一种新型热剂焊接方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然灾害当中,在战场上,人们都要在无电的情况下进行应急焊接作业。然而,目前已有的焊接方法很难满足抢修作业简便、高效的需求。本文正是针对上述需求,将自蔓延技术结合手工焊接方法,创新出一种新型热剂焊接方法。该焊接方法无需借助任何外部能源和辅助设备,焊接人员可随身携带,随时随地进行焊接作业。
     文章采用自创的自蔓延反应造渣技术,成功实现了热剂反应后金属与氧化铝的迅速分离。通过研究不同原料粒径以及球磨混料工艺对热剂反应的影响,获得了可控的热剂反应,实现了将分离出的熔融金属产物向待焊母材上铺展,并形成焊缝。文章分别选择Al/Fe_2O_3,Al/CuO作为主要的热剂反应体系进行焊接实验,并采用合金化的方法对焊缝进行强化。研究了上述两热剂体系的焊缝成型性能及组织情况,并分析了合金元素对焊缝显微组织以及性能产生的影响。研究表明:Al/Fe_2O_3体系的焊缝成型性能较差,合金元素C的添加将导致焊缝焊接性能的急剧恶化,Al/CuO体系的焊缝成型性能较好,Al/NiO体系的加入将有效改善焊缝的显微组织结构以及提高焊缝强度,实现与母材强度的相互匹配。
     在Al/CuO、NiO反应体系的基础上,通过添加惰性稀释剂的办法对热剂反应进行调控,研究不同燃烧速度和温度对焊缝成型、显微组织以及力学性能的影响;对热剂焊接过程中裂纹产生的原因进行了详细分析,研究了不同Ni含量以及Fe含量对焊缝产生结晶裂纹的影响。研究表明:添加4wt.%硅灰石,即在燃烧速度为0.37cm/s,温度为1918℃条件下获得的焊接接头组织较好,未有缩松和气孔存在。焊缝中Ni和Fe的含量将对结晶裂纹的产生起到至关重要的作用,当二者含量均控制在10wt.%以下时,便能消除结晶裂纹。经严格调控后所得焊接接头的抗拉强度为424MPa,延伸率为10.4%,完全可以满足应急焊接的需要。
     将热剂焊接成果应用于热剂堆焊,实现了一种新颖的原位合成金属基复合材料堆焊层的简单方法。实验结果表明:原位合成的TiC颗粒尺寸细小,大部分均小于10μm,且弥散分布于堆焊层当中。
People have to operate an emergency welding without electric power in naturedisaster or battle fields. However, all the existed welding method hardly meet thesimple、efficient requirements for emergency repair. This paper presents a novel methodof thermite welding, which combined SHS technology with manual welding. Ahand-operated portable welding can be conveniently realized by using thermite weldingwithout any outside power and auxiliary equipment.
     Rapid separation of aluminum oxide and molten metal production could berealized by Self-propagating slagging reaction technology. The influence of rawmaterials particle size and milling process were discussed. Finally a controlled thermitereaction and weld formation were achieved.
     Al/Fe_2O_3and Al/CuO system were selected as the main exothermic reaction inthermite welding. The formability and microstructure of weld bead were studied. Theinfluence of alloying elements on weld microstructure and property were discussed aswell. Results showed the weld performance for Al/Fe_2O_3system is bad and weldabilitywas deteriorated sharply when adding alloying elements C. While Al/CuO system has abetter weld performance and the microstructure and property of weld was improved byadding Al/NiO system.
     Effect of thermite burning rate and temperature on microstructure and mechanicalproperties of weld joints was studied in Al/CuO、NiO system. The thermite reaction wasadjusted by varying addition of diluent. The causes of solidification cracking duringthermite weld process were discussed and the effect of Ni and Fe content on formingsolidification cracking was studied. Results showed a fine microstructure with fewshrinkage pore or micro-crack was obtained at0.37cm/s burning rate,1918℃with4wt.%wollastonite addition. The Ni and Fe contents were key reasons in formingsolidification cracking, when their levels were controlled by less then10wt.%, it couldbe able to eliminate the solidification cracking. The tensile properties with424MPaultimate tensile strength and10.4%uniform elongation were obtained after strictcontrolling the welding process. The properties of weld fully meet the needs ofemergency welding.
