compounds,2011,509(12):4420-4425.
    [89]Su H J, Zhang J, Cui C J, et al. Growth characteristic of Al2O3/Y3Al5O12 (YAG) eutectic ceramic in situ composites by laser rapid solidification [J]. Journal of Alloys and Compounds,2008, 456(1-2):518-523.
    [90]Su H J, Zhang J, Cui C J, et al. Rapid solidification behaviour of Al2O3/Y3Al5O12 (YAG) binary eutectic ceramic in situ composites [J]. Materials Science and Engineering A,2008,479(1-2): 380-388.
    [91]Song K, Zhang J, Jia X J, et al. Solidification microstructure of laser floating zone remelted Al2O3/YAG eutectic in situ composite [J]. Journal of Crystal Growth,2012,345(1):51-55.
    [92]Magnin P, Kurz W. An analytical model of irregular eutectic growth and its application to Fe-C [J]. Acta Metallurgica,1987,35(5):1119-1128.
    [93]Ester F J, Larrea A, Merino R I. Processing and microstructural study of surface laser remelted Al2O3-YSZ-YAG eutectic plates [J]. Journal of the European Ceramic Society,2011,31(7): 1257-1268.
    [94]Ester F J, Merino R I, Pastor J Y, et al. Surface Modification of Al2O3-ZrO2 (Y2O3) Eutectic Oxides by Laser Melting:Processing and Wear Resistance [J]. Journal of the American Ceramic Society,2008,91(11):3552-3559.
    [95]Yang J M, Jeng S M, Chang S Y. Fracture behavior of directionally solidified Y3Al5O12/Al2O3 eutectic fiber [J]. Journal of the American Ceramic Society,1996,79(5):1218-1222.
    [96]Mah T, Parthasarathy T A, Matson L E. Processing and mechanical-properties of Al2O3/ Y3Al5O12(YAG) eutectic composite [J].14th Annual Conference on Composites and Advanced Ceramic Materials, Pts 1 and 2,1990,11:1617-1627.
    [97]Yasuda H, Mizutani Y, Ohnaka I, et al. Production of undercooled melt by heating the metastable Al2O3-YAP eutectic structure [J]. Materials Transactions,2001,42(10):2124-2130.
    [98]Yasuda H, Mizutani Y, Ohnaka I, et al. Undercooled melt formation and shaping of alumina-yttrium aluminum garnet eutectic ceramics [J]. Journal of the American Ceramic Society, 2003,86(10):1818-1820.
    [99]Yasuda H, Ohnaka Ⅰ, Mizutani Y, et al. Solidification and shape casting of Al2O3-YAG eutectic ceramics from the undercooled melt produced by melting Al2O3-YAP eutectics [J]. Science and Technology of Advanced Materials,2004,5(1-2):207-217.
    [100]Nagira T, Yasuda H, Sakimura T, et al. Effects of shaping conditions on the microstructure and the mechanical property of the Al2O3-YAG eutectic composite produced by melting the Al2O3-YAP eutectic structure [J]. Materials Transactions,2007,48:2312-2315.
    [101]Mizutani Y, Yasuda H, Ohnaka I, et al. Undercooled melt formation by melting of metastable eutectic structure in Al2O3-Y2O3-ZrO2 system [J]. Materials Transactions,2002,43(11): 2847-2854.
    [102]Zhao Z M, Zhang L, Song Y G, et al. Microstructures and properties of rapidly solidified Y2O3 doped Al2O3-ZrO2 composites prepared by combustion synthesis [J]. Scripta Materialia,2006, 55(9):819-822.
    [103]赵忠民,张龙,宋义刚,等.超重力下自挤压辅助燃烧合成Al2O3-ZrO2(Y2O3)共晶陶瓷[J].稀有金属材料与工程,2011,40(S1):203-206.
    [104]张龙,赵忠民,吴江,等Al2O3/ZrO2(3Y)快速凝固共晶复合陶瓷显微结构、裂纹桥接与增韧[J].稀有金属材料与工程,2007,(S1):647-650.