     A simple and novel method to prepare ceramic particulate reinforced MMCcoatings were realized via thermite welding technology. Results showed in situsynthesized TiC particles were fine with an average size of <10μm and uniformlydistributed in the metal matrix.
引文
[1]张文钺.焊接冶金学.北京:机械工业出版社,2007:1-5.
    [2] MA Z Y. Friction Stir Processing Technology: A Review. Metall and Mater Trans A,2008,39:642-658.
    [3] Mishra R S, Ma Z Y. Friction Stir welding and processing. Mater Sci Eng,2005,50:1-78.
    [4] DebRoy T, David S A. Physical processes in fusion welding. Rev. Mod Phys,1995,67:85-109.
    [5] Tanaka M, Lowke J J. Predictions of weld pool profiles using plasma physics. J Phys D: ApplPhys,2007,40:R1-R23.
    [6] Gene Mathers. The welding of aluminium and its alloys.1th ed. England:Woodheadpublishing Ltd,2002.
    [7]李亚江,张永喜,王娟.北京:化学工业出版社,2008:18-110.
    [8]徐绪森.装备维修决策技术.北京:兵器工业出版社,1991.
    [9]马世宁.装备战场应急维修技术.北京:国防工业出版社,2009.
    [10]殷声.燃烧合成.北京:冶金工业出版社,1999:1-7.
    [11] Merzhanov A G. Solid flams: discoveries, concepts, and horizons of cognition. Combust Sciand Tech,1994,98:307-336.
    [12] Merzhanov A G. Combustion and plasma synthesis of high temperature materials. New York:VCH Publication Inc,1990:40-41.
    [13] Merzhanov A G. Combustion: New Manifestations of an ancient process. BlackwellScientific publication,1992:19-39.
    [14] Merzhanov A G. Theory and practices of SHS: worldwide state of the art and the newestresults. Inter J SHS,1993,2:113-158.
    [15]殷声.燃烧合成.北京:冶金工业出版社,1999:219-251.
    [16] Subrahmanyam J. Review: self-propagation high temperature synthesis. Mater Sci,1992,7:6249-6273.
    [17] Merzhanov A G. Worldwide evolution and present status of SHS as a branch of modern R&D(On the30thAnniversary of SHS). Inter J SHS,1997,6:119-163.
    [18]刘光华. a-SiAlON多形态粉体的合成与自增韧陶瓷的制备:[博士学位论文].北京:清华大学材料科学与工程系,2007.
    [19]任克刚.多形态AlN、Si3N4粉体制备及其导热硅脂复合材料研究:[博士学位论文].北京:清华大学材料科学与工程系,2009.
    [20]李江涛.气固体系自蔓延高温合成氮化物的研究:[博士学位论文].北京:北京科技大学材料科学与工程系,1995.
    [21]陈克新.自蔓延高温合成氮化铝基陶瓷的研究:[博士学位论文].北京:北京科技大学材料科学与工程系,1997.
    [22]李文戈.燃烧合成法制备陶瓷及金属陶瓷涂层及其性能研究:[博士学位论文].北京:清华大学材料科学与工程系,2004.
    [23]殷声.自蔓延高温合成法(SHS)的发展.粉末冶金技术,1992,10:219-251.
    [24]殷声.燃烧合成.北京:冶金工业出版社,1999:2.
    [25] Wang L L, Munir Z A, Maximov Y M. Thermite reactions: their utilization in the synthesisand processing of materials, J Mater Sci,1993,28:3693-3708.
    [26] Amer. Chem. Soc. Physics for National Bureau of Standards, Washington DC,1990.
    [27] Kubachewskl O, Alcock C B. Metallurgical thermochemistry. New York: Pergamon press,1979.