    [105]杨权,张龙,赵忠民,等.氧化物/氧化物共晶复合陶瓷研究进展[J].材料开发与应用,2009,24(04):79-84.
    [106]潘传增,张龙,赵忠民,等Al2O3/ZrO2 (Y2O3)共晶复合陶瓷晶体生长机理[J].粉末冶金材料科学与工程,2007,50(05):290-295.
    [107]潘传增,张龙,赵忠民,等.超重力下燃烧合成TiB2-TiC共晶复合陶瓷[J].复合材料学报,2010,27(01):109-117.
    [108]黄雪刚,赵忠民,张龙,等.超重力下燃烧合成TiB2-(Ti,W)C共晶复合陶瓷结构[J].特种铸造及有色合金,2010,30(07):664-667.
    [109]Pei J, Li J T, Liang R, et al. Rapid fabrication of bulk graded Al2O3/YAG/YSZ eutectics by combustion synthesis under ultra-high-gravity field [J]. Ceramics International,2009:3269-73.
    [110]裴军,李江涛,梁睿,等.以超重力熔铸新技术快速制备Al2O3/YAG/YSZ三元共晶陶瓷[J].稀有金属材料与工程,2010,396(05):906-910.
    [111]裴军,杨建辉,梅林,等.超重力辅助燃烧合成熔铸制备共晶陶瓷Al2O3/YAG/YSZ [J]硅酸盐学报,2009,37(10):1645-1648.
    [112]Harada Y H, Uekawa N, Kojima T, et al. Fabrication of Y3Al5O12-Al2O3 eutectic materials having ultra fine microstructure [J]. Journal of the European Ceramic Society,2008,28(1): 235-240.
    [113]Harada Y, Uekawa N, Kojima T, et al. Formation of Y3Al5O12-Al2O3 eutectic microstructure with off-eutectic composition [J]. Journal of the European Ceramic Society,2008,28(10): 1973-1978.
    [114]Harada Y, Uekawa N, Kojima T, et al. Formation process of GdAlO3-Al2O3 eutectic-like microstructure from amorphous phase [J]. Advances in Applied Ceramics,2010,109(2):79-82.
    [115]Isobe T, Omori M, Uchida S, et al. Consolidation of Al2O3- Y3Al5O12 (YAG) eutectic powder prepared from induction-melted solid and strength at high temperature [J]. Journal of the European Ceramic Society,2002,22(14-15):2621-2625.
    [116]Omori M, Isobe T, Hirai T. Consolidation of eutectic powder of Al2O3-GdAlO3 [J]. Journal of the American Ceramic Society,2000,83(11):2878-2880.
    [117]Lakiza S M, Lopato L M. Stable and metastable phase relations in the system alumina-zirconia-yttria [J]. Journal of the American Ceramic Society,1997,80(4):893-902.
    [118]顾燕芳,赵晟筠,胡黎明,等.液相沉淀法制备氧化铝超细粒子[J].化工冶金,1993,(01):14-21.
    [119]张勤俭,张建华,刘煜,等.溶胶—凝胶法制备A1203涂层对工程陶瓷表面改性的研究[J].工具技术,2000,(12):10-12.
    [120]黄传真,张树生,王宝友.溶胶—凝胶法制备纳米氧化铝粉末的研究[J].金刚石与磨料磨具工程,2002,(01):22-25.
    [121]宋振亚,吴玉程,杨晔,等α-Al2O3微粉的制备及其TiO2掺杂改性[J].硅酸盐学报,2004,(08):920-924.
    [122]王介强,于庆华,郑少华,等.液相沉淀法制备ZrO2/Al2O3纳米复合粉体[J].硅酸盐学报,2005,(03):335-339.
    [123]李海波, 王丽丽,肖利,等.溶胶—凝胶法合成A12O3纳米陶瓷粉[J].松辽学刊(自然科学版),2000,(01):4-6.