    [28] Carlson O N. Progress in extractive metallurgy. New York: Gordon and Breach,1973,187-206.
    [29] Chernenko E V, Afanas Eva L F, Lebedeva V A, et al. Rozenband. Combust Explos ShockWaves,1987,24:639.
    [30] Yi H C. Combustion and Plasma synthesis of high temperature materials, ed by Munir Z A,Holt J B. VCH Weinheim,122.
    [31]殷声.燃烧合成.北京:冶金工业出版社,1999:101-142.
    [32] Subrahmanyan J, Vijayaykumar. Self-propagating high-temperature synthesis. J Mater Sci.1992,27:6249-6273.
    [33]殷声.燃烧合成.北京:冶金工业出版社,1999:127-130.
    [34] Russias J, Cardinal S, Aguni Y, et al. Influence of titanium nitride addition on themicrostructure and mechanical properties of TiC based cermets. Int J Refract Met Hard Mater,2005,23:358-362.
    [35] Komratov G N, Kobyakov V P. Oxidation of SHS Mo-Si-C materials in air. Inorg Mater,2000,36:337-342.
    [36] Andreev Y, Levashov E A, Sheveiko A, et al. Electrochemical corrosion behavior ofSHS-synthesized de magnetron composite TiC-based targets and sputtered thin films. SurfCoat Technol,1997,90:42-52.
    [37] Borovinskaya I P, Ignat'eva. T I, Vershinnikov V I, et al. Self-propagating high-temperaturesynthesis of ultrafine and nanosized WC and TiC powders. Powder Metall Met Ceram,2008,47:505-511.
    [38] Ko S K, Won C W, Shon. I J. Synthesis of Cr3C2by SHS process. Scripta Mater,1997,37:889-895.
    [39] Yeh C L, Hsu W S. Preparation of MoB and MoB-MoSi2composites by combustion synthesisin SHS mode. J Alloys Compd,2007,440:193-198.
    [40] Yeh C L, Hsu W S. Preparation of molybdenum borides by combustion synthesis involvingsolid-phase displacement reactions. J Alloys Compd,2008,457:191-197.
    [41] Zeng X C, Sun G X, Zhang S G. Combustion synthesis of Al2O3-Cr2O3-Cr cermets. ScriptaMater,2000,42:1167-1172.
    [42] Chui HZ, Bi Y. Microstructure and formation of a metal matrix ceramic, Cr+Al2O3,synthetized by combustion. Rare metal Mater Eng,1998,27:215-217.
    [43] Kobyakov V P, Barinova T V, Ratnikov V I. Self-propagating high-temperature synthesis ofAl2O3/TiC-based ceramic materials. Inorg Mater,2009,45:211-219.
    [44] Yeh. C L, Li R F. Formation of TiB2-Al2O3and NbB2-Al2O3composites by combustionsynthesis involving thermite reactions. Chem Eng J,2009,147:405-411.
    [45] Atong D, Clark D E. Ignition behavior and characteristics of microwave-combustionsynthesized Al2O3-TiC powders. Ceram Int,2004,30:1909-1912.
    [46] Liu YH, Yin S, Guo Z M, et al. Aluminum borate in the combustion synthesis ofalumina/boride composite. J Mater Res,1998,13:1749-1752.
    [47] Reddy B S, Karabi Das, Siddhartha Das. A reiview on the systhesis of in siu aluminum basedcomposites by thermal, mechanical and mechanical thermal actication of chemical reactions. JMater Sci,2007,42:9366-9378.
    [48] Arkhipov O A, Berezin N M and Shtengrlmeier V S. Surface phenomena in metallurgicalprocesses. New York, consultants bureau,1969:224.
    [49] Merzhanov A G, Yukhvid V Z, et al. Canadian Patent No.1058841,1979.
    [50] Merzhanov A G, Yukhvid V Z, et al. British Patent No.1497025,1978.
    [51] Merzhanov A G, Yukhvid V Z, et al. US Patent No.4217948,1980.