    [124]Schehl M, DiAz L A,Torrecillas R. Alumina nanocomposites from powder-alkoxide mixtures [J]. Acta Materialia,2002,50(5):1125-1139.
    [125]Su H J, Zhang J, Cui C J, et al. Rapid solidification of A12O3/Y3Al5O12/ZrO2 eutectic in situ composites by laser zone remelting [J]. Journal of Crystal Growth,2007,307:448-456.
    [126]Su H, Zhang J, Song K, et al. Investigation of the solidification behavior of Al2O3/YAG/YSZ ceramic in situ composite with off-eutectic composition [J]. Journal of the European Ceramic Society,2011,31(7):1233-1239.
    [127]Su H, Zhang J, Liu L, et al. Microstructure and mechanical properties of a directionally solidified Al2O3/Y3Al5O12/ZrO2 hypoeutectic in situ composite [J]. Composites Science and Technology,2009,69(15-16):2657-2667.
    [128]Mazerolles L, Piquet N, Trichet M F, et al. New microstructures in ceramic materials from the melt for high temperature applications [J]. Aerospace Science and Technology,2008,12(7): 499-505.
    [129]Calderon-Moreno J M, Yoshimura M. Al2O3-Y,A15O12 (YAG)-ZrO2 ternary composite rapidly solidified from the eutectic melt [J]. Journal of the European Ceramic Society,2005,25(8): 1365-1368.
    [130]Suffner J, Sieger H, Hahn H, et al. Microstructure and mechanical properties of near-eutectic ZrO2-60 wt%A12O3 produced by quenched plasma spraying [J]. Materials Science and Engineering A,2009,506(1-2):180-186.
    [131]Ochoa F, Williams J J, Chawla N. Effects of cooling rate on the microstructure and tensile behavior of a Sn-3.5wt.%Ag solder [J]. Journal of Electronic Materials,2003,32(12):1414-1420.
    [132]Xiao X, Jianyuan Z, Jianhua L. Effects of cooling rate and B content on microstructure of near-eutectic Al-13wt%Si Alloy [J]. China Foundry,2008,5(2):119-123.
    [133]Revcolevschi A. Cooling-rate determination in splat-cooling of oxides [J]. Journal of Materials Science,1976,11(3):563-565.
    [134]Zhou X Z, Shukla V, Cannon W R, et al. Metastable phase formation in plasma-sprayed ZrO2 (Y2O3)-Al2O3 [J]. Journal of the American Ceramic Society,2003,86(8):1415-1420.
    [135]Nagashio K, Kuribayashi K. Rapid solidification of Y3Al5O12 garnet from hypercooled melt [J]. Acta Materialia,2001,49(11):1947-1955.
    [136]Yasuda H, Ohnaka Ⅰ, Mizutani Y, el al. Selection of eutectic systems in Al2O3-Y2O3 ceramics [J]. Science and Technology of Advanced Materials,2001,2(1):67-71.
    [137]Niihara K. A fracture-mechanics analysis of indentation-induced palmqvist crack in ceramics [J]. Journal of Materials Science Letters,1983,2(5):221-223.
    [138]Kruz W, Fisher D J. Fundamentals of Solidification[M]. Switzerland:Trans. Tech. Publication, 1998.
    [139]沈宁福,汤亚力,关绍康,张东捷.凝固理论进展与快速凝固[J].金属学报,1996,(07):673-684.
    [140]Li J F, Zhou Y H. Eutectic growth in bulk undercooled melts [J]. Acta Materialia,2005,53(8): 2351-2359.
    [141]Magnin P,Trivedi R. Eutectic growth-a modification of the jackson and hunt theory [J]. Acta Metallurgica Et Materialia,1991,39(4):453-467.
    [142]Caslavsky J L,Viechnicki D J. Melting behavior and metastability of yttrium aluminum garnet (YAG) and YAlO3 determined by optical differential thermal-analysis [J]. Journal of Materials Science,1980,15(7):1709-1718.