    [52] Merzhanov A G. Worldwide evolution and present status of SHS as a branch of modern R&D(On the30th anniversary of SHS). Inter. J. SHS,1997,6:119-163.
    [53] Osamu Odawara. Long ceramic line pipe produced by centrifugal thermit process. J AmerCeram Soc,1990,73:629-633.
    [54] Osamu Odawara. Transactions of the japan institute of metal,1986,27:702-708.
    [55] Osamu Odawara. U. S. Patent No.4363832,1982.
    [56]柳牧. SHS铝热离心法制备内衬陶瓷复合钢管的研究:[博士学位论文].北京:北京科技大学,1995.
    [57]柳牧,殷声,赖和怡,魏延平.内衬陶瓷钢管陶瓷层中铁铝尖晶石的形成机理.北京科技大学学报,1996,18:245-248.
    [58]柳牧,殷声,赖和怡,魏延平.复合钢管内衬陶瓷层的组织结构和耐腐蚀性能研究.硅酸盐学报,1997,25:527-531.
    [59]赵忠民,叶明惠,杜心康,王建江,张龙. SHS陶瓷内衬复合管合成及陶瓷致密化技术.材料科学与工程,2002,20:121-124.
    [60]张龙,赵忠民,曹金荣,陆大勤,王建江.金属添加剂对SHS陶瓷内衬复合管微观结构与界面连接的影响.粉末冶金技术,2005,23:248-253.
    [61]高峰,郭志猛,林涛.钛粉对SHS陶瓷内衬复合管组织与性能的影响.硅酸盐通报,2007,26:627-631.
    [62] Liu Mu, Yin Sheng, Wei Yanping, et al. Characteristics of combustion in a centrifugalthermite process. J Mater Sci,1997,32:4711.
    [63] Yin Sheng, Liu Mu, Yao Yucheng, et al. Feldspar additive in ceramic composite pipes madeby acentrifugal SHS process. Inter J SHS,1993,2:69.
    [64] Odawara Osamu, Ikeuchi Jun. Ceramic composite pipes produced by a centrifugal exothermicprocess, J Am Ceram Soc,1986,69:80.
    [65] Odawara O. Ceramic linings of pipes using SHS technology. Key Eng Mater,1996,122:463.
    [66] Chai Huifen, Guo Yangdong, Fan Quncheng, et al. Effects of additives Si on casting structureof ceramic liner produced by centrifugal thermite process. J Mater Sci,1995,30:2554.
    [67] Yin Sheng, Liu Mu, Yao Yucheng, et al. Feldspar additive in ceramic composite pipes madeby acentrifugal SHS process. Inter J SHS,1993,2:69.
    [68] Xi Wenjun, Yin Sheng, Guo Shiju, et al. Stainless steel lined composite steel pipe prepared bycentrifugal SHS process, J Mater Sci,2000,35:45.
    [69] O. ODAWARA. Combustion and Plasma synthesis of high temperature materials. New York,VCH,1990:179-185.
    [70] Osamu Odawara, Jun Ikeuchi. Ceramic composite pipes produced by a centrigual exothermicprocess. J Amer Ceram Soc,1986,69:C80-81.
    [71]段辉平.离心-铝热制备不锈钢内衬复合钢管的研究:[博士学位论文].北京:北京科技大学,1996.
    [72]席文君,殷声,赖和怡.SHS-离心法制备的不锈钢内衬复合钢管的力学性能及微观结构.金属学报,1999,420-423.
    [73]裴军.氧化铝基陶瓷材料的超重力熔铸制备新技术研究:[博士学位论文].北京:中国科学院理化技术研究所,2009.
    [74]梁睿.超重力辅助燃烧合成制备氧化铝基陶瓷:[硕士学位论文].北京:清华大学,2009.
    [75] Yin X, Chen K X, Zhou H P, et al. Combustion Synthesis of Ti3SiC2/TiC Composites fromElemental Powders under High-Gravity Conditions. J Amer Ceram Soc,2010,93:2182-2187.
    [76] Jun Pei, Jiang-Tao Li, Liu, G.H., et al. Fabrication of bulk Al2O3by combustion synthesismelt-casting under ultra-high gravity. J alloys Compd,2009,476:854-858.
    [77] Rui Liang, Jun Pei, Jiangtao Li, et al. Fabrication of an Al2O3/YAG/ZrO2ternary eutectic bycombustion synthesis melt casting under ultra-high gravity. J Amer Ceram Soc,2009,92:549-552.
    [78] Peiqing La, Jun Yang, David J. H. Cockayne, et al. Bulk Nanocrystalline Fe3Al-BasedMaterial Prepared by Aluminothermic Reaction. Adv Mater,2006,18:733–737.
    [79] Jun Yang, Jiqiang Ma, Weimin Liu, et al. Large-scale Fe-C nanoeutectic alloy prepared by aself-propagating high-temperature synthesis casting route. Scripta Mater,2008,58:1074-1077.
    [80] Peiqing La, Yupeng Wei, Ruijiao Lv, et al. Effect of Mn element on microstructure andmechanical properties of bulk nanocrystalline Fe3Al based materials prepared byaluminothermic reaction. Mater Sci Eng A,2010,15:2313-2319.
    [81] Peiqing La, Li Wang, Yang Zhao, et al. Effect of substrate thickness on nanostructure andmechanical properties of bulk nanocrystalline Fe3Al prepared by aluminothermic reaction. IntJ Mod Phys B,2009,20:1572-1577.
    [82] Laijun Li, Qinling Bi, Jun Yang, et al. Fabrication of bulk Al2O3dispersed ultrafine grainedCu matrix composite by self-propagating high-temperature synthesis casting route. Mater Lett,2008,62:2458-2460.
    [83] Ahlert W. Thermite welding Behaviour, performance and examples. Zeit Ver Deut Ing.1939,83:515-518.
    [84] Zuliani, G. Thermite aluminium for rapid and rational cable connections. Elettrificazione,1978,5:206-210.
    [85] Meric C, Engez T. Understanding the thermite welding process. Welding J,1999,78:33-36.
    [86] Kramer J. Thermite Welds: Getting Ready For Heavier Loads. Railway Track Stru,1993,89:16-20.
    [87] Kramer J. Thermite Welding Changes Pay Off. Railway Track and Stru,1996,92:21-23.
    [88] Myers J., Geiger G H, Poirier D R. Structure and properties of thermite welds, welding J ResSuppl,1982,61:258s-268s.
    [89] Hauser. Welding of railroad rails-a literature and industry survey. USA: Philadelphia,1978,118-144.
    [90] Shitara, H, Terashita, Y, Tatsumi, M, Fukada, Y. Nondestructive testing and evaluationmethods for rail welds in Japan. Quarterly Report of RTRI,2003,44:53-58.
    [91] Gutscher D, Dingqing Li, McDaniel R. Performance update for wide-gap welds in revenueservice. Railway Track and Structures,2010,106:16-18.
    [92] Anon. Introduction to Copper Thermite Welding Bond. Furukawa Review,2008,33:18-20.
    [93] Liu Ji-yan, Huang Xin, Qiu Ji, et al. Study on combustion velocity and temperature ofnon-electric welding material. J Aca Arm Forc Eng,2009,23:81-83.
    [94] Collen H. US Patent No.4236453,1979.
    [95] Dickey T E, Gehr T Y. US Patent No.5323709,1994.
    [96]崔成林,高松福,高振坤等.中国专利, No.201109005,2011.
    [97]崔成林,高松福,迟俊杰,王宝秀.中国专利, No.201511210U,2010.
    [98]弗雷德里克·德尔克鲁瓦.中国专利, No.101081458,2007.
    [99] L.维尼亚尔, P.博马尔.中国专利, No.101868319A,2010.
    [100] Karimine K, Ueda M, Iwano K. J. P. Patent No.2008137053,2008.
    [101]李亚江,王娟,刘鹏.特种焊接技术及应用.北京:化学工业出版社,2003:253.