    [143]Bourban S, Karapatis N, Hofmann H, et al. Solidification microstructure of laser remelted Al2O3- ZrO2 eutectic [J]. Acta Materialia,1997,45(12):5069-5075.
    [144]Wang G X, Goswami R, Sampath S, et al. Understanding the heat transfer and solidification of plasma-sprayed yttria-partially stabilized zirconia coatings [J]. Materials and Manufacturing Processes,2004,19(2):259-272.
    [145]Trivedi R. Microstructure characteristics of rapidly solidified alloys [J]. Materials Science and Engineering:A,1994,178(1-2):129-135.
    [146]边秀房,刘相法,马家骥.铸造金属遗传学[M].济南:山东科学技术出版社,1999.
    [147]Hay R S. Kinetics and Deformation during the Reaction of Yttrium-Aluminum Perovskite and Alumina to Yttrium-Aluminum Garnet [J]. Journal of the American Ceramic Society,1994,77(6): 1473-1485.
    [148]Li M J, Nagashio K, Kuribayashi K. Containerless solidification of highly undercooled Al2O3-ZrO2 eutectic melts on an aero-acoustic levitator [J]. Journal of Crystal Growth,2003,249(3-4): 625-633.
    [149]Borodin V A, Starostin M Y, Yalovets T N. Structure and related mechanical properties of shaped eutectic Al2O3-ZrO2(Y2O3) composites [J]. Journal of Crystal Growth,1990,104(1): 148-153.
    [150]Kelton K F, Lee G W, Gangopadhyay A K, et al. First X-ray scattering studies on electrostatically levitated metallic liquids:demonstrated influence of local icosahedral order on the nucleation barrier [J]. Physical Review Letters,2003,90(19).
    [151]关绍康,沈宁福,胡汉起.熔体热经历对快凝铝铁基合金中相形成的影响机制[J].铸造,1997,(11):22-25.
    [152]司乃潮,赵罗根,孙克庆.熔体热历史对Al-Cu合金熔体结构的影响[J].有色金属,2008,(04):22-25.
    [153]边秀房,潘学民,秦绪波,等.金属熔体中程有序结构[J].中国科学E辑:技术科学,2002,(02):145-151.
    [154]Notthoff C, Feuerbacher B, Franz H, et al. Direct Determination of Metastable Phase Diagram by Synchrotron Radiation Experiments on Undercooled Metallic Melts [J]. Physical Review Letters,2001,86(6):1038-1041.
    [155]朱丽娟 王冬,张鸿剑,等.铸造合金凝固过程补缩机理的探讨及其应用[J].特种铸造及有色合金,1997,(6):34-38.
    [156]Yue T M. Squeeze casting of high-strength aluminium wrought alloy AA7010 [J]. Journal of Materials Processing Technology,1997,66(1-3):179-185.
    [157]Hiraga K, Kim B-N, Morita K, et al. High-strain-rate superplasticity in oxide ceramics [J]. Science and Technology of Advanced Materials,2007,8(7-8):578-587.
    [158]Chen T, Mecartney M L. Superplastic compression, microstructural analysis and mechanical properties of a fine grain three-phase alumina-zirconia-mullite ceramic composite [J]. Materials Science and Engineering A,2005,410-411:134-139.
    [159]Mccarthy G J, Pepin J G, Clarke D R. Crystal-chemistry and compatibility relations among the synthetic minerals in current supercalcine ceramics [J]. American Ceramic Society Bulletin,1979, 58(3):326-326.
    [160]Hiraga K, Kim B N, Morita K, et al. High-strain-rate superplasticity in oxide ceramics [J]. Materials Science Forum,2004,447-448:291-7.
    [161]Hiraga K, Kim B-N, Morita K, et al. High-strain-rate superplasticity in oxide ceramics [J]. Science and Technology of Advanced Materials,2007,8(7-8):578-587.
    [162]Mesa M C, Oliete P B, Orera V M, et al. Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method [J]. Journal of the European Ceramic Society,2011,31(7):1241-1250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700