    [102]王宝荣.高效焊接新技术-铝热焊发展动向.鞍钢技术,1990,7:17-19.
    [103]胡士信,李云涛,张俊义.电缆铝热焊接技术.焊接,1989,10:20-23.
    [104] Moore J J, Feng H J. Combustion synthesis of advanced materials: part1. reaction parameters.Prog Mater Sci,1995,39:243-273.
    [105]殷声.燃烧合成.北京:冶金工业出版社,1999:51-55.
    [106]商宝禄,季玮.冶金过程原理.西安:西北工业大学出版社,1986:212.
    [107] Ernest M. Levin, Carl R. Robbins, Howard F. McMurdie. Phase diagrams for ceramists.U.S.A., the American ceramic society,1979,121.
    [108] Ernest M. Levin, Carl R. Robbins, Howard F. McMurdie. Phase diagrams for ceramists.U.S.A., the American ceramic society,1979,120.
    [109] Wang L L, Munir Z A, Maximov Y M. Thermite reactions: their utilization in the synthesisand processing of materials, J Mater Sci,1993,28:3693-3708.
    [110] Kevin Moore, Michelle L, Pantoya. Combustion Behaviors Resulting from BimodalAluminum Size Distributions in Thermites. J Propul Power,2007,23:181-185.
    [111] Bockmon B S, Pantoya M L, Son S F, et al. Combustion velocities and propagationmechanisms of metastable interstitial composites. J Appl Phys,2005,98:064903.
    [112] Juan Suna, Michelle L. Pantoya b, Sindee L. Simon. Dependence of size and size distributionon reactivity of aluminum nanoparticles in reactions with oxygen and MoO3. ThermochimActa,2006,444:117-127.
    [113] Raymond C S, Shkadinsky K G, Volpert VA. Gravitational effects on liquid flame thermiteSystems. Combust Sci Tech,1998,131:107-129.
    [114] Rogachev A S, Sanin V N, Sytschev A E, et al. Influence of gravity on self-propagatinghigh-temperature thermite reactions: the case of Cu2O-Al and Cu2O-Cu-Al systems. AdvSpace Res,2002,29:505-510.
    [115] Malchi J Y, Yetter R A, Foley T J, Son S F. The Effect of Added Al2O3on the PropagationBehavior of an Al/CuO Nanoscale Thermite. Combust Sci Tech,2008,180:1278-1294.
    [116] John J. Granier, Michelle L. Pantoya. The effect of size distribution on burn rate innanocomposite thermites: a probability density function study. Combust Theory Modelling,2004,8:555-565.
    [117] J. Morgado, L. Dur es, J. Campos, A. Portugal. Iron oxide/aluminum fast thermite reaction.Shock compression of condensed matter,2004,706:871-874.
    [118] Walley S M, Balzer J E, Proud W G. Field. Response of thermites to dynamic high pressureand shear. Proc R Soc Lond A,2000,456:1483-1503.
    [119] Lusa Dur es, Jose Campos, Antonio Portugal. Radial Combustion Propagation in Iron(III)Oxide/Aluminum Thermite Mixtures. Propellants, Explosives, Pyrotechnics,2006,31:42-49.
    [120] Butakova E A, Strunina A G. Thermo-physical properties of some thermite and intermetallicsystems. Combut explosion and shock waves,1985,21:67-69.
    [121] Moore J J, Feng H J. Combustion synthesis of advanced materials: part1. reaction parameters,Prog Mater Sci,1995,39:243-273.
    [122]殷声.燃烧合成.北京:冶金工业出版社,1999:65.
    [123] Feest E A, Doherty R D. Cu-Ni Equilibrium Phase Diagram. J Inst Met,1971,99:102.
    [124] Lopasso E M, Caro M, Caro A, et al. Phase diagram of an empirical potential: The case ofFe-Cu. Phys Rev B,2003,68:214205-1-9.
    [125] Raghavan V. Cu-Fe-Ni. J Phase Equilib Diffus,2004,25:458-461.
    [126]张文钺.焊接冶金学.北京:机械工业出版社,2007:6-7.
    [127] Balakir E A, Bushuev Yu B, Bareskov N A, et al. Combust Explos Shock Waves,1975,11:36.
    [128] David S A, Babu S S, Vitek J M. Welding: Solidification and Microstructure. Welding,2003,55:14-20.
    [129] Sindo Kou. Solidification and Liquation Cracking Issues in Welding. Welding,2003,55:37-42.
    [130]张文钺.焊接冶金学.北京:机械工业出版社,2007:223.
    [131]张文钺.焊接冶金学.北京:机械工业出版社,2007:224.
    [132]中国机械工程学会焊接学会.焊接手册.北京:机械工业出版社,1992,708.
    [133]王娟.表面堆焊与热喷涂技术.北京:化学工业出版社,2004:23.
    [134] Grigoev Yu M, Merzhanov A G. Combustion processes in chemical technology andmetallurgy. Inter J SHS,1992,1:600.
    [135] Prangnell P B, Downes T, Stobbs, W M, et al. The deformation of discontinuously reinforcedMMSs.1. the initial yielding behavior, Acta Metall,1994,42:3425-3436.
    [136] Leon C A, Drew RAL. Preparation of nickel-coated powders as precursors to reinforceMMCs. J Mater Sci,2000,35:4763-4768.
    [137] Mangin CGE, Isaacs J A, Clark J P. MMCs for automotive engine applications. J Miner MetMater Soc,1996,48:49-51.
    [138] Li C G, Wang Y, Wang S, Guo L X. Laser surface remelting of plasma-sprayednanostructured Al2O3-13wt%TiO2coatings on magnesium alloy, J Alloys Compd,2010,503:127-132.
    [139] Cheng F T, Lo K H, Man H C. A preliminary study of laser cladding of AISI316stainlesssteel using preplaced NiTi wire. Mater Sci Eng A.,2004,380:20-29.
    [140] Man H C, Kwok C T, Yue T M. Cavitation erosion and corrosion behaviour of laser surfacealloyed MMC of SiC and Si3N4on Al alloy AA6061. Surf Coat Technol,2000,132:11-20.
    [141] Dubourg L, Ursescu D, Hlawka F, Cornet A. Laser cladding of MMC coatings on aluminiumsubstrate: influence of composition and microstructure on mechanical properties. Wear.2005,258:1745-1754.
    [142] Liang Y H, Wang H Y, Yang Y F, et al. Evolution process of the synthesis of TiC in theCu–Ti–C system, J Alloys Compd,2008,452:298-303.
    [143] Feng CF, Froyen L. Microstructures of in situ Al/TiB2MMCs prepared by a casting route. JMater Sci.2000,35:837-850.
    [144] Zhang X H, Zhu C C, Wei Q U. Self-propagating high temperature combustion synthesis ofTiC/TiB2ceramic–matrix composites. Compos Sci Technol,2002,62:2037-2041.
    [145] Wang H Y, Huang L, Jiang Q C. In situ synthesis of TiB2–TiC particulates locally reinforcedmedium carbon steel–matrix composites via the SHS reaction of Ni–Ti–B4C system duringcasting. Mater Sci Eng A.,2005,407:98-104.
    [146] Khina B B, Formanek B, Solpan I. Limits of applicability of the diffusion-controlled productgrowth kinetic approach to modeling SHS. Phys B.,2005,355:14-31.
    [147] Locci A M, Cincotti A, Delogu F, Cao G. Advanced modeling of self-propagatinghigh-temperature synthesis: the case of the Ti–C system. Chem Eng Sci,2004,59:5121-5128.
    [148] Cochepin B, Gauthier V, Vrel D, Dubois S. Crystal growth of TiC grains during SHSreactions. J Cryst Growth,2007,304:481-486.
    [149] Liang Y H, Wang H Y, Yang Y F, et al. Evolution process of the synthesis of TiC in theCu–Ti–C system. J Alloys Compd,2008,452:298-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700